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ABSTRACT Incorporating multimodal features and heterogeneous common sense knowledge in scene
representation and visual reasoning techniques is essential for accurate and intuitive Visual Question
Answering (VQA). Knowledge-enhanced multimodal VQA offers transformative potential across computer
vision applications, including accessibility, healthcare, security and education. Existing VQA techniques
often neglect rich semantic and relational information about image content or rely on potentially biased
knowledge sources with limited coverage. Our Neurosymbolic Visual Question Answering (NeSyVQA)
framework addresses this by enriching scene graphs with rich background knowledge from a heterogeneous
knowledge graph and employing the enriched scene graphs in an attention-based scene graph reasoning
network. The framework employs a cascade of deep neural networks, including Convolutional Neural
Networks (CNN) and Long Short Term Memory (LSTM) networks, for object detection and predicate
classification within Scene Graph Generation (SGG). The initial scene graph is semantically enriched for
improved expressiveness using background knowledge and related facts extracted from a heterogeneous
knowledge graph. The enriched scene graphs are then employed for downstream VQA using an
attention-based scene graph reasoning network. Promising evaluation results were obtained for SGG and
VQA tasks on the General Question Answering (GQA) and Visual Genome (VG) benchmark datasets using
their standard evaluation metrics. The proposed NeSyVQA framework outperformed the existing state-
of-the-art SGG and VQA techniques with over 13% higher relationship recall rates in SGG and a 4%
higher accuracy on open-ended questions in VQA, which underscores the efficacy of leveraging multimodal
features and heterogeneous knowledge for complex visual reasoning. The source code is available at
https://github.com/jaleedkhan/nesy-vqa

INDEX TERMS Knowledge enrichment, neurosymbolic integration, scene graph, scene understanding,
visual question answering, visual reasoning.

I. INTRODUCTION and answer feature extraction and natural language gen-
Visual Question Answering (VQA) is a fundamental task eration from natural language processing, and structured
in visual reasoning that involves answering a variety of representation and semantic reasoning from knowledge

questions, posed in natural language, about a given image. representation and reasoning. Multimodal feature fusion is
The complexity and interdisciplinary nature of VQA have led a crucial aspect of VQA, which involves creating a joint
to its recognition as an Al-complete task [1]. It incorporates feature representation of the image-question pair for answer
image feature extraction from computer vision, question classification or generation. VQA 1is considered a type of
Turing test for visual reasoning, as it evaluates the system’s

The associate editor coordinating the review of this manuscript and ability to perform semantic analysis of visual scenes at a
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QL. Is there a building on the side of the road?
Q2. What is there to the left of the bus?

Q3. Is there an object used for transport?

Q4. What is parked on the road near the building?

building

below

located at

nea

FIGURE 1. The scene graph (blue) of the image has sufficient information to answer Q1 and Q2. However, external
background knowledge (green) about the visual concepts in the image is required to answer Q3 and Q4, indicating
the need to incorporate heterogeneous common sense knowledge for scene graph reasoning.

evaluation benchmarks such as General Question Answering
(GQA) [3] and potential applications across various domains.
For instance, VQA can enable visually impaired people to
navigate their surroundings and the internet with fewer visual
barriers [4]. VQA can support automated medical diagnosis,
assist healthcare staff with clinical decisions, and facilitate
patient education [5]. VQA also holds promise for unattended
surveillance systems, where it can help raise alarms in
anomalous situations and assist human operators in making
more informed and quicker decisions [6]. Other potential
areas of application include education [7], art [8] and
marketing [9], where it can enhance e-learning and student
evaluation, replace audio guides in art galleries and museums,
and evaluate human comprehension of advertising media,
respectively. VQA stands at the intersection of multiple
research domains and has the potential to revolutionise
various aspects of our society.

VQA techniques often struggle with several challenges due
to the complex nature of the task. These techniques typically
require the execution of multiple computer vision sub-tasks
for question answering and a significant volume of labelled
images and question-answer pairs for generalisation [1].
However, collecting sufficient training data for all visual
concepts can be tedious and often impractical [10]. More-
over, the conventional VQA models overlook the essential
semantic and relational information about visual concepts in
images, which is vital for visual reasoning. To this end, scene
graph-based VQA emerged as a more effective solution,
especially for questions that necessitate semantic reason-
ing [11]. The aim of neurosymbolic (NeSy) methodologies
is to harness the extensive learning capacity and broad
applicability of neural systems, complemented by the logical
reasoning and interpretability provided by symbolic systems
in Al [12]. Techniques within NeSy frameworks use neural
representations to enhance symbolic reasoning, incorporate
external knowledge into neural learning, or a synthesis of
both, with the degree of integration between neural and
symbolic elements varying from weak to moderate and then
to a strong integration [13], [14]. Scene Graph Generation
(SGG) employs a neurosymbolic approach that represents the
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image content as a structured graph, with objects as nodes and
their relationships as edges. SGG usually involves a combi-
nation of deep learning-based multimodal techniques, mainly
for object detection and relationship predicate classification.
This graphical image representation proved beneficial for
downstream visual reasoning techniques that require under-
standing the interactions between visual concepts [15], [16].
For instance, the scene graph in Figure 1 can be used
to readily answer questions Q1 and Q2 about the image.
However, answering complex questions requiring additional
information and a deep semantic understanding of the scene
and the question, such as Q3 and Q4, necessitates more
than just objects and their relationships. Besides objects and
relationships, background common sense knowledge about
these visual concepts is required for a higher-level semantic
understanding of the visual scene and enhanced reasoning
capabilities.

Several knowledge-based methods have been introduced
to address this challenge by leveraging statistical priors [17],
[18], [19], [20], language priors [21], [22], and fact-based
external knowledge [23], [24]. However, these methods
have limitations due to their restricted knowledge and
inherent biases. Knowledge Graphs (KGs) have emerged
as a promising source of common sense knowledge. Some
SGG methods [19], [24], [25], [26] incorporate knowledge
from KGs, while others use graph-based message propaga-
tion [18], [27], [28], [29] to embed KG structural information
into model representations. The Common Sense Knowledge
Graph (CSKG) [30], a consolidated knowledge source with
heterogenous common sense knowledge, was found to be
beneficial for knowledge integration in SGG [31]. While
several techniques have integrated knowledge from KGs for
scene graph generation, their application to visual reasoning
tasks like VQA remains limited. Some VQA techniques [28],
[32] have used a limited subset [23] of DBpedia, ConceptNet,
and WebChild, but these methods did not utilize scene
graphs, thereby neglecting the structural features required
for reasoning. There is a significant need to explore the
use of rich and diverse common sense knowledge about
visual concepts for VQA. This will enable VQA methods
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to leverage the complementary structural features of scene
graphs and broad coverage of common sense knowledge in
heterogeneous KGs to answer complex questions accurately
and intuitively.

