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Abstract—With the expansion of IoT technologies and their
dependence on cloud providers for storage and computation,
the security and privacy of data stored by IoMT users remain
a major concern. Even simple operations, such as the search
function, often require data owners to entrust the security of their
sensitive data to third-party cloud providers. Similarly, there are
concerns about the efficiency of classic encryption schemes in
protecting users’ sensitive data, as traditional encryption modes
are seen as a tacit trade-off between security and utility. To
address these challenges, this research investigates the feasibility
and efficiency of applying a Symmetric Encryption (SE) scheme
on digital images stored on a remote cloud platform within an IoT
environment and proposes a searchable SE scheme that integrates
a lightweight Advanced Encryption Standard in Galois Counter
Mode to secure the image data. This scheme enables search-
function operations to be performed directly on encrypted data
without requiring decryption, thereby preserving data privacy.
The proposed solution is evaluated through an in-house mobile
application for data stored by a remote cloud database containing
digital images, which can be retrieved through an annotations-
based search function.

Index Terms—Advanced Encryption Standard, Cloud storage,
Homomorphic Encryption, IoMT, Image Annotation, Image Col-
lection

I. INTRODUCTION

Driven by rapid growth, multimedia has become central to

many IoT applications, leading to the Internet of Multimedia
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Things (IoMT) [1]. In areas such as surveillance and security,

massive image data is generated on devices with limited

resources, making them dependent on cloud providers for stor-

age and computation [2], [3]. IoMT faces unique challenges,

including heterogeneous data, high throughput, QoS demands,

and the CIA triad of security.

Effective IoMT security requires robust and sustainable

encryption algorithms [4], [5]. Traditional schemes secure

communication and storage but block computation on en-

crypted data. Since distributed and third-party cloud services

are central to IoT, risks arise when secret keys must be shared

with untrusted providers to enable processing [6].

Recent advancements in homomorphic encryption offer

promising solutions to the challenges outlined above. Since

the late 1970s, researchers have pursued the development of

cryptosystems capable of performing accurate computations

directly on encrypted data without requiring decryption. Mod-

ern schemes such as Brakerski/Fan-Vercauteren (BFV) and

Cheon-Kim-Kim-Song (CKKS) enable privacy preservation

and strengthen security when engaging with third-party cloud

providers in the context of Big Data [7]. Despite their poten-

tial, these schemes face significant efficiency challenges due to

their reliance on bootstrapping and modulus switching opera-

tions, which result in large ciphertext sizes. Furthermore, their

applicability remains limited, as operations such as encrypted

comparison, sorting, or evaluating regular expressions are not

yet feasible within Symmetric Encryption (SE) frameworks

[7].

The complexity and resource constraints in IoT and

IoMT environments hinder the adoption of intensive, privacy-

preserving security solutions. This paper introduces an SE

scheme using client-side AES to secure cloud data, evaluat-

ing SE’s feasibility and efficiency in IoT through simulated



scenarios. The key contributions of this research are:

1) A practical and efficient Searchable SE (SSE) scheme

integrating lightweight AES-GCM (Advanced Encryp-

tion Standard – Galois/Counter Mode) for client-side

encryption.

2) A custom mobile application to evaluate the feasibility

and resource requirements of the proposed scheme.

3) Demonstration of secure cloud-based image retrieval

without requiring decryption, simulating real-world sce-

narios.

4) Comprehensive assessment of computational efficiency,

resource utilisation, and retrieval accuracy for encrypted

images.

The remainder of this paper is organised as follows: Section

II describes a comprehensive recent research contribution

to this subject. In Section III a detailed description of the

proposed scheme is presented, which includes the creation of

an Android test environment to emulate an IoMT application

to store digital images with annotations and metadata in a

remote cloud solution and the retrieval of the images through

an annotation-based search function. Section IV presents the

results on mobile app design and implementation of the

searchable symmetric encryption scheme. The performance

analysis and limitations, along with future work extensions,

are also presented in Section V. Finally, Section VI presents

the concluding remarks.

