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ABSTRACT Semantic segmentation is critical for applications like autonomous driving, medical imaging,
and urban monitoring. However, existing state-of-the-art models often require high computational and
memory resources, making them unsuitable for real-time and resource-constrained environments. This
paper identifies the gap of feature refinement and multi-scale representation while balancing computational
efficiency with segmentation accuracy, particularly for binary neural networks in semantic segmentation.
We propose BiSegUNet, a novel lightweight semantic segmentation architecture. It incorporates a Capacity
Block with dense connections, multi-branch convolutions, and attention mechanisms to enhance feature
refinement and multi-scale context aggregation. Additionally, the architecture integrates a novel bottleneck
design combining binary, grouped, and dilated convolutions for real-time performance without significant
accuracy loss. Extensive evaluations on Cityscapes, PASCAL VOC, and ADE20K datasets demonstrate that
BiSegUNet achieves competitive performance with up to 19 x reduction in FLOPs and 6.5 x memory savings
compared to full-precision networks. It also outperforms comparable lightweight models, achieving 75.1%
mloU and 158 FPS inference speed at 1024 x2048 and 512x 1024 resolution respectively on Cityscapes
dataset. These results highlight its scalability and potential for deployment in real-world applications like
autonomous vehicles and edge computing, offering a promising solution for efficient semantic segmentation
in constrained environments.

INDEX TERMS Binary neural network (BNN), real-time semantic segmentation, computational efficiency.

I. INTRODUCTION

Semantic segmentation, a fundamental task in computer
vision, aims to assign a class label to every pixel in an
image, enabling applications in autonomous driving, medical
imaging, and environmental monitoring. The development of
accurate and robust semantic segmentation models has been
a primary focus of research in recent years, with architectures
such as UNet [1], DeepLabv3+ [2], and PSPNet [3] pushing
the boundaries of segmentation performance. However, these
models often rely on computationally intensive convolutional
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operations, which limit their deployment in real-time or
resource-constrained environments such as mobile devices
and embedded systems.

The demand for computational efficiency has driven
the exploration of various optimization techniques in deep
learning. One notable approach is quantization, which
reduces the precision of weights and activations to lower
bit-widths, significantly reducing memory and computa-
tion requirements while maintaining accuracy [4], [5].
Another promising strategy is knowledge distillation, where
a smaller network (student) learns from a larger, pre-
trained network (teacher) to achieve competitive perfor-
mance with fewer parameters [6]. Additionally, neural
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architecture search (NAS) has been employed to automat-
ically discover efficient network architectures tailored for
specific tasks [7], [8].

In the field of computer vision, lightweight architec-
tures like MobileNets [9], ShuffleNet [10], BiSeNet [11],
BiseNet-v2 [12], EdgeNet [13], MSCFNet [14], and LET-
Net [15] have demonstrated remarkable efficiency for
classification and segmentation tasks. These models employ
depthwise separable convolutions and channel shuffling,
respectively, to reduce computational overhead. Such inno-
vations have inspired adaptations for semantic segmentation,
including MobileNetV3-based DeepLab [16] and Shuffle-
Seg [17]. For semantic segmentation specifically, efforts
have focused on balancing accuracy and efficiency. Tech-
niques such as the use of depthwise separable convolutions
in lightweight backbones [18] and region-based pooling
mechanisms [3] have been pivotal in reducing computational
complexity. Additionally, real-time segmentation networks
like ERFNet [19], ESPNet [20] and ESPNET-v2 [21] have
introduced novel designs to achieve high-speed performance
on edge devices. This paper introduces BiSegUNet, a novel
binary convolution-based neural architecture for semantic
segmentation, designed to address these limitations by
incorporating a Capacity Block. The proposed capacity
block combines dense connections and multi-branch con-
volutions with attention mechanisms, enhancing feature
refinement and multi-scale representation while preserving
computational efficiency. Positioned between the encoder
and decoder stages, the Capacity block refines encoder
outputs before they are integrated as skip connections
into the decoder, facilitating improved context aggrega-
tion and feature alignment. To further enhance global
context representation, the architecture integrates Atrous
Spatial Pyramid Pooling (ASPP) and an Attention Network
Part (ANP) in the bottleneck layer. These components
capture multi-scale spatial information and apply channel-
wise attention, respectively, ensuring robust performance
across diverse segmentation scenarios. Figure 1 illustrates
the evaluation of the proposed architecture, BiSegUNet,
in comparison with state-of-the-art semantic segmentation
models on the Cityscapes dataset. BiSegUNet achieves
a compelling balance among these three factors, with
significantly reduced FLOPs and high FPS, BiSegUNet
outperforms many lightweight models while maintaining
competitive accuracy. Compared to models like DeepLab-
V34, which achieve high mIOU but require substantial
computational resources, BiSegUNet offers a sustainable
alternative for real-time applications in resource-constrained
environments.

We evaluate the proposed architecture on benchmark
datasets, including Cityscapes [22], PASCAL VOC [23], and
ADE20K [24], demonstrating its ability to achieve state-of-
the-art efficiency while maintaining competitive accuracy.
Ablation studies reveal the critical role of binary convolutions
and the capacity block in balancing computational efficiency
and segmentation performance.
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FIGURE 1. Evaluation of accuracy, computational complexity, and
inference speed on the Cityscapes dataset. The circle radius represents
the inference speed, with larger circles indicating faster performance. Our
method is shown in orange.
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The main contributions of this work are as follows:

« We propose a computationally efficient semantic seg-
mentation architecture based on binary convolutions,
achieving up to 19 x FLOPs reduction and 6.5 x memory
savings compared to full-precision networks. When
compared to BiseNet-v2, BiSegUNet achieves a 2.03 x
reduction in FLOPs and a marginally faster inference
speed (1.01x), while delivering a 2.5% higher mloU,
demonstrating a superior balance between accuracy and
efficiency.

« Weintroduce the Capacity Block, which combines dense
connections, multi-branch convolutions, and attention
mechanisms to enhance feature representation, refine
encoder outputs, and improve segmentation perfor-
mance.

o We leverage a novel bottleneck design that integrates
grouped, binary, and dilated convolutions, reducing
computational complexity and enabling real-time per-
formance without significant accuracy loss.

« We systematically evaluate the effectiveness of
the architecture through extensive experiments on
Cityscapes and ADE20K, highlighting its general-
ization capability, scalability, and applicability to
resource-constrained scenarios such as autonomous
driving and edge computing.

The proposed Capacity Block combines dense connectiv-
ity, multi-branch convolutions, and channel attention in a
form tailored to efficient binary segmentation. It fuses three
parallel convolutional transformations such as binary, dilated,
and grouped convolutions afterwards applies a learned
channel-wise attention to the concatenated outputs, thereby
capturing both fine spatial detail and broader contextual
information within a lightweight module. By inserting
Capacity Blocks at encoder—decoder skip connections, the
network densifies information flow and injects multi-scale
context early into decoder features, which is distinct from
typical ASPP or SE/CBAM modules that are usually applied
only at the bottleneck or a single scale. This design directly
addresses feature degradation in binary networks, since
binary and grouped branches keep computation low while
attention re-weights informative channels, and it yields a
substantial improvement in mloU over a baseline without
Capacity Blocks, as confirmed by our ablation results.
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The remainder of the paper is organized as follows:
Section Il reviews related work on semantic segmentation and
binary neural networks. Section III describes the proposed
method, including the capacity block and bottleneck layer.
Section IV provides the implementation details. Section V
presents experimental results and discussion. Section VI
presents the ablation study. Finally, Section VII concludes the
paper and outlines future directions.