To address the aforementioned challenges, we present
NeSyVQA, a novel neurosymbolic visual reasoning frame-
work for VQA based on the semantic enrichment of scene
graphs and attention-based scene graph reasoning. The
framework initiates SGG with CNN-based object detec-
tion, followed by LSTM-based classification of relation-
ship predicates, which leverages visual-textual multimodal
feature learning. The scene graphs are then semantically
enriched using background knowledge and related facts
extracted from a heterogeneous KG. Finally, the enriched
scene graphs are used for downstream reasoning using
an attention-based pipeline for VQA. NeSyVQA achieved
state-of-the-art performance in SGG and VQA tasks on
the GQA [3] and VG [33] datasets using the standard
performance measures, which depicts the effectiveness of
multimodal SGG and scene graph enrichment via hetero-
geneous common sense knowledge for visual reasoning.
The NeSyVQA framework significantly and systematically
extends the knowledge-based SGG method [31] with new
methodological and experimental contributions, particularly
on its application to VQA. The proposed framework
addresses the expressiveness challenge in visual reasoning
by bridging the gap between scene graphs and common
sense knowledge and VQA. By enriching scene graphs
with external knowledge, our framework enables deeper
semantic understanding of scenes, which improved accuracy
on open-ended questions and also enhanced performance
on binary questions, consistency, validity and plausibility
scores compared to existing state-of-the-art methods. Open-
ended questions, in particular, benefit significantly from
background common sense knowledge, as they often require
reasoning that goes beyond visual features alone. The main
contributions of this paper include:

1) We proposed a novel scene graph enrichment-based
neurosymbolic visual reasoning framework for VQA
(Figure 2), which consists of CNN- and LSTM-based
multimodal scene graph generation (Algorithm 1),
heterogenous KG-based scene graph enrichment
(Algorithm 2) and attention-based scene graph reason-
ing for VQA (Algorithm 3).

2) Inour SGG evaluation, the proposed approach achieved
over 19% higher relationship recall rates in SGG, com-
pared to the traditional data-centric approach without
knowledge enrichment (Figure 3), and outperformed
the existing state-of-the-art methods with over 13%
higher relationship recall rates (Table 3).

3) We compared the performance of SGG using different
KGs and different KG embedding models and observed
that ComplEx [34] embeddings of CSKG [30] yielded
the highest performance (Table 1 and Table 2).
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4) In our VQA evaluation, the proposed approach
achieved 29% higher accuracy on open-ended ques-
tions, 16% higher accuracy on binary questions and
over 10% higher consistency, validity and plausi-
bility scores, compared to the traditional approach
data-centric approach without knowledge enrichment
(Figure 4). The proposed approach also surpassed
the existing state-of-the-art method with a 4% higher
accuracy on open-ended questions as well as improved
accuracy on binary questions, validity, consistency and
plausibility scores (Table 4).

The rest of the paper is organised as follows: Section II
presents the related work on this topic, the proposed
framework is explained in Section III, and the comprehen-
sive experimental analysis and discussion are presented in
Section IV, which is followed by the conclusion in Section V.

Il. RELATED WORK

In this section, we review the related works on scene
graph generation, visual question answering and knowledge
enrichment.

A. SCENE GRAPH GENERATION

Most SGG methods merge visual and semantic repre-
sentations within deep neural networks to predict visual
relationship triples on a large scale. Zhang et al. [35] proposed
a tripartite approach for capturing visual representations,
blending streams dedicated to subjects and objects with a
stream for predicates to enhance the interactions between
subjects and objects. During the learning process, text-based
features were fused as visual feature labels. In a similar way,
Peyre et al. [36] utilized a space for visual phrase embeddings
throughout the learning stage, which aids in the prediction
of previously unseen relationships and mitigates the impact
of changes in appearance. For visual relationship prediction,
Zellers et al. [19] and Chen et al. [18] utilized pre-calculated
frequency priors to infuse common sense knowledge derived
from dataset statistics. Xu et al. [37] introduced an itera-
tive message passing (IMP) technique for refining object
and relationship features in SGG. VCTree [38] harnessed
dynamic tree structures and Bi-directional TreeLSTM for
effective SGG. Tang et al. [39] adopted causal inference for
predicting relationship triples and proposed the Total Direct
Effect (TDE) approach to mitigate bias caused by imbalanced
datasets. EBM [40] is an energy-based learning framework
for scene graph generation, integrating scene graph structures
into the output space and enabling effective learning from
a limited label set due to its inductive bias. SVRP [41]
allows for the inference of relations for unseen object classes,
employing a two-step method that involves pre-training on
coarse-grained region-caption data, followed by fine-tuning
using prompt-based techniques without updating the model
parameters. FGPL-A [42] leverages an adaptive predicate
lattice and entity discriminating loss functions to dynamically
identify and refine hard-to-distinguish predicates in SGG
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models. Zhang et al. [43] developed the Saliency-guided
Message Passing (SMP) technique to improve relationship
reasoning and the adaptability of scene graphs by prioritizing
the most significant visual relationship triples. In another
work, Lin et al. [44] used the concept of heterophily within
visual relationship triples to enhance the representation of
relationships and enhance message passing within a Graph
Neural Network (GNN) through an adaptive re-weighting
transformer module aimed at facilitating the fusion of
information. Zhou et al. introduced the Debiased Scene
Graph Generation (DSDI) framework [45], which applies
dual imbalance learning to balance head-tail relations.
Subsequently, the Causal Feature Enhancement Network
(CFEN) [46] refined relational representations through causal
feature disentanglement. These causal or debiasing strategies
contribute to relational completeness in SGG. With their
focus on visual and language features only, existing methods
neglect the impact of common sense knowledge and the struc-
tural features of visual concepts present in heterogeneous
KGs.