II. BACKGROUND AND RELATED STUDIES

The widespread adoption of handheld devices equipped with

multimedia capabilities has led to an exponential increase

in the creation of digital images. Alongside visual content,

standardised information such as camera settings, licensing

details, geolocation, and time and date stamps is typically

embedded within images [8]. However, this metadata is often

lost when images are accessed, transferred, or stored outside

their original source. To address this challenge, [9] proposed

storing metadata in the Exif segment of the JPEG header

to ensure its persistence within digital images. Building on

this, recent research has explored the automatic embedding

of metadata using machine learning (ML) and artificial in-

telligence (AI) techniques for image recognition [3]. Other

approaches seek to integrate contextual data from nearby IoT

devices to enable advanced search, query, and organisation

functionalities. For example, [10] utilises embedded ubiquitous

sensing technologies to generate context-rich, time-sequenced

metadata. Similarly, [8] proposed a model that captures IoT

data from Bluetooth Low Energy devices—including wear-

ables, smartphones, and home-automation systems—to embed

metadata directly into digital snapshots.

Given the portable and compact nature of IoMT devices,

their memory and data processing capacities are inherently

limited. As a result, most IoMT clients rely on cloud services

for data storage and analytics to enhance efficiency and extend

device functionality [11]. However, the interconnection of such

devices, which frequently handle highly private and sensitive

information, introduces significant security risks. To address

these concerns, [12] proposed a multi-level encryption-based

security system for surveillance videos to strengthen the

protection of video data. Similarly, [13] introduced a secure

service discovery model leveraging blockchain-enabled fog

computing. In parallel, other studies suggest the use of com-

putationally lightweight encryption ciphers within selective

encryption schemes as a practical means to overcome the

resource constraints inherent in IoT environments [4], [5].

Symmetric Encryption (SE) is a promising solution for

securing cloud systems [14]. Homomorphic Encryption (HE)

was first introduced in 1978 by [15] to enable computations on

encrypted data without prior decryption. Since then, various

schemes have supported modular multiplication, addition, and

limited AND operations over ciphertexts [16]–[18]. Unlike

partial or somewhat homomorphic schemes, SE supports

unlimited operations [19]. A quick and efficient symmetric

encryption method that enables ranked search through the k-

means clustering algorithm, along with an asymmetric scalar-

product-preserving encryption approach for encrypting indexes

and queries, was proposed by [20]. [21] presents a tool for

protecting private data in cloud databases using agents and

APIs as an approach of SSE, preventing data leakage and

privacy breaches while allowing users to store data and search

keywords in their encrypted database.

On the server side, ciphertext batching via the Chinese

remainder theorem has accelerated computations, while com-

pression techniques using polynomial coefficients reduced data

traffic [22]. However, such compression is unsuitable for

client-side optimisation due to the lack of efficient unpacking

methods. However, client-side optimisations primarily focus

on reducing ciphertext size to improve the efficiency and

speed of encryption and decryption processes. [23] proposed

a transciphering approach that leverages an HE algorithm

in conjunction with an SE scheme. SE offers significant

advantages in this context, as the ciphertext size is equal to the

plaintext size, enabling faster encryption and reducing storage

requirements compared to alternative algorithms.

Only a few HE libraries, such as Microsoft SEAL (Mi-

crosoft, 2021), are available for Android, but their CKKS

implementation yields approximate results, making them un-

suitable for precise encrypted searches. To address this and

ensure efficiency in resource-constrained IoT environments,

this research uses client-side AES encryption to secure image

locations and protect the images from unauthorised access.

III. MATERIALS & METHODS

This work builds upon previous advances by incorporating

client-side AES-GCM encryption to create an efficient and

practical framework for SE. Implemented in an Android test

environment simulating an IoT application, it enables secure

cloud storage and retrieval of digital images. The main op-

eration is an unlimited search function performed directly on

the ciphertext without changing the plaintext, fully adhering

to the SE paradigm. The subsequent sections outline the

implementation and assessment of the searchable symmetric

encryption method designed for securing image retrieval.
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Fig. 1. Proposed Searchable Symmetric Encryption (SSE) scheme.