Il. RELATED WORK

The field of semantic segmentation has witnessed significant
progress due to advancements in deep learning. However,
the computational demands of state-of-the-art segmentation
architectures limit their deployment in resource-constrained
environments. This section reviews related works focusing on
binary neural networks (BNNs), efficient architectures,
and the challenges of applying BNNs to segmentation tasks.

A. NETWORK QUANTIZATION FOR EFFICIENCY

Network quantization has emerged as a powerful approach
for reducing the computational and memory footprint of
deep neural networks. By lowering the precision of weights
and activations, quantized networks enable deployment on
resource-constrained devices such as edge and mobile plat-
forms. Quantization techniques, such as those proposed by
Jacob et al. [4], allow neural networks to operate with integer
arithmetic while maintaining competitive accuracy. A recent
survey by Gholami et al. [5] categorizes advancements in
quantization strategies, including post-training quantization
(PTQ), quantization-aware training (QAT), and mixed-
precision quantization, highlighting their effectiveness in
image classification. Quantization has been particularly suc-
cessful in classification tasks, where reduced precision offers
significant gains. Works such as PACT [25], QIL [26], and
HAQ [27] explore various adaptive quantization strategies to
balance accuracy and efficiency. These approaches leverage
loss-aware quantization and search techniques to optimize
bit-width allocation for each layer, achieving state-of-the-
art results on classification benchmarks like ImageNet.
Despite these successes, extending quantization to tasks like
semantic segmentation remains challenging due to the need to
preserve spatial granularity and contextual features. Existing
segmentation architectures such as MobileNetV3 [16] and
ESPNet [20] employ quantized backbones for efficient
processing but often rely on floating-point operations in
decoder stages to retain accuracy. Our work bridges this gap
by integrating binary operations throughout the architecture
for segmentation tasks.

Binary Neural Networks (BNNs) take quantization to the
extreme by constraining weights and activations to 1-bit,
enabling highly efficient models with low memory require-
ments. Early works like BinaryConnect [28] and Bina-
ryNet [29] introduced binarized weights for classification,
reducing model size while maintaining competitive accuracy.
XNOR-Net [30] further optimized binary convolutions
with approximations of floating-point operations, enabling
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large-scale image classification with significant computa-
tional savings. Recent advancements in BNNSs, such as
Bi-Real Net [31] and MeliusNet [32], improve representa-
tional capacity through shortcuts and multi-scale learning,
achieving improved accuracy on datasets like CIFAR-10
and ImageNet. Group-Net [33] demonstrates that structured
binary convolutions can bridge the gap between accuracy and
efficiency. While these efforts have been largely confined to
classification tasks, they establish a foundation for extending
binary methods to more complex domains.

While BNNs have proven effective in classification, their
application to semantic segmentation is still limited. Unlike
classification, segmentation requires pixel-level precision,
which is difficult to achieve with binary operations due
to their inherently coarse representations. Initial attempts,
such as Binary DAD-Net [34], explored domain-specific
segmentation tasks but were restricted by accuracy con-
straints. Cellular BNNs [35] represent one of the few
attempts to apply binary operations to segmentation tasks,
incorporating cellular automata-like structures to refine
feature maps. However, these approaches often fall short
in capturing global context and multi-scale features, which
are critical for segmentation. Structured BNNs [33] address
this by employing parallel binary convolutions, but their
computational overhead limits their practical deployment.

B. EFFICIENT ARCHITECTURES FOR SEMANTIC
SEGMENTATION

Efforts to design efficient architectures for segmentation have
predominantly focused on compact networks and separa-
ble convolutions. MobileNetV3 [16] combines depthwise
separable convolutions with an optimized backbone, while
BiSeNet [11] employs a bilateral network structure to
separate spatial and semantic processing. ShuffleNet [10]
and ESPNet [20] aim to minimize computational costs
by rethinking kernel design. However, these architectures
rely on floating-point operations, which still incur higher
computational costs compared to BNNs.

Another area of research focuses on neural architecture
search (NAS), as explored in Auto-DeepLab [36] and recent
advancements like FBNet [37]. These methods automate the
design of segmentation models to optimize efficiency and
performance. Despite these innovations, achieving a balance
between fine-grained accuracy and computational constraints
remains an open challenge.

The loss of precision in BNNs, due to extreme quantiza-
tion, poses significant challenges in capturing fine-grained
details. Prior methods like Structured BNNs [33] attempt
to address this by introducing parallel binary structures,
but they fall short of achieving competitive segmentation
performance.

Our work, BiSegUNet, addresses these challenges by
leveraging binary convolutions and proposing capacity
blocks. The integration of multi-scale feature refinement
and attention mechanisms ensures the preservation of spatial
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granularity, while binary convolutions drastically reduce
computational overhead. To our knowledge, BiSegUNet
represents comprehensive applications of BNNs for general
semantic segmentation, achieving a balance between accu-
racy and efficiency.

ill. PROPOSED METHOD

In this section, we present the BiSegUNet architecture,
a novel encoder-decoder framework designed to leverage
binary convolutions, capacity-enhancing intermediate mod-
ules, and multi-scale attention mechanisms for semantic
segmentation. As illustrated in Fig. 2, BiSegUNet integrates:
(1) a Multi-Stream Gateway Block for enriched initial
features, (2) a hierarchical encoder for progressive semantic
abstraction, (3) Capacity Blocks supported by Atrous Spatial
Pyramid Pooling (ASPP) and an Attention Network Part
(ANP) at the bottleneck to model global context, and (4)
a decoder that reconstructs a high-resolution segmentation
map. Crucially, the output of the ANP, residing within the
bottleneck layers, is fused at the first decoder level along with
the corresponding capacity block output from the encoder,
ensuring a seamless integration of global context and local
detail early in the decoding process.The summarized layer
details of architecture is presented in Table 1.

A. MULTI-STREAM GATEWAY BLOCK

The input to BiSegUNet is a high-resolution image I €
RH*Wx3 The Multi-Stream Gateway Block applies parallel
convolutional transformations to produce an enriched initial
feature map Fy € RIXWXC Let C(-) represent a generic
convolutional operation (including nonlinearity and normal-
ization). Then:

Fo=FD=CDMalCM®- - &Cu), ey

where @ denotes concatenation along the channel dimension
and each C, represents a parallel convolutional stream.
Incorporating multiple kernels and features ensures a diverse
set of initial representations.

B. ENCODER WITH HIERARCHICAL FEATURE EXTRACTION
The encoder transforms Fy into a hierarchy of feature
maps {F1, Fa, ..., F}, progressively extracting higher-level
semantics. For encoder stage [:

F; = &(F; ), @

where & typically involves convolutions and downsampling.
This process yields increasingly abstract representations
while reducing spatial resolution. Intermediate encoder
outputs F; are later integrated into the decoder through skip
connections, preserving fine-grained spatial information.