B. VISUAL QUESTION ANSWERING

Anderson et al. [47] used Faster R-CNN to propose image
regions and integrated bottom-up and top-down attention
mechanisms to enhance the interpretability of attention
weights and unified visual-linguistic understanding for VQA
(UpDown). Tan and Bansal [48] proposed the LXMERT
framework employing a large-scale Transformer model with
three encoders for scene graph-based VQA based on the
understanding of visual concepts and language semantics,
as well as, intra- and cross-modal relationships. Meta
Module Network (MNM) [49] addresses the scalability
and generalizability in VQA using a metamorphic meta
module, which dynamically morphs into diverse instance
modules, offers flexibility and allows for complex visual
reasoning, while preserving the same model complexity
as the function set expands. MDETR [50] is an end-to-
end modulated detector that leverages a transformer-based
architecture to fuse image and text modalities at an early
stage for efficient extraction of visual concepts from the
free-form text in multi-modal reasoning systems including
VQA. Zhang et al. [51] performed visual reasoning for
VQA based on their object detection model designed for
visual-language tasks with richer visual representations of
objects and concepts. Among the scene graph-based VQA
methods, Hudson and Manning [52] presented a visual
reasoning approach based on Neural State Machines (NSM)
integrating visual and linguistic inputs into semantic concepts
via a probabilistic scene graph for sequential reasoning and
inference. Zhang et al. [53] embedded the structural features
of scene graphs into a Graph Neural Network (GNN) for
downstream VQA. Yang et al. [54] proposed Scene Graph
Convolutional Network (SceneGCN) that incorporates object
properties and semantic relationships into a structured scene
representation for enhanced VQA via visual context and
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language priors. Graphhopper (GH) [55] addresses the chal-
lenge of performing multi-hop knowledge graph reasoning
over complex visual scenes to predict reasoning paths that
lead to the answer in VQA. Dual Message-passing enhanced
Graph Neural Network (DM-GNN) [56] encodes multi-scale
scene graph information into two diversified graphs focused
on objects and relations, and uses a dual structure to
encode them to achieve a balanced representation of object,
relation, and attribute features in VQA. The Scene Graph
Refinement network (SGR) [57] propose a transformer-based
refinement network to enhance object and relation feature
learning in VQA, utilizing question semantics to jointly
learn multimodal representations and select the most relevant
relations for question answering. Eiter et al. [58] introduced
a neurosymbolic VQA pipeline, integrating neural network
predictions with logic programming to handle imperfect data
and compute answers. Yi et al. [59] combined deep learning
for visual and language processing with symbolic reasoning,
executing derived programs on structural scene representa-
tions to answer questions. Dahlgren and Dan [60] investigated
the compositional generalization in multimodal mathematical
reasoning, revealing limitations in current VQA models,
and suggested knowledge-based curriculum learning for
enhanced reasoning. The Question-aware Dynamic Scene
Graph (QDSG) method introduces a dynamic scene graph
refinement mechanism that leverages question-specific word-
level co-attention to adaptively refine both node and edge
features for improved scene understanding and iterative
reasoning in VQA [61]. Recent works such as Core-to-
Global Reasoning (CTGR) [62] attempt to unify local
object interactions and global context reasoning through a
hierarchical neural module. While CTGR achieves strong
compositional reasoning, it remains limited to data-driven
inference within the visual domain. The lack of explicit
integration of external common-sense knowledge into the
scene representation and reasoning for improved downstream
reasoning and interpretability remains a gap.

C. KNOWLEDGE ENRICHMENT

Early knowledge-based methods leaned on statistical pri-
ors [17], [18], [19], [20] and language priors [21], [22]
for common sense knowledge infusion. While priors helped
slightly advance the prediction performance of relationship
triples in SGG, they possess significant limitations that
restrict their expressivity and applicability in downstream
visual reasoning, particularly in VQA. Statistical priors
are often based on heuristic methods, limiting their gen-
eralizability, while language priors are susceptible to the
constraints of word embeddings, especially when applied
to underrepresented objects in benchmark datasets. These
shortcomings are exploited by downstream VQA models,
which tend to rely heavily on such statistical biases and trends
within the answer distribution, thereby significantly limiting
their visual reasoning capabilities. Recognizing the necessity
of understanding visual scenes beyond mere image-question
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pairs for comprehensive visual reasoning, few strategies
have been employed. Some approaches aim to retrieve basic
factual information to answer questions [23], [24], while
others focus on actively acquiring additional information and
predicting the answer [63]. Fact-based VQA (FVQA) [23]
attempts to address this by learning query mappings and
retrieving information from a knowledge base with limited
factual information. Similarly, Narasimhan and Schwing [24]
answer questions by predicting the key triple associated with
the question. These methods rely on ground truth triples for
supervision and are limited to one-hop reasoning only. Their
effectiveness is limited due to the lack of extensive coverage
and diversity of general common sense knowledge about
visual scenes, leading to difficulties in answering questions
that necessitate implicit and background knowledge about
the visual concepts present in the scenes. KGs have become
a promising source of common sense knowledge within
knowledge-based scene representation and visual reasoning
techniques. Certain SGG methods [19], [24], [25], [26]
incorporate related knowledge extracted from KGs at various
stages of the SGG process. Other techniques utilize message
passing approaches [18], [27], [28], [29] to encode KG
structural features into the model. Integrating knowledge
from multiple KGs into a heterogeneous knowledge source
with enhanced the coverage and diversity of common
sense knowledge. Zareian et al. [64] proposed the Graph
Bridging Network (GB-Net), a framework designed to
construct a scene graph and associate its nodes and edges
with associated entities in a common-sense graph sourced
from VG, WordNet, and ConceptNet. It utilizes message
passing in GNNs for the iterative enhancement of the
relationships within the scene graph. Similarly, Guo et al. [65]
harnessed relational and common-sense knowledge extracted
from VG and ConceptNet, integrating this information
into an Instance Relation Transformer (IRT) for predicting
relationship triples in SGG. The Gaussian Distribution-Aware
SGG (GDA-SGG) method models commonsense knowledge
using Gaussian distributions, providing a probabilistic space
for uncertainty in visual context and commonsense, cou-
pled with multi-expert classifiers for denoising, enabling
more accurate scene graph generation [66]. The Bipartite
Graph Neural Network (BGNN) leverages confidence-aware
adaptive message propagation and bi-level data resampling
to mitigate the challenges of long-tailed class distributions
and intra-class variations for unbiased scene graph genera-
tion [67]. The Confidence-Aware Commonsense Integration
SGG (CA-SGG) method incorporates a hybrid-attention
module to minimize uncertainty in representation learning,
paired with a confidence estimation branch to dynamically
adjust the need for commonsense knowledge in relation
recognition tasks [68]. CSKG [30], a systematically con-
solidated common sense knowledge source, was used for
knowledge infusion in SGG [31], and the resulting scene
graphs were used for downstream image synthesis. While
these SGG methodologies leverage multiple knowledge
graphs, their application in visual reasoning techniques,
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particularly VQA, remains unexplored. Evaluating the impact
of integrating common sense knowledge from various KGs is
essential for advancing visual reasoning capabilities. Certain
VQA methodologies [28], [32] have employed a restricted
selection [23] from KGs like DBpedia, ConceptNet, and
WebChild. However, these approaches did not leverage scene
graphs, missing out on the valuable structural features related
to visual concepts. To address this gap, Ziaeefard and
Lécué [69] introduced a VQA technique based on Graph
Attention Networks, which incorporates both scene graphs
and contextual knowledge from ConceptNet, aiming to enrich
the understanding and processing of visual information.
It is crucial to assess the efficacy of leveraging associated
background and factual knowledge from multiple KGs in
visual reasoning. Some VQA methods [28], [32] have used a
limited subset [23] of ConceptNet, WebChild and DBpedia,
but these methods did not utilize scene graphs, thereby
overlooking the structural and relational information about
image content. Ziaeefard and Lécué [69] proposed a Graph
Attention Networks-based VQA technique that encodes
scene graphs along with external knowledge extracted from
ConceptNet. The VQA-GNN model proposed by Wang
et al. [70] introduced a bidirectional fusion technique to
merge structured knowledge from ConceptNet and scene
graphs and leveraged GNNs to perform inter-modal message
passing for question answering. There is a significant need to
explore the use of rich common sense knowledge to enrich
scene graph-based VQA methods to alleviate the existing
challenges. This will enable the VQA methods to jointly
leverage the complementary structural features of scene
graphs and rich common sense knowledge in heterogeneous
KGs for visual reasoning.