A. Proposed Searchable Symmetric Encryption (SSE) Scheme

At a high level, the proposed SSE scheme involves five main

steps:

1) Select and annotate images, then encrypt the image URL

on the local device.

2) Upload the encrypted image to cloud storage and store

its metadata in the cloud database.

3) Display and search plaintext metadata by indexing

(names, annotations, and other metadata) on the local

device.

4) Show search results in plaintext from the cloud database.

5) Decrypt the image URL client-side and display the

secured image.

“Fig. 1” illustrates the proposed scheme. The mobile app on

an Android device lets users select images and add metadata

(user ID, timestamp, keywords). The image URL is encrypted

at the client-side before upload. The encrypted image is stored

in cloud storage, while metadata and the encrypted URL are

saved in the cloud database. Searchable plaintext metadata is

listed locally for querying, and search results display relevant

metadata. With proper authorisation and private AES keys,

the image URL is decrypted locally, allowing secure image

display.

The privacy barrier in “Fig. 1” highlights the scheme’s

ability to preserve privacy: unencrypted data is never exposed

to external parties, including cloud providers. Sensitive fields

are selectively encrypted, keeping images searchable while

restricting access to authorised users with private AES keys.

Unlike traditional solutions (e.g., Microsoft Azure), which

require decryption for search and rely solely on provider

access controls, this approach ensures stronger data privacy.

B. System Architecture

As illustrated in “Fig. 2”, the system architecture centres

on a smartphone device (client) that enables image capture

and annotation through text fields to aid retrieval. When an

image is selected, the app records the file extension, user ID,

and upload timestamp. The user ID is assigned by the app,

with authentication via email/password or Google/Microsoft

accounts (detailed later).

The application extracts the URL of the selected image,

encrypts it on the client side with a private key, and then

uploads the image file, name, and encrypted URL to the cloud.

The encryption keys are generated by the app and securely

stored on the client device or key store.

On the cloud side, the server hosts the code binary and

public keys, while the database records include the image

name, annotations, timestamp, user ID, and encrypted image

URL. The actual image and its metadata are stored in cloud

storage.

C. Test Environment Set-up and Implementation Process

To address the research challenges of creating the test

environment and implementing the proposed SSE scheme, the

implementation process is divided into four main components.

The first focuses on the development of the front-end Android

mobile application, while the second addresses the design of

the back-end cloud storage database. The third component

involves building the front-end image gallery with an inte-

grated search function for image retrieval. Finally, the fourth

component implements and evaluates the SSE scheme.

1) Creation of the front-end android mobile application:
The front-end application, SSEforIoT, is designed to emulate

an IoT environment that requires image annotation and the

uploading of digital images to a remote cloud database for
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Fig. 2. System Architecture for SSE.

storage or further analysis, such as in surveillance systems.

As shown in “Fig. 3”, the application includes both the

authentication activity and the image-upload activity, which

enables users to retrieve digital images from the device’s

internal memory or gallery. The application begins with an

authentication request managed through Firebase Authentica-

tion. The initial screen, illustrated in “Fig. 3”, presents the

standard email and password login option, while the two icons

located beneath the “Log In” button provide alternatives for

authentication via Microsoft or Google accounts.

(a) Authentication
Section

(b) Upload Image
Section

(c) Allow SSEforIoT to
access Gallery

Fig. 3. SSEforIoT Authentication and picture upload activities.

2) Creation of the back-end cloud storage database: M-IoT

applications typically generate and transmit large volumes of

data to remote cloud providers. To replicate this behavior, the

test application SSEforIoT stores digital images along with

their metadata and annotations in Firebase Realtime Database

and Firebase Storage. The back-end database supports image

retrieval by maintaining structured records that include annota-

tions and relevant metadata for each image. Without the direct

link to the storage location, the image cannot be retrieved by

the front-end application.

3) Creation of the image gallery with search function: To

enable image retrieval from the cloud storage back end, the

(a) Image search view (b) Image detail view

Fig. 4. Visual results of image search and image detail view.