C. CAPACITY BLOCKS AND BOTTLENECK LAYER

1) CAPACITY BLOCK CONSTRUCTION

Positioned between encoder and decoder stages Fig. 3, each
Capacity Block refines intermediate encoder features. Let
F,. € R XW'xC' pe the input from the encoder:
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a: BINARY CONVOLUTIONS

Let B(-) denote a binary convolution (weights € {—1, +1}).
Two sequential 3 x 3 binary convolutions and a parallel single
3 x 3 binary convolution yield:

Bl = Bl(BZ(Fenc))s B2 = BS(Fenc)- (3)

b: DILATED CONVOLUTION

A 7 x 7 dilated convolution with d = 2 expands the receptive
field:

D= D2 (Fenc)a (4)
where:
DaFenc)(x. ) = D wiFenclx +2i,y+2).  (5)
(IS

¢: GROUPED CONVOLUTION

A 3 x 3 grouped convolution G(-), splitting channels into
subsets:

G= g(Fenc)' (6)
Concatenating these outputs:
Fcap =B ®B,®DDGI. (7)

2) CHANNEL ATTENTION MECHANISM
A channel attention mechanism refines F.,, by emphasizing
informative channels. Compute a global descriptor:

H W

ze = # DD felx, ), ®)

x=1y=1

for each channel c. Let §(-) be a nonlinear activation (e.g.,

ReLU) and o (-) be a sigmoid. After passing [z1, 22, . - -, 2¢,,, ]
through a two-layer MLP:
w = o (W28(W;2)), ®
the attended feature map is:
Fan(x,y, ) = we - Fegp(x, y, ©). (10)

3) ASPP AND ANP BOTTLENECK

At the bottleneck, Atrous Spatial Pyramid Pooling (ASPP)
captures multi-scale context:

Faspp = @ Dr(Fatt)7 (1 l)

where r are chosen dilation rates. The Attention Network
Part (ANP) applies self-attention:

Q= Faspp WQv K= Faspp Wik, V= Faspp Wy. (12)
The attention matrix:
KT
A = softmax (Q ) , (13)
L
yields the bottleneck output:
Fbottleneck = AV. (14)
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FIGURE 2. Overview of the proposed BiSegUNet architecture. The network begins with a Multi-Stream Gateway Block for enriched initial features,
followed by a hierarchical encoder to capture semantic abstractions. Capacity blocks, combined with ASPP and ANP at the bottleneck, provide global
context and refined features. A symmetric decoder with skip connections then reconstructs accurate, context-aware segmentation masks.
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FIGURE 3. lllustration of the capacity block. Parallel binary, dilated, and
grouped convolutions extract diverse features, which are merged and
reweighted by channel attention. This produces contextually rich,
discriminative representations that aid the decoder in producing precise
segmentations.

D. DECODER AND FINAL PREDICTION

The output of the ANP (Fporsieneck) 1S integrated at the first
decoder level, together with the skip connection from the
Capacity Block at the top encoder stage. Let Fé o denote the
feature map at the first decoder level. We fuse:

lezlec = H(Fportieneck » th(;p))’ (15)
where Fg,(;p ) is the attended feature from the top encoder
stage’s Capacity Block, and H(-) denotes a fusion operation
(e.g., convolution + nonlinearity).

Subsequent decoder stages progressively upsample and
integrate intermediate skip connections:

Flpe = UEL) & H (B FQ), (16)
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for I = 2,...,L, where H'(:) and U(-) are analogous

. . . (1) .
fusion and upsampling operations, and F;; are the Capacity
Block outputs at intermediate encoder levels. A final
1 x 1 convolution maps the final decoder output to the
segmentation classes:

Y = Cr.a1(F4,,). (17)

IV. IMPLEMENTATION DETAILS

The proposed BiSegUNet model is trained over a total
of 180 epochs on 3 A4000 GPU (16GB), transitioning
from an initial float-precision regime to a fully binarized
configuration. This approach ensures stable convergence,
robust feature learning, and efficient inference on embedded
hardware (NVIDIA AGX ORIN). During the initial phase
(first 50 epochs), we train the network in floating-point
(FP32) precision using a standard segmentation objective (a
combination of cross-entropy and dice loss to capture both
pixel and region level [38]) and the Adam optimizer.

A. LOSS FUNCTION

In this paper, we employ a hybrid loss function combining
cross-entropy loss and Dice loss to optimize BiSegUNet
for semantic segmentation. This combination effectively
balances pixel-level accuracy and region-level overlap,
which is essential for the high-performance segmentation
tasks that BiSegUNet addresses. Additionally, to encourage
binary weight learning while maintaining model efficiency,
we incorporate Binary Weight Regularization as a regular-
ization technique. The total loss function is composed of
two main components: cross-entropy loss and Dice loss.

VOLUME 14, 2026
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TABLE 1. Summary of the BiSegUNet architecture.

Stage Input Size Operation Output Size
Input Layer 512 x 512 x 3 Normalize pixel values. 512 x 512 x 3
Grouped Stem Block 512 x 512 x 3 3 x 3 BinaryConv2D, strides=1, output channels=[32, 64, 128]. 512 x 512 x 128

Encoder Stage 1
Encoder Stage 2
Encoder Stage 3
Encoder Stage 4

Capacity Block

Bottleneck Layer

512 x 512 x 128
256 x 256 X 256
128 x 128 x 512
64 x 64 x 1024

H x W x C (Encoder
Output)

32 X 32 X 2048 (con-

3 X 3 BinaryConv2D, strides=2, output channels=256.
3 X 3 BinaryConv2D, strides=2, output channels=512.
3 X 3 BinaryConv2D, strides=2, output channels=1024.
3 X 3 BinaryConv2D, strides=2, output channels=2048.

Two 3 x 3 BinaryConv2D (output: 0.5C), concatenation, channel-wise atten-
tion.

ASPP with dilations [1, 6, 12, 18], followed by Attention Neural Process

256 x 256 x 256

128 x 128 x 512

64 x 64 x 1024

32 x 32 x 2048

HxWxC

32 x 32 x 1024

catenated encoder out-
puts)
32 x 32 x 1024 +

Capacity Block (32 x
32 x 2048)

(ANP).

Decoder Stage 1

Upsampling and addition of skip connection from Encoder Stage 4.

64 x 64 x 1024

Decoder Stage 2 64 x 64 x 1024 + Upsampling and addition of skip connection from Encoder Stage 3. 128 x 128 x 512
Capacity Block (64 x
64 x 1024)

Decoder Stage 3 128 x128x512+Ca-  Upsampling and addition of skip connection from Encoder Stage 2. 256 x 256 X 256
pacity Block (128 X
128 x 512)

Decoder Stage 4 256 X256 X256+ Ca-  Upsampling and addition of skip connection from Encoder Stage 1. 512 x 512 x 128
pacity Block (256 X
256 x 256)

Capacity Block H X W x C (Decoder  Multi-branch processing (3 x 3 BinaryConv2D, dilated conv, grouped conv), H X W x C
Output) fusion with attention.

Output Layer 512 x 512 x 128 1 x 1 Conv2D to reduce the number of classes. 512 x 512 X

num_classes

The cross-entropy loss captures pixel-level classification
accuracy, commonly used in segmentation tasks to penalize
incorrect class predictions at the pixel level. For each pixel i
and class c, the cross-entropy loss is defined as:

C
Leg=— Y yelogBe) (18)

c=1

where y. is the ground truth label for class ¢, y. is the
predicted probability for class ¢, and C is the total number
of classes. This loss ensures that the model learns to classify
each pixel accurately.

The Dice loss is designed to capture region-level overlap
between predicted and ground truth regions, which is
particularly useful in cases of class imbalance (e.g., small
object regions). The Dice coefficient for a binary class is
defined as:

N -
22,‘:1)’0’1‘
N & N
Do Vi 2l vi
where y; is the predicted value for pixel i, and y; is

the ground truth label. For multi-class segmentation, Dice
loss is computed for each class and averaged. This loss

£Dice =1- (]9)
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encourages the network to focus on region-level coherence,
making it especially useful in segmentation tasks with highly
imbalanced classes.