IIl. NEUROSYMBOLIC VISUAL QUESTION ANSWERING
FRAMEWORK

The proposed Neurosymbolic Visual Question Answering
(NeSyVQA) framework employs CNN- and LSTM-based
object detection and multimodal predicate classification, and
heterogeneous KG-based enrichment of scene graphs, which
is followed by attention-based scene graph reasoning for
VQA. The NeSyVQA framework is presented in Figure 2,
and each module is presented in detail in the following
subsections.

A. SCENE GRAPH GENERATION

Algorithm 1 presents the scene graph generation process.
Faster RCNN [71], with ResNeXt-101-FPN [72] backend,
is employed to detect objects. It provides a label / and a
bounding box b for each object within an image I, as well
as the feature maps F generated by the backend network.
The detected bounding boxes b and labels ! from Faster
RCNN serve as the initial object nodes in the scene graph,
while the feature maps F provide the context for generating
relationships between these objects. Potential redundancy
in object prediction, indicated by significant bounding box
overlap, similar labels, or identical structural patterns within
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FIGURE 2. Proposed NeSyVQA framework comprising CNN- and LSTM-based multimodal scene graph generation,
scene graph enrichment using a heterogeneous knowledge source, and an attention-based scene graph reasoning

network for VQA.

Algorithm 1 Scene Graph Generation
Input: Image /
Output: Scene Graph S
{b, 1, F} < FasterRCNN(/)
a < RolAlign(I[b])
v < BiLSTM(a, I[b], I)
for each pair of objects i, j do
vjj < concat(BiLSTM(v;), BILSTM(v;))
pij < embed(concat(/;, [;))
u;; < conv(RolAlign(F [b; U b;]))
{rij, cij} < softmax(SUM(vy;, pij, u;j))
end for
S <« {li, Tij, lj}

the CSKG, is mitigated at this stage. To minimize prediction
errors, object nodes with a high Intersection over Union
(IoU) of bounding boxes or substantial cosine similarity in
CSKG embeddings compared to another object node are
systematically discarded.
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To extract region features a from specific image areas I[b]
defined by object bounding boxes, we apply the RolAlign
method [73]. These features a serve as a basis for computing
the visual context features v for each object, which are then
encoded using the combination of a, the cropped image
regions I[b], and labels [/ through Bi-LSTM layers [19].
The Bi-LSTM architecture, noted for its ability to process
sequences with variable lengths and manage long-term
dependencies due to its bidirectional nature, considering
both previous and upcoming contexts of objects, is adept at
predicting the pairwise visual relationships.

To derive the combined pairwise object features v;; for
distinct object pairs (i # j;i,j = 1,...,n), where n is the
number of detected objects, the process involves encoding
the individual visual context features (v;, v;) using Bi-LSTM
and subsequent concatenation. The language prior pj; is
determined through the embedding of pairwise object labels
(i, I}). The contextual union features u;; are extracted by
applying RolAlign to the combined regions of object pairs
within the feature maps F. These three distinct feature sets,
vij, pij and uy;, are integrated via a summation operation [74],
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and are employed in softmax classification to predict the
relationship predicates r;; alongside their confidence values
c;j. By combining visual features (v;;), language priors (p;;),
and union features (u;), the model captures both the visual
and semantic context, improving its ability to predict accurate
relationships between object pairs. This process concludes
by connecting the pairwise objects and their associated
relationship predicates into a structured representation to
create the scene graph S.

B. KNOWLEDGE ENRICHMENT

The Knowledge Graph Toolkit (KGTK) [75] is used to
extract new relationship triples from CSKG, specifically
targeting those that share a subject or object node with
the existing elements in the scene graph. Each scene-graph
node v and candidate CSKG node u are embedded as
esg(v) and exg(u), respectively, and compared via cosine
similarity. Each scene-graph node v is represented as esg (v) =
o Prexi(name(v)) + (1 — @) dyis(roi(v)), where prexi and gyis
denote the textual and visual encoders respectively. Each
CSKG node u is represented as exg(u) = Yrext(name(u)).
The similarity score is s = cos(esg(v), exg(w)); triples are
retained if s > 7. Cosine similarity is used because it is
scale-invariant and effectively measures angular proximity
between heterogeneous embedding spaces. Unless stated
otherwise, « = 0.5 and r = 0.8, which provided the best
trade-off between textual-visual alignment and enrichment
coverage. (For brevity, Algorithm 2 uses e; = ez (v) and
er = exg(u).)

The enrichment process proceeds through five main stages:
(1) Candidate mining — retrieve CSKG nodes lexically or
semantically related to scene-graph nodes. (2) Embedding
scoring — compute s = cos(esg, ekg). (3) Filtering — retain
top-k candidates with s > 7. (4) Alignment — map CSKG
predicates to scene-graph relations. (5) Post-processing —
remove duplicates and self-loops.

The next step involves establishing links between the
nodes in the newly extracted triples and the associated object
nodes within the scene graph, focusing on those pairs that
demonstrate a significant degree of structural similarity.
In cases where a node from the newly identified triples
already exists within the scene graph, the strategy is to
directly connect the edge of the triple to this pre-existing
node, thereby reducing redundancy. A cosine similarity score
is computed between node embeddings e and e; to determine
whether to introduce a new triple from the CSKG into
the enriched scene graph, and the triple is added only if
s > t. After the process of enriching scene graphs, they
are aligned with the representation model, facilitating their
straightforward incorporation into the scene graph-based
VQA model. To align newly introduced triples with the
scene-graph relation vocabulary, each predicate is mapped
using a data-driven probability model:

/* = arg max countyg(h, r,t) + A
reRsg Zr/eRSG countyg(h, ', t) + M |Rsg|’
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Algorithm 2 Scene Graph Enrichment
Input: Scene Graph S, Common Sense Knowledge
Graph Geske
Output: Enriched Scene Graph S,
Se < S
for each node in S do
e] < sg_emb(node)
triplescskg < query(Gceskg, node)
triplescskG < preprocess(triplescskc)
for each triple in triplescsxc do
if node == triple[nodel] then
ey < cskg_emb(triple[node2])
else
ey < cskg_emb(triple[nodel])
end if
s < cosine_sim(eq, €2)
if s > t© A triple ¢ S, then
Se.append (triple)
end if
end for
end for
Se <« postprocess(Se)