SSEforIoT application includes an activity designed to display

images along with their annotations and associated metadata.

As shown in “Fig. 4”, this information is presented in a user-

friendly list or gallery view. To ensure optimal responsiveness,

the gallery is implemented using a RecyclerView rather than a

traditional ListView or GridView. Users type a keyword in the

app’s search bar positioned at the top of the gallery; the list

(RecyclerView) is then filtered case-insensitively by entering

those plaintext metadata fields. If no matches are found, the

list remains empty. Else, selecting the found match opens a

detailed view that displays the image, its name, annotations,

upload date and time, user ID, and the unencrypted image

location.

At this stage of development, client-side AES encryption

has not yet been applied, meaning that images, annotations,

and metadata remain fully visible within the gallery. The

next section discusses the gallery implementation with secured

images.

D. Implementation of the SSE Scheme

This stage aims to implement the proposed SSE scheme to

ensure secure storage and retrieval of digital images in the

cloud. As noted earlier, third-party cloud providers typically

apply server-side encryption by encrypting data before writing

it to disk and decrypting it upon access by authenticated

or authorised users. In this work, server-side encryption is

complemented with client-side encryption, whereby SSEforIoT
applies encryption prior to transmitting data to the cloud,

thereby securing it during transit.

The SSE scheme is realised in the SSEforIoT application

through client-side AES-GCM encryption of the image URL

during the image upload activity. AES-GCM employs counter

(CTR) mode encryption while generating a Message Authen-

tication Code (MAC) using 128-bit binary multiplication [24].

This approach ensures both confidentiality and integrity.

The encrypted element is the image URL only, which allows

the system to maintain a searchable database while restricting



direct access to the images themselves. The SSE framework

thus enables specific operations—most notably the search

function—to be executed directly on encrypted data without

requiring decryption, thereby preserving privacy. The app

searches with plaintext metadata (image name, annotations,

and other metadata). There is no encrypted keyword matching

over ciphertext fields.

Furthermore, SSEforIoT securely stores the private encryp-

tion keys on the client device, with key management handled

through the Android KeyStore. The algorithm for the SE

scheme is illustrated in “Algorithms 1 and 2”.

Algorithm 1: Performing SSE Scheme

Data: Load SSEforIoT on the mobile
while SSEforIoT == True do

image select ⇐ select image from gallery
image annotate ⇐ Annotate(image select)
image urlEncrypt ⇐ AES(selected image url)
image encrypt ⇐ AES(image select)
image cloudStore ⇐ Cloud(image encrypt)

Algorithm 2: Retrieve image without encryption alter-

ation
Data: From Cloud
search image ⇐ imageSearch (using Name
Annotation or Metadata)

if SSEforIoT == True then
image display ⇐ imageDisplay(search results)
image select ⇐ imageClick(choose
image display)

secureImage retrieved ⇐
imageRetrieved from cloud(image select)

image decrypt ⇐
AES decrypt(secureImage retrieved)

image Urldecrypt ⇐
AES decrypt(secureImage retrieved url)

Original image ⇐ image decrypted
andimage Urldecrypted

else
Empty list ⇐ search image

IV. RESULTS AND DISCUSSION

The SSEforIoT app was developed in Android Studio 4.2

using Java, targeting devices with a minimum SDK of API

28 (Android 9.0 Pie). CPU Profiler measured memory, CPU,

and network usage for key functions. The app uses Firebase

Storage and Realtime Database to simulate cloud-based IoMT

data storage.

This section evaluates the proposed SSE scheme for secur-

ing digital images in the cloud. Both server-side and client-

side encryption are tested to assess resource requirements and

feasibility in resource-constrained IoT environments.

1) Server-side security: The SSEforIoT application inte-

grates multiple layers of server-side security features, includ-

ing access control and encryption of data at rest, in transit,

and in use. User authentication is managed through Firebase

Authentication, supporting login via email/password, Google,

or Microsoft accounts—all of which are based on OAuth 2.0

and OpenID Connect. These authentication providers enhance

security by protecting users’ long-term credentials and identity,

eliminating the need for the mobile application itself to store

sensitive credentials. Instead, the client is issued an access

token, which is used to obtain authorisation, thereby separating

the role of the client from that of the resource owner.