The final combined loss is a weighted sum of both
cross-entropy and Dice loss:

Liotal = M LcE + A2 Lpice (20)

where Ay and A, are hyperparameters balancing the
importance of pixel-level and region-level accuracy. The
combination of these losses ensures that the model learns both
fine-grained pixel information and global spatial patterns,
leading to more accurate segmentation results. Rectified
Linear Units (ReLLU) [39] serve as activation functions:

8(z) = max(0, 2), 2D

ensuring stable gradients and well-conditioned representa-
tions. Batch Normalization (BN) and He-initialization further
stabilize early training and enhance convergence. After
establishing a strong float-precision baseline, we introduce
binarization over subsequent epochs (50—150). Learning rate
follows a cosine-annealing schedule [40] in this phase starting
from an initial value 79. Rather than converting all layers
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at once, subsets of convolutional layers are incrementally
binarized using:

W — gion(WUP)), (22)

and a straight-through estimator [41] to approximate gra-
dients through the sign function. This phased approach
mitigates performance degradation and allows the model to
adapt gradually. Each binarized layer employs a learnable
scaling factor «:

W(scaled) — aw(bin), a>0. (23)
B. BINARY WEIGHT REGULARIZATION

Binary neural networks (BNNs) require the model’s weights
to be binarized ({—1, +1}). However, during training, the
weights are continuous, and binarization occurs during the
forward pass. To ensure that the learned weights remain close
to binary values, we apply Binary Weight Regularization.
This technique adds a penalty term to the loss function that
encourages the network to keep its weights as close to binary
values as possible. The binary weight regularization term
is defined as the L1 norm of the difference between the
real-valued weights and their binarized counterparts:

Loin = D W —sign(W)|; (24)
1

where W represents the weights of layer /, and sign(W")
is the binarized version of these weights (either —1 or +1).
The regularization term penalizes deviations from binary
values, encouraging the model to learn weights that are close
to binary, preserving the efficiency benefits of binary convo-
lutions. The total loss function, combining the cross-entropy,
Dice loss, and binary weight regularization, is formulated as:

Eﬁnal = Etotal + /\3£bin (25)

where A3 is a hyperparameter controlling the contribution
of the binary weight regularization term. This regularization
technique ensures that the binary model does not drift too far
from the desired binary weights, making the binary convo-
lutions efficient in terms of memory and computational cost
while maintaining segmentation performance. Optimizing
o jointly with the weights preserves a suitable dynamic
range, improving stability and segmentation accuracy under
binary constraints. We apply spatial and photometric aug-
mentations (random crops, flips, color perturbations) to
enhance robustness. Light regularization such as label
smoothing:

Fe=(1—e)ye + = 26)

C’
discourages overconfidence and promotes flatter minima,
which benefit the binary regime. In the middle phase,
we adopt a cosine-annealing schedule with periodic warm
restarts [42]. Each restart temporarily increases the learning
rate, enabling the optimizer to escape suboptimal minima and
encouraging stable improvement until training completes at
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FIGURE 4. This figure shows the training accuracy of the BiSegUNet
model, measured by mloU, across epochs. The red dashed line marks the
transition to binary weights at epoch 50, and the green dashed line
indicates the shift to the fully binarized phase at epoch 150. Accuracy
stabilizes after the transition to binary weights.

180 epochs. In the final stage (last 30 epochs), the model
operates fully with binarized weights and ReLU activations,
refining its representations and achieving stable convergence.
The final model is then exported to the NVIDIA AGX ORIN,
leveraging efficient binary operations for real-time, low-
latency inference.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental results
obtained from evaluating the BiSegUNet model on
three widely used benchmark datasets for semantic seg-
mentation: PASCAL VOC, Cityscapes, and ADE20K.
We discuss the performance of the model in terms
of accuracy, segmentation quality, and computational
efficiency.

A. DATASETS AND DATA PREPARATION
For the experiments, we used the following datasets:

1) PASCAL VOC

The PASCAL VOC dataset consists of 1,464 training images,
1,449 validation images, and 1,456 test images, with 20 fore-
ground object classes and one background class. To improve
the performance of segmentation models, we augmented the
original dataset by incorporating additional annotations from
the Semantic Boundaries Dataset (SBD) [43]. This augmen-
tation resulted in a total of 10,582 training images, providing
more diverse and detailed segmentation annotations. The
evaluation metric used for performance assessment was
the mean intersection-over-union (mloU), averaged across
the 21 classes (20 foreground classes and the background
class). This metric is widely used to evaluate segmentation
models and provides a clear measure of pixel-wise segmen-
tation accuracy.
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Algorithm 1 Training Procedure of BiSegUNet

Training data D, combined loss function L), learning
rate 7, epochs E, optimizer O. Trained BiSegUNet model.
Forward Process:
Initialize input I €
Extract multi-scale features using Multi-Stream Gateway
Block:

RHXW><3

Fo = Concat(C(I), C2(I), ..., Cy))
Generate hierarchical features with Hierarchical Encoder:
Fi=E(F;—), l=1,...,L
Refine features with Capacity Block:
Feop = Att(Concat(DilConv, GroupConv, BinConv))
Apply ASPP and ANP for context aggregation:

Faspp = Concat(DilConv,(Feqp)), r € {1,6,12, 18}

KT
Va
«/ﬁ)
0,K,V = WgFaspp, Wk Faspp, Wy Faspp

Decode and integrate skip connections:

Fanp = softmax (

Fgec = Upsample(Fanp) © H(Fcap7 Fenc)
Output segmentation map Y using pixel-wise classification:
Y = Conviyi(Faec)

Backward Process:
Compute loss:

Etotal = )\I£CE + )\2£Dice

Update weights using gradient descent:

0 »Ctotal

W<—W-—n
ow

Segmentation map Y.

2) CITYSCAPES

The Cityscapes dataset is designed for urban scene under-
standing, containing fine-grained pixel-level annotations of
5,000 images, split into 2,975 training images, 500 validation
images, and 1,525 test images. This dataset is known for its
large-scale street view images captured in multiple cities. The
model’s performance on this dataset is evaluated using mloU
over the 19 foreground object classes.

3) ADE20K

ADE2(0K is a large-scale dataset for semantic segmentation,
containing 20,210 images with dense pixel-level annotations
across 150 object categories. This dataset provides a more
challenging evaluation due to its wide range of object classes
and diverse environments. As with the other datasets, the
model performance on ADE20K is evaluated using mloU.
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The proposed BiSegUNet architecture is evaluated using both
performance and efficiency metrics to demonstrate its effec-
tiveness and suitability for real-time semantic segmentation
in resource-constrained environments.

B. PERFORMANCE METRICS

The proposed BiSegUNet architecture is evaluated using both
performance and efficiency metrics to demonstrate its effec-
tiveness and suitability for real-time semantic segmentation
in resource-constrained environments. Mean Intersection
over Union (mloU): This metric evaluates segmentation
accuracy by calculating the overlap between the predicted and
ground truth regions across all classes. It serves as the primary
measure of segmentation quality. Dice Score: The Dice
coefficient measures the similarity between the predicted
and ground truth regions, emphasizing how well the model
segments objects. Pixel Accuracy: This metric quantifies the
percentage of correctly classified pixels, providing an overall
assessment of segmentation accuracy.