Algorithm 3 Scene Graph Reasoning
Input: Enriched Scene Graph S,, Question Q
Output: Answer Ans
Initialize node embeddings in S, using label embeddings
S, < GAT(S.)
Initialize words in Q using GloVe embeddings
Q' <« transformer(Q)
Initialize agent state at hub node with Q’
Neurrent <— get_current_node(state)
while 7n¢yen: # pred_answer(state)andAns # () do
history <— LSTM(state)
prob < policy_network(history)
action < sample(prob)
state <— update(state, action)
Neurrent <— get_current_node(state)
end while
Ans < pred_answer(state)

where A is a smoothing constant. If no reliable mapping is
found, a generic relation such as LocatedNear is assigned
to maintain graph connectivity. New entities from CSKG
are aligned to detector labels through string matching and
synonym expansion using WordNet; if no direct match exists,
the entity is linked to its nearest semantic neighbor in the
embedding space.

C. DOWNSTREAM REASONING

The downstream scene-graph reasoning module for VQA,
presented in Algorithm 3, uses an agent-based mechanism
that begins at a central node connected to most nodes in
the enriched scene graph and traverses to adjacent nodes
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until it reaches the node representing the final answer. Each
entity and relation in the enriched scene graph is initialized
with the embeddings of their textual labels, providing
the initial semantic representation of the scene. A Graph
Attention Network (GAT) [76] then refines these node
embeddings by aggregating information from neighboring
nodes to incorporate relational context. GAT enables the
model to focus on the most relevant relations for answering
the question by weighting neighboring nodes according
to their importance. Relations and inverse relations allow
bidirectional context flow, yielding a more comprehensive
understanding of the scene.

The question Q is encoded by first initializing its words
using GloVe embeddings [77] to capture lexical semantics,
followed by a transformer [78] that produces a context-aware
question representation Q’. The reasoning process maintains
a query or state vector g; that evolves as the agent moves
through the graph. At each reasoning step ¢, attention weights
are computed as

a; j = softmax; (q,T Whj),

where h; is the embedding of a neighboring node j and W is a
learnable attention weight matrix. The agent then updates its
internal state according to

qgr+1 zf(qlv hi*)’ l* = argm?lxo‘l,jv
J

where the most relevant neighbor i* is selected based on the
highest attention weight. After T reasoning steps, the final
answer logits are computed as y = W,qr, where W, is an
output projection matrix, and the network is trained using
cross-entropy loss with ground-truth answers.

As LSTMs are suitable for modeling temporal dependen-
cies, a multilayer LSTM [79] encodes the traversal history
of the agent on the enriched scene graph. The LSTM
processes the embeddings of previously taken actions to form
a history representation, which is fed into a policy network
that outputs a probability distribution over the next possible
actions. The policy network guides the agent through the
graph by selecting the most promising neighbor at each step.
The agent continues to traverse until it reaches a terminal
node predicted to represent the answer. The state of the
agent—initialized with the question representation Q'—thus
evolves through iterative attention, state updates, and history
encoding, integrating both the enriched scene structure and
linguistic context to infer the final answer.

The neural (SGG and VQA pipelines) and symbolic (struc-
tured representation and knowledge enrichment) components
in the NeSyVQA framework are loosely coupled as per the
taxonomy of neurosymbolic approaches in [13] and [14].
These components operate in tandem to enhance collective
performance, i.e. the accuracy of the initial scene graph
plays a crucial role in effective knowledge enrichment, which
ultimately impacts the performance of downstream reasoning
for VQA.
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IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SETUP

1) PLATFORM AND TOOLS

We used PyTorch! and KGTK? for implementation of
the proposed framework and conducted experiments on a
machine with AMD Ryzen 7 1700 Eight-Core Processor, 16
GB RAM, NVIDIA TITAN Xp GPU (with 12 GB memory)
and Ubuntu 18.04.

2) DATASETS

The General Question Answering (GQA) dataset [3] is the
standard dataset for scene graph-based VQA. It contains
113,018 images, 22 million questions, 1702 object classes
and 310 relationship types, with an 80-10-10 split for training,
validation and testing. Given the long-tailed distribution
of objects and relationships in the dataset that impacts
the performance of SGG, we used the common subset of
the dataset with the most frequent 800 object classes and
170 relationship classes that account for more than 95%
of their instances in the dataset. We conducted additional
experiments on the Visual Genome [33] dataset to validate the
results further. It contains 108K labelled images, 1.7 million
open-ended question and answer pairs, and annotations for
objects and visual relationships, with the most frequent
150 object classes and 50 relationship classes included in the
standard split [37] we used.

3) EVALUATION METRICS
We used the following standard metrics to evaluate the
performance of SGG:

1) “Recall@K (R@K)” [21] measures the fraction of
times the correct relationship is among the top K
confident relationship predictions, considering not just
the correctness of predicted relationship labels, but also
their confidence scores.

2) “mean Recall@K (mR@K)” [18], [38] computes the
mean of R@K values computed separately for each
relationship category, with the aim to mitigate bias
towards dominant relationships during the evaluation.

Unless stated otherwise, we evaluate SGG performance under
the Scene Graph Detection (SGDet) setting, in which the
model detects objects and predicts pairwise relationships
among them.

In VQA, the “binary” type questions are designed to have

a ‘yes’ or ‘no’ answer, for example, questions that involve
checking the presence, absence, or relationship between
objects in the image. On the other hand, the “open” type
questions require a more elaborate answer that needs deeper
reasoning about the semantics of the visual content, usually
involving identifying, describing, or explaining objects and
relationships in the image. Apart from the standard accuracy
metric, the performance metrics in GQA [3] are more
robust to informed guesses as they need a deeper semantic

1 https://pytorch.org/
2https ://kgtk.readthedocs.io/
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understanding of questions and visual content. The following
performance metrics are used to quantify the reasoning
capabilities of the VQA methods:

1) “Accuracy” (Top-1) is the fraction of times the
predicted answer with the highest probability matches
the groundtruth, separately calculated for binary and
open questions.

2) “Consistency” measures the ability to answer multiple
related questions consistently, indicating the level of
understanding of the semantics of a question within the
scene.

3) “Validity” evaluates whether an answer aligns with
the scope of the question, reflecting the ability to
comprehend the question.

4) “‘Plausibility” measures if an answer is reasonable
within the context of the question and in line with real-
world knowledge.

5) “Distribution” (lower is better) checks the match
between the distributions of predicted answers and
groundtruth, showing the ability to predict the less
frequent answers in addition to the common ones.