In addition to authentication, SSEforIoT enforces se-

cure access control for stored data through Firebase Re-

altime Database and Cloud Storage Security Rules. When

a user successfully authenticates via Firebase Authentica-

tion, the request.auth variable in Cloud Storage Security

Rules becomes an object containing the user’s unique ID

(request.auth.uid) and all relevant user information included

in the authentication token (request.auth.token). This mech-

anism enables fine-grained, per-user access control, ensuring

that only authorised users can access their data. If a user is

not authenticated, request.auth defaults to null, and access is

denied [25].

Firebase stores records like name, annotations, times-

tamp, userId, encryptedUrl. The app first queries or

fetches records by user scope (for example, orderBy-

Child(”userId”).equalTo(currentUid) or a simple collec-

tion read), then filters on-device by keyword across

name/annotations. The encryptedUrl is not queryable; it is

decrypted locally only after a user selects a result.

“Table I” gives an overview of the main similarities

and differences between authentication through Firebase

Email/Password, Google and Microsoft.

In addition, all cloud providers implement 256-bit AES

to protect the data at REST and Transport Layer Security

(TLS) for data in TRANSIT. SSEforIoT on the other hand

implements client-side encryption which secures the data in

transit by applying encryption before it is transferred into

storage. Firebase, AWS and Azure also offer similar cen-

tralised key management services to facilitate the creation and

management of cryptographic keys. Google Transpiler and Mi-

crosoft SEAL both offer symmetric encryption libraries which

incorporate the BFV and the CKKS encryption algorithms.

2) Client-Side Encryption: The efficiency of client-side

encryption in SSEforIoT was evaluated by applying AES-

GCM encryption with locally stored keys to the image URL

during the image upload process. The image URL, stored as

part of the database record, serves as the critical link between

the image file in cloud storage and the corresponding metadata

in the cloud database.

As illustrated in “Fig. 5 (a)”, once the URL is encrypted,

images are no longer directly populated in the gallery view.

Nevertheless, users can still execute search queries and select

items to open the detailed view. In this view, the image

initially remains hidden, and the image location is shown in

its encrypted form. When the user clicks the “Decrypt Image

Location” button, decryption is performed—provided the user

possesses the appropriate encryption keys. At that point, the

image is rendered in the view, and the plaintext URL is



TABLE I
OVERVIEW OF AUTHENTICATION THROUGH FIREBASE EMAIL/PASSWORD, GOOGLE AND MICROSOFT.

Authentication Credentials stored OAuth 2.0 & OpenID Two-step Email Verif Rules for Password Implementation
Provider Verification ication Creation

Firebase Email/Password Yes No No No No Easy

Google No Yes No Yes Yes Moderate

Microsoft No Yes Yes Yes Yes Difficult

displayed as shown in “Fig. 5 (b)”. Importantly, throughout

this entire process, the URL stored in the database record

remains encrypted, thereby preserving data confidentiality.

V. PERFORMANCE EVALUATION

This section evaluates the performance and robustness of

the proposed SSE scheme, focusing on efficiency (time and

resource use), accuracy, and reliability of retrieving secured

cloud images, and security against potential threats.

A. Efficiency Analysis

Several tests have been undertaken to ensure the efficiency

of the scheme in terms of time, as well as the resources,

such as CPU, memory and network requirements for the client

device.

1) Test Case 1: In test case 1, the efficiency of the scheme

is tested by measuring the time required to complete the

process of sending data to Cloud storage with and without

client-side encryption. The calculation of the time needed

to complete an upload to the Cloud database is coded into

the activity. Initially, a sample of 200 images was uploaded

through the SSEforIoT app. To increase the reliability of the

results, pictures of different sized were selected. The smallest

image had a size of 14.86KB and had a timeToStore of 1810
milliseconds, while the largest picture was 5.70MB in size

and required 6596 milliseconds timeToStore. The average size

of the images used in the test sample was 899.67kB, while

the average timeToStore was 3248.2 milliseconds. This seems

(a) Encrypted Image detail view (b) Plaintext Image detail view

Fig. 5. Visual Results of Proposed SSE on Stored Images.