C. EFFICIENCY METRICS

FLOPs: Floating Point Operations (FLOPs) represent the
computational complexity of the model during inference,
reflecting its processing demand. Memory Usage: This
metric indicates the memory required to store model
parameters and intermediate computations, highlighting the
model’s resource footprint. Speed (FPS): Frames Per Second
(FPS) measures the inference speed, demonstrating the
model’s capability for real-time applications. Parameters:
This metric reflects the total number of trainable parameters
in the model, which directly impacts storage requirements
and model size.

These metrics collectively assess the balance between seg-
mentation accuracy and computational efficiency, illustrating
the effectiveness of BiSegUNet for scalable and sustainable
semantic segmentation tasks.

D. TRAINING RESULTS

This section presents the experimental results of the
BiSegUNet model trained on standard segmentation dataset
Cityscapes. We focus on the evaluation of training accuracy
and learning rate scheduling.

As shown in Fig. 4, the accuracy of the training is evaluated
using mean intersection-over-union (mloU). The model
exhibits rapid improvement in accuracy during the early
epochs when training with float precision, as indicated by
the steep rise in accuracy. The transition from float precision
to binary weights at epoch 50 results in a stable increase
in accuracy, highlighting that the model maintains robust
performance even with binary weights. By epoch 150, the
accuracy plateaus, indicating that the model has fully adapted
to the binary weights and achieved optimal performance.
This smooth progression confirms that the BiSegUNet model
is capable of retaining high accuracy while transitioning to
a more efficient binary weight representation. The learning
rate schedule follows a cosine annealing strategy with warm
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Learning Rate Schedule with Cosine Annealing and Warm Restarts

0.010

0.008

0.006
—— Cosine Annealing with Warm Restarts
~-- Float Precision to Binarization Transition (50 epochs)
--- Fully Binarized Phase Start (150 epochs)

Learning Rate

0.004

0.002

0.000

I
4 25 B 75 100 125 150 175
Epochs

FIGURE 5. This figure illustrates the learning rate schedule using cosine
annealing with warm restarts. The red dashed line marks the transition
from float precision to binary weights at epoch 50, and the green dashed
line indicates the start of the fully binarized phase at epoch 150.

TABLE 2. Accuracy metrics for BiSegUNet across datasets.

Dataset mloU Dice Score Pixel
(%)7T (%)7T Accuracy
(%)t
Cityscapes 75.1 89.2 92.5
ADE20K 41.5 67.8 76.3
PASCAL VOC 723 82.3 90.4

restarts, as shown in Fig. 5. Initially, the learning rate was
reduced using cosine annealing, enabling faster convergence
during early epochs. The transition from float precision to
binary weights occurs at epoch 50, marked by the red dashed
line, allowing the model to benefit from high precision early
on and smoothly shift to a binary representation. At epoch
150, indicated by the green dashed line, the model enters
the fully binarized phase, where all weights are binary,
optimizing computational efficiency without significantly
impacting performance.The use of warm restarts in the
learning rate schedule helps the model avoid local minima,
improving its ability to explore the solution space. The
training process is effectively adapted to the varying precision
phases, ensuring that the model benefits from high precision
in the early stages and efficient binary operations in the later
stages.

E. DISCUSSION

The primary objective of BiSegUNet is to address the com-
putational challenges in semantic segmentation by delivering
high efficiency and competitive accuracy, particularly for
real-time applications in resource-constrained environments.
The Capacity Block, a central component of the architecture,
facilitates multi-scale feature refinement and context aggre-
gation through a bottleneck design. This block combines
binary convolutions, grouped convolutions, and dilated
convolutions to process features efficiently. Additionally,
the integration of attention mechanisms further enhances
global and local feature alignment, improving segmentation
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precision. Together, these components enable BiSegUNet
to achieve a favorable trade-off between computational
efficiency and segmentation performance.Unlike many state-
of-the-art (SOTA) models that rely on large computational
budgets, BiSegUNet achieves comparable performance with
significantly reduced resource requirements, positioning
itself as a lightweight yet effective solution. The analysis
presented in Table 2 shows significant variations in segmenta-
tion performance metrics across three datasets evaluated with
BiSegUNet. Cityscapes demonstrates robust segmentation
accuracy with a mean Intersection over Union (mloU) of
75.1% and a Dice score of 89.2%, showcasing the model’s
proficiency in structured object classification. In contrast,
ADE20K presents challenges with a lower mloU of 41.
5% and a Dice score of 67.8%, reflecting difficulties in
segmenting complex environmental scenes. PASCAL VOC
achieves strong performance metrics with an mloU of 72.3%
and a Dice score of 82.3%, highlighting the effectiveness
of BiSegUNet in urban scene segmentation tasks. The fixed
input size ensures consistency in evaluating the model’s
segmentation capabilities across datasets, underscoring its
adaptability and reliability in diverse real-world applications.
The results presented in Table 3 provide a detailed evaluation
of BiSegUNet on the Cityscapes dataset, highlighting the
trade-offs between accuracy and computational efficiency
across different image sizes and precision methods. The bina-
rized version of BiSegUNet achieves substantial efficiency
gains compared to its FP32 counterpart. Specifically, at a
resolution of 512 x 1024, the binarized model reduces FLOPs
by approximately ~ 19x and memory usage by ~6.5. For
1024 x 2048 resolution, FLOPs are reduced by ~ 14x, and
memory usage is reduced by ~ 4.9x. Additionally, the
binarized model achieves significant speed improvements,
being approximately ~ 7x faster at 512x 1024 and ~ 4.7 x
faster at 1024 x2048 resolution. Despite these substantial
gains in efficiency, the binarized model retains competitive
accuracy, with only a minor decrease in mloU: 4.1% at
512x 1024 and 6.1% at 1024 x2048 resolution. These results
underscore the capability of the binarized BiSegUNet to
achieve an optimal balance between computational efficiency
and segmentation performance. The models in Table 4
provides a comprehensive evaluation of BiSegUNet and
state-of-the-art (SOTA) methods on the Cityscapes dataset,
categorized into large, medium, and small-sized models
based on their computational complexity (FLOPs), memory
usage, and number of parameters:

« Large Models: Parameters exceeding SOM and FLOPs
range of 300 G. These models prioritize accuracy
(e.g., Lawin Transformer: 84.4% mloU) but have
limited applicability in real-time scenarios due to their
computational demands.

o Medium Models: Parameters between 7M and 30M
and FLOPs between 3G and 300G, achieving a balance
between accuracy and efficiency (e.g., ICNet: 69.5%
mloU).
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TABLE 3. Performance and efficiency metrics for BiSegUNet on cityscapes with different image sizes and precision methods.

Dataset Image Size  Precision mloU (%)1 Dice Score (%)1  Pixel Accuracy (%) FLOPs(G)l Memory (MB)| Speed (FPS)T Parameters (M)}
512x1024 FP32 73.1 88.5 93.0 194.7 7.8 22.8 18.5
i 512x1024  Binarized 69.0 81.2 88.0 10.4 1.2 158 43
Cityscapes
1024 %2048 FP32 81.2 93.0 95.5 390.3 11.5 11.8 23.4
1024x2048  Binarized 75.1 85.2 91.8 275 2.3 56 6.7

TABLE 4. Comparison of BiSegUNet with SOTA methods for semantic segmentation on the cityscapes dataset.