Unless otherwise noted, all results on GQA are computed on
the official test-dev split using the public GQA evaluation
server and official metric implementation.>

Consider an image showing a picnic scene with a red
apple on a blue blanket. Responding to the question “What
colour is the apple on the picnic blanket?” with an answer
“red” demonstrates accuracy. Maintaining the same answer
across related questions, such as “Is there a red object on
the blue blanket?”” and “Is the fruit on the blanket red?”
indicates ‘“‘consistency”’. The answer “green” is inaccurate
in this scene, yet it is “valid” and ‘“‘plausible”. Conversely,
the answer ““blue” is neither valid nor plausible as apples are
not naturally blue. The diversity, compositionality, broader
semantic space and real-world content of GQA, coupled
with its comprehensive suite of performance metrics, make it
well-suited for the benchmark evaluation of enriched scene
graph-based VQA. Other datasets either include synthetic
images [80], lack semantic representation [81] or confine
knowledge enrichment to the limited background knowledge
embedded within the datasets [23], [82], [83].

4) KG EMBEDDING MODELS

We compared the performance of the following four KG
embedding models in scene graph enrichment:

1) TransE [84] is a KG embedding model that uses a
translation operation to model relationships between
entities.

2) RESCAL [85] represents entities as vectors and
relationships as matrices, allowing it to capture higher-
order relationships.

3) DistMult [86] uses a distance-based multiplication
operation to model relationships.

3 https://cs.stanford.edu/people/dorarad/gqa/evaluate.html
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4) ComplEx [34] extends DistMult by using complex-
valued vectors.

The specific approach used by each model differs; however,

they all aim to map entities and relationships in the KG

to points in a high-dimensional vector space, such that

the geometric relationships between the points reflect the

relationships between the entities and relationships in the KG.

5) BASELINES
We compared the SGG performance of our method with
1) existing common sense knowledge-based SGG
methods, including DSGAN [17], IRT-MSK [65],
MOTIFS [19], GB-Net [64], KERN [18], COACHER
[87], KB-GAN [25], DeepVRL [22] and VRD [21], and
2) conventional data-centric SGG methods, including
HL-Net [44], TDE [39], SS-RCNN [88], SMP [43],
NICEST [89], VCTree [38], IMP+ [37], Factoriz-
ableNet [90], MSDN [91], Graph RCNN [92], FGPL-
A [42], EBM [40], SVRP [41], and DSDI [45].
We compared the VQA performance of our method with
1) existing scene graph-based VQA methods, includ-
ing Graphhopper [55], DM-GNN [56], NSM [52],
SGR [57], CTGR [62] and SceneGCN [54], and
2) conventional multimodal VQA methods including
VinVL [51], UpDown [47], MDETR [50], MMN [49],
and LXMERT [48].

The performance of these methods is reported in the same
setting, using the standard dataset split.

B. RESULTS AND DISCUSSION

1) SGG EVALUATION

The Faster RCNN was trained using image data and object
annotations using a learning rate of 0.003 (decreased by a
factor of ten after 70k and 100k iterations), SGD optimizer
and a batch size of 2. Post-training, the Faster RCNN was
fixed, and the whole SGG model was trained using the image
data and annotations of relationship triples using a learning
rate of 0.04 (reduced by a factor of ten twice when validation
performance plateaued), SGD optimizer and batch size of 4.
We observed R@100 of 32.7 and mR@100 of 12.1 on the
GQA test set. After enrichment of scene graphs, we noted
a substantial improvement in recall rates, i.e. R@100 and
mR@100 increased to 41.7 and 15.1 respectively on the GQA
dataset, as shown in Figure 3. Similar results were noted for
the VG dataset.

This advancement can be attributed to the additional
visual cues injected by CSKG, particularly regarding the
relative positions of objects and their potential interactions,
which aid in minimizing errors and omissions during scene
graph construction. Figure 5 demonstrates how the recall
rate, particularly R@100, varies with the cosine similarity
threshold, 7, used in Algorithm 2. As the threshold increases
initially, recall rises significantly, capturing more relation-
ships between the detected objects. Between the threshold
values of 0.5 to 0.7, recall growth diminishes, and plateaus
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FIGURE 3. SGG performance measures observed before (blue) and after
(green) semantic enrichment of scene graphs.

TABLE 1. Comparison between different KGs using ComplEx embeddings.

[ KG [ RQ@100 (GQA) [ RQ@100 (VG) ]
CSKG [30] 41.7 43.4
ConceptNet [93] 33.2 37.6
WordNet [94] 32.9 36.6

TABLE 2. Comparison between different KG embeddings of CSKG.

[ KG Embedding Model [ R@100 (GQA) | R@100 (VG) |

ComplEx [34] 41.7 43.4
DistMult [86] 40.8 42.1
TransE [84] 37.9 39
RESCAL [85] 34.5 37

after 0.8, indicating the addition of more irrelevant rather
than meaningful relationships. This suggests that fine-tuning
the similarity threshold is essential for minimizing noise
while maximizing the inclusion of meaningful relationships.
A threshold value of 0.8 was adhered to throughout the
experimentation phase due to the highest recall rate achieved
at this threshold.

2) COMPARISON OF KGs AND EMBEDDING MODELS

The recall rates obtained by the proposed framework with
ComplEx embeddings of different KGs are shown in Table 1.
Due to its heterogeneous nature and broader coverage of
common sense knowledge, CSKG achieved a significantly
higher recall rate compared to ConceptNet and WordNet.
The recall rates obtained by the proposed framework with
different embedding models for CSKG are shown in Table 2.
Due to their capability to represent complex-valued and
multi-dimensional relationships between entities in CSKG,
ComplEx and DistMult achieved higher recall rates than
TransE and RESCAL in the same setting, meaning that
ComplEx and DistMult are more expressive and better suited
for visual relationship prediction. ComplEx achieved the
highest performance compared to the rest of the embedding
methods.

3) SGG BENCHMARK COMPARISON
The performance of our method is compared with the
baselines in Table 3, which shows that the proposed
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FIGURE 4. VQA performance measures observed before (blue) and after
(green) semantic enrichment of scene graphs.

framework achieved a notably higher recall rate than all
the comparative methods in terms of all metrics on both
datasets. This significant advancement depicts that leveraging
rich, diverse common sense knowledge in heterogeneous
KGs enables the proposed framework to complement scene
graphs with high-level semantics of visual concepts for more
accurate and expressive scene representation.