Fig. 6. Comparison of timeToStore with and without client-side encryption.

to suggest that the estimated timeToStore is roughly 3.61
milliseconds per kilobyte.

In order to compare different cloud storage solutions, a sim-

ilar exercise was executed on Microsoft Azure Blob storage.

The results of this test also validate that larger pictures take a

longer time to upload. “Table II” compares TimeToStore for

Firebase uploads without client-side encryption, and for MS

Azure using 10 images from the 200 uploaded images. Up-

loads to MS Azure were faster, averaging 940.5 ms, compared

to 3272.2 ms for Firebase.

TABLE II
COMPARATIVE UPLOAD TIME OF IMAGE DATASETS WITHOUT CLIENT-SIDE

ENCRYPTION FOR FIREBASE AND AZURE.

S/N Image Name Picture Firebase MS Azure
Size Upload Time Upload Time

(Kilobytes) (Milliseconds) (Milliseconds)

1 Stamen Botany 16.53 2418 995.00

2 Fly Insect Animal 27.27 2007 509.00

3 Meerkat Animal 28.47 2149 547.00

4 Belguim Tourism 121.42 1880 531.00

5 Iceland Arctic 143.01 2017 321.00

6 Lions Couple 301.84 2548 653.00

7 Boy Teddybear 736.12 2956 916.00

8 Gum Water Bird 2170 5493 1334.00

9 Turtles Animal 2790 4658 1202.00

10 Lavenda Flower 5700 6596 2397.00

Total 12034.66 32722 9405
Averages 1203.466 3272.2 940.5

To assess the impact of client-side AES encryption, the

test was repeated with sample images. “Fig. 6” shows that

encryption increases upload time by less than 500 ms, indi-

cating minimal effect on Firebase TimeToStore. Despite the

small sample size, this provides insight into cloud upload

performance dynamics.



(a) Without encryption (b) With encryption

Fig. 7. Comparison of resource utilisation without and with encryption.

(a) Plaintext url (b) Encrypted url

Fig. 8. Peak in memory utilisation comparison without and with encryption.

2) Test Case 2: To compare efficiency with and without

local encryption, the Android CPU profiler measured resource

use from gallery access to Firebase upload. “Fig. 7(a) & (b)”

shows minimal overhead from encryption: with client-side

encryption, CPU peaked at 26%, memory at 204.3MB, and

network at 5.1KB/s received and 1.5KB/s sent; without en-

cryption, CPU was 21%, memory 200.3MB, 5.2KB/s received

and 1.4KB/s sent.

“Fig. 8(a) & (b)” compares memory during image display.

For unencrypted data, memory averaged 133.4MB (16.8MB

Java, 49.5MB Native, 10.4MB Graphics, 47.8MB Code). For

encrypted data, the peak occurred at decryption with 169.9MB

(25.9MB Java, 78.9MB Native, 9.9MB Graphics, 49.8MB

Code). Overall, results show negligible memory differences,

confirming resource use is acceptable even for constrained

IoMT devices.

B. Security Analysis

The robustness of the proposed SSE scheme was evaluated

against common attacks:

1) Authentication Attack: Strong authentication is vital, as

compromised credentials can expose all data. Appthority re-

ported thousands of apps leaking data due to insecure Firebase

use [26]. In this work, authentication is central: when users

log in to SSEforIoT with Google credentials, OpenID verifies

them in the background and issues a JSON Web Token (JWT)

for access, as shown in ‘Fig. 3 (a)”. Microsoft login uses

the MSAL library, which supports Azure AD and Microsoft

Accounts, adding an extra verification step. In Android Studio,

MSAL and Microsoft Graph are configured separately.