Method Year  Resolution Parameters (M) FLOPs(G)|l Speed (FPS)T mloU (%)7T Backbone
Large Size Models
PSPNet [3] 2017 713x713 250.8 4122 0.78 81.2 ResNet-101
DeepLab-v3+ (2] 2018 - 5554 [EEI 52 Xception
DenseASPP [45] 2018 512x512 35.7 632.9 - 80.6 DenseNet
SETR-PUP [46] 2021 768x768 3183 - 0.50 822 ViT-Large
SegFormer-B5 [47] 2021 1024x2048 84.7 1447.6 25 84.0 MiT-B5
Lawin Transformer [48] 2022 1024x1024 - 1797 - _ Swin-L Transformer
BiSegUNet (Ours FP32) - 1024x2048 234 11.8 81.2 No
Medium Size Models
SegNet [49] 2017 640x360 29.50 286.0 17 57.0 VGG-16
ICNet [50] 2018 1024x2048 26.5 28.3 30 69.5 PSPNet-50
DFANet [51] 2019 1024x 1024 7.8 L 34 100 71.3 Xception
STDCI1-50 [52] 2021 512x1024 8.4 - 87 71.9 No
HSBNet [53] 2021 512x1024 12.1 - s i ResNet-34
LBN-AA [54] 2021 448x896 [NGZIN 495 51 73.6 No
FPANet [55] 2022 512x1024 14.1 - - 72.0 No
SegFormer-BO [47]F 2021 512x1024 132 22.8 86 70.2 MiT-B0
SegFormer-BO [47]F 2021 1024x2048 132 60.2 34 759 MiT-BO
SSFormer-T [56] 2022 512x1024 9.1 18.6 98 69.8 No
SSFormer-T [56]" 2022 1024x2048 9.1 49.8 39 734 No
BiSegUNet (Ours FP32) - 512x1024 18.5 194.7 22.8 73.1 No
Small Size Models
ENet [18] 2016 512x1024 38 135 583 No
ESPNet [20] 2018 512x1024 - 113 60.3 ESPNet
ESPNet-v2 [21] 2019 512x1024 12 112 64.3 ESPNet-v2
ESPNet-v2 [21] 2019 1024x2048 12 8.1 77 66.8 ESPNet-v2
LEDNet [57] 2019 512x1024 0.94 - 40 70.6 No
BiSeNet-v2 [12] 2021 512x1024 34 9.5 PG %90 Xception
BiSeNet-v2 [12] 2021 1024x2048 34 25.5 62 73.1 Xception
EdgeNet [13] 2021 512x1024 - - 31 71.0 No
FBSNet [58] 2022 512x1024 0.62 9.7 90 70.9 No
MSCFNet [14] 2022 512x1024 115 17.1 50 71.9 Lightweight CNN
AFFormer-T [59] 2023 512x1024 35 17.7 104 69.3 No
AFFormer-T [59] 2023 1024x2048 35 46.5 41 763 No
LETNet [15] 2024 512x1024 0.95 13.6 150 72.8 No
BiSegUNet (Ours Binarized)' - 512x1024 4.3 10.4 158 69.0 No
BiSegUNet (Ours Binarized)' - 1024x2048 6.7 27.5 56 75.1 No

T Evaluate on same inference setting (single value, No — TTA).

o Small Models: Parameters less than 7M and FLOPs
below 30G, designed for real-time applications.
BiSegUNet falls into this category, demonstrating
superior mloU and speed compared to its peers.

On the Cityscapes dataset (Table 4), the proposed BiSegUNet
achieves an impressive mean Intersection over Union (mloU)
of 75.1% in its binarized configuration at a resolution of
1024 %2048, outperforming other lightweight models such as
LETNet (72.8), ESPNet-v2 (66.2%) and BiseNet-v2 (72.6%).
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This is achieved while maintaining a significantly lower
computational complexity, with a FLOP count of only
27.5 G. Furthermore, the architecture demonstrates excep-
tional inference speed, achieving 158 FPS at a resolution
of 512x1024, which is substantially higher than many
comparable lightweight models. Under the single-scale, no-
TTA protocol on Cityscapes, the binarized BiSegUNet shows
a consistently better accuracy—efficiency trade-off when com-
pared to both compact CNNs and lightweight Transformers.
At a resolution of 512 x 1024, it outperforms ESPNet-v2
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TABLE 5. Per-class loU (%) results on the cityscapes test set. “Avg” represents the average results of all these categories.

Methods Avg | Bic Bus Bui Car Fen Mot Pol Per Rid Roa Sid Sky Tru Tra TLi Ter TSi Veg Wal
SegNet [49] 570 | 519 43.1 840 893 290 358 351 628 428 964 732 918 38.1 441 398 638 451 8§70 284
ENet [18] 583 | 554 505 750 90.6 332 388 434 655 384 963 742 906 369 48.1 341 614 440 886 322
ESPNet [20] 630 | 572 525 762 923 361 418 450 670 409 970 775 926 381 50.1 356 632 463 908 350
ESPNet-v2 [21] 662 | 599 659 888 918 421 442 493 729 531 973 786 933 530 532 526 668 600 905 435
ICNet [50] 695 | 705 727 897 926 489 536 6L5 746 561 97.1 792 935 513 513 604 683 634 915 432
LEDNet [57] 706 [JFIGN 640 916 909 499 444 628 762 537 981 795 949 [JGAAN 527 613 612 728 926 477
FBSNet [58] 709 [ 701 560 915 939 535 562 625 825 63BN 980 832 944 505 376 [NGmel 705 715 [BEEN 509
EdgeNet [13] 710 | 677 609 916 943 506 553 626 804 611 981 831 949 500 525 672 697 Tl4 924 454
MSCFNet [14] 719 | 702 661 910 941 525 576 o612 [JEBMM 627 977 828 943 509 519 671 702 714 923 490
LETNet [15] 728 | 93 724 916 AN 537 s61 610 823 617 B8EN 836 949 550 570 67 [OSN 705 925 509
BiSegUNet (Ours) | 75.1 | 70.0 91.6 647 629 968 62.4 578 68.9

TABLE 6. Comparison of BiSegUNet with SOTA methods for semantic segmentation on the ADE20K dataset.

Model Year Resolution Parameters (M) FLOPs(G)l mloU (%)
SegFormer-B4 [47] 2021 512x512 84.7 183.3
SeMask [60] 2021 512x512 35 40 43.36
SSFormer [56] 2022 512x512 87.5 91.1 47.7
AFFormer [59] 2023 512X512 4.6 41.8
CGRSeg [61] 2024 1024x512 35.7 14.9 48.3
BiSegUNet (Ours) - 512x512 43 26 415

and BiSeNet-v2 in mean Intersection over Union (mloU),
while maintaining superior throughput and significantly
lower FLOPs compared to SSFormer-T, SegFormer-B0, and
AFFormer-T, which achieve only marginal mIoU improve-
ments at considerably higher computational expenses. At a
resolution of 1024 x 2048, BiSegUNet’s mean Intersection
over Union (mloU) approaches that of lightweight Trans-
formers. However, it is significantly faster and more compu-
tationally efficient, achieving practical real-time performance
on the target device, whereas ESPNet-v2 and BiSeNet-v2
show lower accuracy. The results demonstrate that BiSe-
gUNet significantly outperforms previous lightweight CNNs
and reduces the accuracy disparity with lightweight Trans-
formers, all while avoiding their associated FLOP and latency
drawbacks.

This improvement is attributed to the proposed Capacity
Block and binary design, which facilitates multi-scale,
attention-guided refinement at minimal cost, positioning it as
an optimal solution for edge or latency-sensitive applications.