4) VQA EVALUATION

The scene graph-based VQA model was trained and evalu-
ated, both prior to and following scene graph enrichment. The
performance metrics, as illustrated in Figure 4, demonstrate
a significant improvement in accuracy for both binary and
open-ended questions after scene graph enrichment. Binary
question accuracy increased by 16%, while the accuracy
for open-ended questions showed an even more pronounced
gain of 29%. This greater improvement in open-ended
questions can be attributed to the enhanced ability of enriched
scene graphs to handle the complexity and diversity of
open-ended questions, which require a deeper semantic
understanding of the scene and the relationships between its
components. The enriched scene graphs also demonstrated
superior consistency, validity, and plausibility scores, further
validating a more profound semantic understanding, better
comprehension of the questions, and improved contextual
reasoning abilities.

The largest gains appear in accuracy on open-ended
questions and consistency, indicating that enrichment most
benefits multi-step and compositional reasoning that relies
on contextual knowledge beyond visual features alone.
Improvements in validity and plausibility are smaller but
consistent, suggesting better question grounding and more
realistic answer distributions. Notably, these gains correlate
with the observed increase in SGG recall after enrichment
(Fig. 3), supporting the view that richer, more complete
relational structure translates into stronger downstream rea-
soning. Overall, the results affirm that knowledge-enriched
scene graphs improve both answer accuracy and the stability
of reasoning across related questions.

The enrichment process provides a richer and more
comprehensive representation of the scene, allowing the
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TABLE 3. Benchmark comparison with existing SGG methods.

[ Dataset [ Method [ Knowledge Source [ R@100 ] R@50 ] mR@100 | mR@50 |
NeSyVQA (w/ enrichment) CSKG [30] 41.7 36.0 15.1 124
SVRP [41] - 35.8 31.8 12.8 10.5
GQA [3] NeSyVQA (w/o enrichment) - 32.7 29.2 12.1 10.2
VCTree [38] - 30.0 25.9 10.1 8.2
TDE [39] - 28.3 26.2 10.5 8.6
MOTIF [19] Statistical Prior 25.9 22.6 6.3 52
IMP+ [37] - 24.6 19.7 7.6 1.3
FGPL-A [42] - 23.8 - 3.2 -
NeSyVQA (w/ enrichment) CSKG [30] 43.4 394 14.0 12.1
HL-Net [44] - 38.1 337 9.2 -
TDE [39] - 37.8 333 11.1 9.3
CA-SGG [68] ConceptNet [93] 37.3 325 7.3 6.3
SS-RCNN [88] - 36.9 32.7 10.0 8.4
SMP [43] - 36.9 32.6 - -
NeSyVQA (w/o enrichment) - 36.5 32.7 11.7 10
BGNN [67] - 35.8 31 12.6 10.7
EBM [40] - 337 26.8 11.6 9.7
DSGAN [17] Statistical Prior 329 28.8 11.8 8.9
NICEST [89] - 32.7 29.0 124 104
VG [33] DSDI [45] - 3.1 277 12.1 10.3
GDA-SGG [66] ConceptNet [93] 31.8 28.6 10.1 9.4
VCTree [38] - 31.3 27.9 8.0 6.9
IRT-MSK [65] CN [93] and VG [33] 31.0 27.8 - -
MOTIF [19] Statistical Prior 30.3 27.2 6.6 5.7
GB-Net [64] CN [93], WN [94] and VG [33] 30.0 26.4 7.3 6.1
KERN [18] Statistical Prior 29.8 27.1 7.3 6.4
IMP+ [37] - 24.5 20.7 4.8 3.8
COACHER [87] ConceptNet [93] 22.2 19.3 - -
KB-GAN [25] ConceptNet [93] 17.6 13.6 - -
FactorizableNet [90] - 16.5 13.1 - -
MSDN [91] - 14.2 10.7 - -
Graph RCNN [92] - 13.7 11.4 - -
DeepVRL [22] Language Prior 12.6 133 - -
VRD [21] Language Prior 0.5 0.3 - -
TABLE 4. Benchmark comparison with existing VQA methods on GQA dataset [3].
Method Scene Knowledge Binary Open Consistency Validity Plausibility Distribution Overall
Graph Enrichment
[ Humans [3] [ -] - [ 912 [ 874 ] 98.4 98.9 97.2 - 893 |
NeSyVQA (w/ enrichment) v v 98.7 99.1 99.5 97.6 96.5 0.07 98.9
QDSG [61] - - 94.5 96.7 99.5 95.3 95.3 0.05 96.4
VQA-GNN [70] v X — - — — — - 90.3
Graphhopper [55] v X 85.8 71.3 92.9 92.3 89.5 - 81.4
NeSyVQA (w/o enrichment) v X 84.7 76.5 89.9 87.6 87.9 3.1 80.6
CTGR [62] v X — — — - - - 73.3
DMGNN [56] v X 69.8 72.2 - 93.8 - 3.8 71.2
VinVL [51] X X 82.6 48.7 94.4 96.6 84.9 4.7 64.7
UpDown [47] X X 66.6 34.8 78.7 96.2 84.6 5.9 64.7
NSM [52] v X 78.9 49.3 93.3 96.4 84.3 3.7 63.2
MDETR [50] X X 80.9 46.2 93.9 96.3 84.2 54 62.5
SGR [57] v X 78.9 46.4 92.7 96.8 86.4 1.6 61.7
MMN [49] X X 78.9 449 92.5 96.2 84.5 5.5 60.8
LXMERT [48] X X 77.8 45 93.1 96.4 85.2 6.4 60.3
SGCN [54] v X 70.3 40.6 83.5 95.9 84.2 6.4 54.6

VQA model to better understand the semantics and context
of the scene and the question, leading to more valid
and plausible answers and consistent responses to related
questions. For instance, the increase in consistency from
89.9% to 99.5% suggests that enriched scene graphs not only
improve the direct prediction of relationships but also allow
the system to reason more coherently across multiple, related
questions.
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Figure 5 demonstrates how the overall accuracy varies
with the cosine similarity threshold, 7, used in Algorithm 2.
As the threshold increases initially, the accuracy of VQA
increases significantly with the increase in the recall rate
and expressivity of SGG. Between the threshold values of
0.5 to 0.7, this increase diminishes, and plateaus after 0.8 due
to the addition of more irrelevant rather than meaningful
relationships in the scene graphs. A threshold value of 0.8 was
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FIGURE 5. The effect of varying cosine similarity threshold on the recall
rate in SGG and the overall accuracy of VQA.

adhered to throughout the experimentation phase due to
highest accuracy achieved at this threshold.

5) VQA BENCHMARK COMPARISON

The performance of our enriched scene graph-based VQA
method is compared to existing baselines, as presented in
Table 4. Our framework surpasses the current methods in
terms of accuracy for open-ended questions, consistency, and
plausibility while maintaining comparable performance in
accuracy for binary questions, validity, and distribution. This
improvement underscores the benefits of incorporating rich
and diverse common sense knowledge into scene graphs,
enabling the VQA model to comprehend the high-level
semantics of visual concepts in images and questions and
provided more accurate and expressive responses to posed
questions.