2) Man-in-the-Middle Attack (MITM): Here an adver-

sary intercepts data in transit. SSEforIoT prevents this by

encrypting data client-side before cloud upload and keeping

it encrypted throughout storage. Only users with AES keys

can decrypt image URLs, protecting against MITM.

3) Replay Attack: In replay attacks, intercepted data is

resent. Countermeasures include tagging encrypted images

with timestamps or nonces. Our design records annotations,

upload time, and user UID, enabling detection and rejection

of replayed submissions.

4) Encryption Strength Analysis: The implemented

scheme in SSEforIoT employs AES-256 in GCM mode for

client-side encryption, which offers a 256-bit key size, pro-

viding an estimated 2256 possible key combinations, making

brute-force attacks computationally infeasible under current

technology. Each encryption operation generates a 128-bit

authentication tag to verify data integrity and authenticity.

The ciphertext expansion in AES-GCM is limited to the

size of the authentication tag (16 bytes), keeping ciphertexts

compact, which is well suited for IoT devices with storage

and bandwidth constraints. Formally, the scheme provides:

1) Confidentiality: 256-bit symmetric security level (AES-

256).

2) Integrity and Authenticity: 128-bit GCM tag ensuring

protection against tampering and replay.

3) Ciphertext Length: |C| = |P | + 16 bytes (for authen-

tication tag).

The security analysis demonstrates that the proposed SSE

using AES-GCM is secured against brute-force, replay, and

MITM attacks.

C. Comparative Analysis

The security and encryption methods of well-known cloud

providers, such as Google Firebase, Amazon Web Services,

and Microsoft Azure, are evaluated here. The SSEforIoT appli-

cation uses Firebase for file storage and database management.

Cloud security generally follows a shared responsibility model:

providers secure infrastructure and configurations, while cus-

tomers manage their own OS, databases, and applications,

especially in PaaS or IaaS models. “Table III” compares

security features of these providers and SSEforIoT regarding

access control and encryption during storage, transit, and use,

including symmetric encryption capabilities.

VI. CONCLUSIONS

As IoT systems expand globally, the massive amount of

data from resource-limited devices must be transferred to cloud

servers for processing and storage. With the rise of compact

imaging and video devices, there is a shift from traditional

IoT to multimedia-focused IoMT networks, which increases

complexity due to the heterogeneous nature of data and the

diversity of devices. This research work aimed to design,

implement, and evaluate an SSE scheme. An assessment



TABLE III
OVERVIEW OF AUTHENTICATION THROUGH FIREBASE EMAIL/PASSWORD, GOOGLE, AND MICROSOFT.

Access Data Encryption Data Encryption Centralised Key Symmetric
Control at REST in Transit Management Encryption

Google Firebase Firebase AIM & Security Rules 256-bit AES TLS – HTTPS Android Keystore Google Transpiler

Amazon Web AWS IAM, ACLs & Bucket 256-bit AES TLS – HTTPS, CloudFront AWS KMS N/A
Services (AWS) Policies

Microsoft Azure Azure AIM & RBAC 256-bit AES TLS – HTTPS, SMB 3.0 Azure Key Vault Microsoft SEAL

SSEforIoT Firebase AIM & Security 256-bit AES TLS – HTTPS, Client- Android Keystore AES Client-side
Security Rules side Encryption encryption

revealed that the protections offered by Google Firebase,

Amazon Web Services, and Microsoft Azure are similar. To

boost privacy, client-side encryption using AES-GCM was

added in the SSEforIoT environment to encrypt image URLs.

Its feasibility was tested in terms of storage time and resource

use. Results showed minimal additional time for uploading

encrypted images to Firebase storage. Memory, CPU, network,

and power consumption grew slightly but remained man-

ageable for resource-constrained IoMT devices. The scheme

allows search operations directly on encrypted data without

decryption, maintaining privacy. The homomorphic search can

be repeated on ciphertexts without exposing data. Using AES

in GCM mode avoids the large ciphertexts and noise issues

typically associated with SE, which provides an efficient and

practical solution for secure image storage and retrieval in IoT

environments.
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