The binarized configuration of BiSegUNet exhibits a
minor reduction in accuracy compared to its FP32 counter-
part, with a 4.1% decrease in mloU observed at a resolution
of 512x1024. While such a trade-off is expected in binarized
architectures, it may present challenges for applications
requiring highly precise segmentation. On the ADE20K
dataset (Table 6), BiSegUNet achieves a competitive mloU of
41.5%. Although BiSegUNet generalizes well to structured
outdoor datasets, its performance on ADE20K remains lim-
ited compared to state-of-the-art models. On ADE20K with
150 classes, BiSegUNet attains 41.5% mloU, which is sub-
stantially below heavier architectures such as SegFormer-B4.
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This gap is largely attributable to the dataset’s high
scene complexity, dense object co-occurrence, and abun-
dance of small or thin structures, where our lightweight
binary network, primarily designed for efficient urban-
scene segmentation, struggles to capture fine details and
long-range context. In particular, we frequently observe
misclassification or omission of small indoor objects and
ambiguous boundaries between visually similar classes (e.g.,
wall versus door), indicating insufficient representational
capacity under binary quantization. Furthermore, unlike
several leading methods on ADE20K, our model does not
benefit from large-scale ImageNet pre-training or additional
data. Overall, these results highlight an expected trade-off in
which BiSegUNet offers strong efficiency and competitive
accuracy on street-scene benchmarks but incurs a noticeable
performance penalty on highly heterogeneous, fine-grained
datasets such as ADE20K. BiSegUNet demonstrates strong
generalization across datasets with varying complexities.
While it performs robustly on structured datasets like
Cityscapes, the moderate mloU on ADE20K highlights
potential areas for improvement in handling extreme intra-
class variability. The architecture remains robust to varying
input resolutions, with consistent performance observed from
512x 1024 to 1024 x2048. Table 5 provides a breakdown of
per-class IoU for BiSegUNet and SOTA methods, providing
insights into the model’s performance across diverse semantic
categories. The average IoU (mloU) represents the overall
segmentation performance. BiSegUNet achieves the highest
overall mloU (75.1%) among small-sized models. It per-
forms exceptionally well in classes requiring finer boundary
delineation, such as sidewalk (86.2% ) and building (92.5%).
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TABLE 7. Cityscapes accuracy and efficiency comparison of our Capacity
block vs. standard multi-scale + attention module.

Variant mloU (%)1T GFLOPs |
Baseline (no Capacity Block) 64.4 214
Multi-scale + SE 68.9 25.7
Multi-scale + CBAM 71.2 28.8
Capacity Block (proposed) 75.1 27.5

TABLE 8. Per-branch ablation of the capacity block on the cityscapes
dataset. Each result represents the mean mloU (%) + standard deviation
over three runs (validation set, single-scale 1024 x 2048). “No binary”,
“No dilated”, and “No grouped” indicate that the corresponding branch is
removed from every capacity block, while retaining the remaining
branches.

Variant mloU (%)1T GFLOPs |
Baseline (no Capacity Block) 644 +03 214
No Binary conv branch 73.1£0.3 22.4
No Dilated conv branch 725 £ 04 243
No Grouped conv branch 70.3 £ 0.2 26.6
Capacity Block (proposed) 75.1 + 0.1 27.5

TABLE 9. Impact of the number of capacity blocks on cityscapes
segmentation performance. “# Blocks used” denotes how many decoder
stages (including the final output stage) employ a capacity block, starting
from the deepest/highest-level features. Results are mean mloU (%) +
std over multiple runs.

#Blocks (placement) mloU (%)1T GFLOPs |

0 (none) 64.4 + 0.3 21.4
1 (bottleneck only) 68.4 £+ 0.1 23.4
2 (top-2 decoder stages) 713+ 0.2 25.3
3 (top-3 decoder stages) 7344+0.2 26.9
4 (all decoder stages) 75.1 £ 0.1 27.5

However, minor challenges are observed in handling dynamic
objects like truck (62.4%) and bicycle (70.0%), where
complex details and high variability pose segmentation
difficulties. This per-class analysis highlights BiSegUNet’s
ability to generalize across most categories while identifying
potential areas for improvement. Figure 6 and Figure 7
provide a qualitative comparison of segmentation results for
BiSegUNet and several state-of-the-art (SOTA) models on
the Cityscapes and PASCAL VOC datasets. BiSegUNet con-
sistently produces sharper and more accurate segmentation
boundaries compared to lightweight models such as LEDNet
and BiseNet-v2. On the other hand, compared to larger models
like DeepLab-v3+-, BiSegUNet achieves visually comparable
results, despite operating at significantly lower computational
costs. This demonstrates the architecture’s efficiency in
balancing accuracy and resource constraints, as well as its
potential for scalable and practical deployment in real-world
applications such as autonomous driving, urban monitoring,
and edge computing.

VI. ABLATION STUDY

We systematically evaluate the contributions of the Capac-
ity Block and attention mechanisms to BiSegUNet’s
performance, starting from a baseline configuration and
progressively incorporating these components. The results,
as visualized in Figure 8, show the significance of these
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architectural choices in enhancing segmentation quality.We
begin with a base configuration of BiSegUNet, without the
Capacity Block, and observe the progression as the Capacity
Block and attention mechanisms are sequentially introduced.
In the absence of the Capacity Block (Figure 8a, the feature
maps exhibit poor refinement with indistinct boundaries and
weak spatial context aggregation. This results in limited
segmentation accuracy and a lack of contextual understand-
ing, as the model struggles to capture multi-scale features
effectively. The output is coarse, underlining the necessity of
multi-scale processing. Introducing the Capacity Block into
the architecture leads to a significant improvement in feature
refinement. The feature maps (Figure 8b display clearer
boundaries and more distinct representations of objects.
The multi-scale aggregation enabled by the Capacity Block
enhances the model’s ability to capture both global and local
details, substantially improving spatial and contextual under-
standing. When attention mechanisms are added, the feature
maps (Figure 8c reach their highest quality. By prioritizing
critical spatial and channel features, attention mechanisms
further amplify the precision and contextual richness of the
feature representations. The analysis evaluates the baseline
model, without the Capacity Block, which achieves the lowest
mloU, highlighting its limitations in capturing multi-scale
features. Adding the Capacity Block leads to a significant
2.7% improvement in mloU, demonstrating its crucial role
in feature refinement and multi-scale context aggregation.
Incorporating attention mechanisms further enhances mloU
by 3.6%, emphasizing their effectiveness in prioritizing
critical features and complementing the Capacity Block
to improve global context understanding. This progression
underscores the importance of these components in achieving
robust segmentation performance. The results reveal the
importance of each component of BiSegUNet in achieving
optimal segmentation performance. The Capacity Block
serves as the foundation for multi-scale refinement, while
attention mechanisms provide an additional layer of precision
and contextual understanding. The results validate the archi-
tectural design, with measurable improvements at each step
highlighting the association between the Capacity Block and
attention mechanisms. This structured progression of feature
and performance enhancements underscores BiSegUNet’s
capability to balance efficiency and accuracy effectively.
To validate the effectiveness of the proposed Capacity
Block, we perform an ablation study by replacing it with
a standard multi-scale and attention module. One variant
employs a multi-scale convolutional module, incorporating
parallel dilated convolutions similar to ASPP, followed by a
Squeeze-and-Excitation (SE) block. In another variant, the
same module is followed by a CBAM attention block. All
the other components, such as the decoder and bottleneck
ASPP/ANP, remain unchanged.