C. QUALITATIVE ANALYSIS

The qualitative results of our framework on three rep-
resentative images from the GQA dataset [3] are shown
in Figure 6. These examples were intentionally selected
to include complex, multi-object scenes with overlapping
entities, compositional or multi-hop questions, and occlusion
or contextual ambiguity, to illustrate how knowledge enrich-
ment enhances the interpretability and reasoning capability
of the framework.

The proposed framework effectively enriches the scene
graphs, enabling deeper reasoning by providing common-
sense and functional background knowledge about the
depicted objects beyond their directly observable appearance.
This enriched information allows the model to infer implicit
relationships that are essential for answering reasoning-
intensive questions.

In the first example, multiple interacting objects (man,
bag, frisbee) form a scene with high relational density. The
enrichment process adds relations such as used for recreation
and capable of carrying something, allowing the system to
correctly infer that the bag can carry the frisbee and that the
frisbee is used for recreation. This demonstrates the model’s
ability to reason over functional roles rather than relying
purely on visual co-occurrence.
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In the second example, the scene contains partial occlusion
and multiple correlated wearable items. The enriched triples
(e.g., gloves are part of skiing gear; goggles used for
protecting eyes) enable the system to integrate distributed
cues—ski, gloves, goggles—and infer a higher-level concept:
that the woman is wearing skiing gear and engaging
in skiing. This illustrates the framework’s capacity for
multi-hop compositional reasoning across semantically
linked
objects.

In the third example, fine-grained attribute reasoning
is required to distinguish between digital and non-digital
objects in an indoor workspace. The enriched graph injects
background knowledge that monitors and tablets are digital
devices, while notebooks are used for writing, not for
computation. This context allows the model to answer
accurately that the notebook is not digital and confirms the
indoor scene type.

Across all three cases, the enriched scene graphs exhibit
denser, semantically coherent relational structures, yielding
more accurate and contextually consistent answers. These
examples collectively demonstrate that knowledge enrich-
ment not only improves factual correctness but also supports
reasoning about object functionality, compositional context,
and implicit scene semantics, which are essential for robust
visual question answering.

D. LIMITATIONS AND FUTURE DIRECTIONS

The proposed framework surpasses the VQA baselines and
narrows the gap with human-level reasoning performance.
However, it still falls short of human performance in terms
of validity and plausibility by a small margin, as indicated
in Table 4, suggesting potential areas for improvement
and highlighting the importance of incorporating even
richer knowledge representations and reasoning strategies.
Heterogeneous KGs, though extensive sources of common
sense knowledge that have improved the overall performance
of SGG and VQA, are somewhat constrained by their limited
contextual understanding [95]. This becomes a drawback
when the KGs lack contextually valid information about a
specific scene [15].

Despite our method outperforming existing SGG methods,
this limitation leads to difficulties with fine-grained predicate
disambiguation in complex scenes (for example, distinguish-
ing between ‘throwing’ and ‘passing’), indicating the need
for more sophisticated relationship reasoning approaches.
These limitations in SGG, particularly in visual relationship
prediction, directly impact downstream VQA. The inherent
complexity and the limited recall rate of SGG ultimately
lead to suboptimal performance in VQA, as the ability to
accurately interpret and reason about the visual scene is
critical for VQA. Therefore, developing more robust and
accurate knowledge-based SGG and VQA methods remains
an open research problem. Addressing this could significantly
enhance visual reasoning capabilities. Moreover, the current

VOLUME 14, 2026



M. Jaleed Khan et al.: Neurosymbolic Visual Question Answering With Knowledge-Enriched Scene Graphs

IEEE Access

Q1: Do all these people have the same gender? A: yes
Q2: Which object can carry another object? A: bag
Q2: Is there an object that can be used for recreation?
A: yes, the frisbee

= T

Q1: What is the woman wearing? A: goégles
Q2: Is the woman wearing a skiing gear? A: yes

Q3: What activity is the woman likely engaging in? A: skiing

QI1: Is the tablet to the right of a notebook? A: no
Q2: Is it indoors? A: yes

Q3: Which of the items on the table are not digital? A: notebook

skiing gear

at location

portable device

to the left of

to the right of

playing catch

used for

recreational activities
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part of . above
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FIGURE 6. Qualitative results of scene graph enrichment and VQA on example images from the GQA dataset [3].

evaluation methods for SGG and VQA do not directly assess
the accuracy and relevance of external knowledge. This
highlights the need for new evaluation methods that quantify
the quality of knowledge infused from external sources.

A stronger neurosymbolic integration [96] between
data-centric and knowledge-based modules of the framework
could potentially complement the individual strengths of
these modules and enable complex visual reasoning capa-
bilities. Incorporating external knowledge into the training
regime of deep neural networks has shown promise in
enhancing the understanding of visual relationships [97],
[98]. While some initial studies have made progress in the
context of scene graph generation [25], [64], the potential
of incorporating heterogeneous common sense knowledge
needs to be explored. Leveraging heterogeneous KGs for rule
extraction and integration into neural networks [99], [100]
could significantly advance scene understanding and visual
reasoning.
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Knowledge transfer and distillation techniques [36], [101]
present a promising direction in which the knowledge of
previously seen visual relationships and questions can be
used to guide unseen relationship prediction and answer
prediction, enhancing the performance and practicality
of SGG and VQA in real-world scenarios. Foundation
models [102], with their vast pre-trained knowledge bases
and advanced reasoning capabilities, offer extensive world
knowledge that can be leveraged to infer missing information
and generate hypotheses [103] about unseen or ambiguous
parts of a scene, thereby further enriching the scene graph
with inferred knowledge that goes beyond the explicit
content of KGs. With their structured and semantically rich
representation, enriched scene graphs can reciprocally guide
foundation models to focus on specific objects and their
spatial and relational dynamics within images for improved
visual comprehension in generating precise, context-aware
responses.
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V. CONCLUSION

We proposed the NeSyVQA framework, which generates
scene graphs using a multimodal deep learning cascade,
enriches the scene graphs with rich common sense knowledge
extracted from a heterogeneous KG and employs the enriched
scene graphs in an attention-based reasoning network for
VQA. NeSyVQA demonstrated significant improvement
over the traditional approach lacking heterogenous knowl-
edge enrichment, achieving over 19% higher recall rates
in SGG and a 29% increase in accuracy for open-ended
questions in VQA. Furthermore, NeSyVQA outperformed
the existing state-of-the-art SGG and VQA methods with
over 13% higher relationship recall rates in SGG and a
4% higher accuracy on open-ended questions in VQA. The
promising results demonstrate the effectiveness of leveraging
heterogeneous KGs for complex visual reasoning, paving the
way for future research towards more accurate and intuitive
VQA systems.
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