Table 7 illustrates that both alternatives yield a lower
mloU on the Cityscapes dataset in comparison to our
Capacity Block. The SE-based multi-scale module achieves
approximately 68.9% mloU, while CBAM attains around
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FIGURE 6. Visual comparative results on the PASCAL-VOC dataset. From left to right: Input image, segmentation results from our BiSegUNet, DeepLab-v3+
[2], LEDNet [56], BiseNet-v2 [12], and ground truth.

FIGURE 7. Visual comparative results on the PASCAL-VOC dataset. From left to right: Input image, segmentation results from our BiSegUNet, DeepLab-v3+
[2], LEDNet [56], BiseNet-v2 [12], and ground truth.

-.

a)

(b)

FIGURE 8. Comparison of feature maps at different stages of BiSegUNet: (a) without Capacity Block, (b) with Capacity Block, and (c) with Capacity Block
and Attention. The evolution of feature representation highlights the contribution of these components.

71.2%, compared to 75.1% with the Capacity Block. This multi-scale feature fusion, our Capacity Block provides
indicates that although standard attention modules enhance an additional performance improvement due to its more
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TABLE 10. Training hyperparameters and experimental setup for BiSegUNet.

Hyperparameter Value / Description

Training epochs

Batch size (total)

Optimizer

Initial learning rate
Learning rate schedule
Weight decay

Loss function

Binary weight regularization
Binarization schedule

180 (full training schedule)

Adam (8:=0.9, 82=0.999)
1x10~3 (0.001)

Hybrid Cross-Entropy + Dice loss

Activation function ReLU throughout (including binary layers)
Normalization

Pre-training None (training from scratch)

16 (e.g., 16 images per iteration, distributed across 3 GPUs)
Cosine annealing with warm restarts at epoch 50 and 150 (reset when switching precision phases)
None (no L2 regularization applied to weights)

Yes (L1 penalty with coefficient A3 ~ 1 x 10~* to encourage weights 1)
Float training for 50 epochs, then incremental binarization of conv layers from epoch 50-150, fully binary by epoch 150-180

BatchNorm after each convolution (momentum 0.1)

cohesive design. The Capacity Block’s dense multi-branch
convolutional processing, coupled with integrated attention
mechanisms, facilitates superior feature refinement com-
pared to the addition of an SE or CBAM module to a
standard multi-scale block. A detailed ablation study is
conducted to quantify the contribution of each branch within
the Capacity Block. The Capacity Block consists of three
parallel branches, binary convolution, dilated convolution,
and grouped convolution. The outputs of these branches are
concatenated and re-weighted using channel attention. Each
branch is systematically removed, and the model is retrained,
with the mean mloU and standard deviation reported over
3 runs on the Cityscapes dataset. Table 8 presents a summary
of the results. The removal of any component from the Capac-
ity Block results in performance degradation, indicating that
each branch plays a vital role in the overall effectiveness.
Removing the dilated convolution branch significantly affects
performance, resulting in a mean Intersection over Union
(mlIoU) decrease of approximately 2.6%. This underscores
the importance of multi-scale context. The binary convolution
branch and the grouped convolution branch each offer unique
advantages, with their removal resulting in approximately
2% and 4.8% performance declines, respectively. Even with
the removal of any single branch, the model continues
to outperform the baseline lacking a Capacity Block,
emphasizing that all three types of convolutions collectively
enhance feature representation. Following that, we examine
the distribution and quantity of Capacity Blocks within the
network. In the standard BiSegUNet architecture, a Capacity
Block is incorporated at each decoder stage, following
the addition of each encoder—decoder skip connection.
We investigate the impact of reducing the number of Capacity
Blocks on performance scalability. Table 9 presents the
mean Intersection over Union (mloU) results corresponding
to varying quantities of Capacity Blocks. For instance, 1
block™ indicates the utilization of a single Capacity Block
at the decoder bottleneck, while “2 blocks” signifies the
application of Capacity Blocks at the two deepest levels
of the decoder, and so forth. A clear trend shows that
increasing the number of Capacity Blocks consistently

VOLUME 14, 2026

enhances accuracy, even with diminishing returns. The initial
Capacity Block (located at the encoder bottleneck) produces
the most significant improvement, increasing from 64.4%
to approximately 68.4% mloU. The implementation of
Capacity Blocks across two decoder levels increases the mean
Intersection over Union (mloU) to approximately 71.3%.
Increasing the number of blocks to 3 or 4, by inserting them
at shallower decoder stages, results in smaller improvements,
reaching approximately 75.1% with 4 blocks. This saturating
trend indicates that the majority of the advantage arises from
the refinement of high-level features (global context) in the
deeper layers, whereas additional blocks at shallower layers
primarily adjust local details. The final design, incorporating
Capacity Blocks at all skip connections and the decoder
output, was selected to optimize accuracy. However, this
study suggests a potential trade-off: utilizing fewer Capacity
Blocks (e.g., only at the top 1-2 levels) may reduce
computational demands while still achieving a significant
portion of the accuracy enhancement.

VIi. CONCLUSION
In this paper, we proposed BiSegUNet, a lightweight
real-time semantic segmentation network that combines
an innovative Capacity Block and a bottleneck design
with binary convolutions to achieve efficient multi-scale
feature refinement. The inclusion of attention mechanisms
enhances global context understanding, enabling the model
to balance accuracy and computational efficiency. Exten-
sive evaluations on the Cityscapes and ADE20K datasets
demonstrate BiSegUNet’s ability to achieve competitive
segmentation performance. On Cityscapes, it achieved an
mloU of 75.1% at 1024x2048 resolution with a high
inference speed of 158 FPS at 512x1024 resolution,
outperforming many lightweight models. These results
highlight BiSegUNet’s scalability, efficiency, and potential
for real-world applications such as autonomous driving and
edge computing, making it an effective solution for resource-
constrained environments.

The Capacity Block is the central architectural inno-
vation of BiSegUNet, providing an efficient mechanism
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for multi-scale feature refinement under binary constraints.
Through its combination of parallel convolutions and channel
attention, BiSegUNet attains strong segmentation accuracy
on Cityscapes while substantially reducing model size and
computational cost. Our experiments show that this module is
more effective than replacing it with conventional ASPP with
SE or CBAM designs at comparable computational budgets,
indicating that carefully structured multi-branch attention can
partly offset the representational loss introduced by binary
weights. The Capacity Block therefore offers a practical
template for enriching lightweight networks and suggests a
general direction for future research on attention-augmented,
multi-scale architectures for efficient semantic segmentation.

A. LIMITATIONS AND FUTURE WORK

BiSegUNet, while effective, faces limitations such as a slight
accuracy reduction in its binarized configuration compared
to full-precision networks and challenges with dynamic,
complex object classes in datasets like ADE20K. These
limitations highlight the need for improved feature represen-
tation and generalization. Future work will aim to enhance
robustness in complex scenarios by integrating advanced
attention mechanisms and hybrid precision techniques to
balance accuracy and efficiency. Expanding BiSegUNet
to domain-specific tasks like medical imaging and aerial
surveillance will showcase its adaptability, while deployment
in real-world scenarios and incorporating unsupervised
learning will enhance generalization.

APPENDIX A

TRAINING HYPERPARAMETERS

For clarity and reproducibility, Table 10 summarizes the
key training hyperparameters and settings used in our
experiments.
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