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Abstract—With the expansion of IoT technologies and their
dependence on cloud providers for storage and computation,
the security and privacy of data stored by IoMT users remain
a major concern. Even simple operations, such as the search
function, often require data owners to entrust the security of their
sensitive data to third-party cloud providers. Similarly, there are
concerns about the efficiency of classic encryption schemes in
protecting users’ sensitive data, as traditional encryption modes
are seen as a tacit trade-off between security and utility. To
address these challenges, this research investigates the feasibility
and efficiency of applying a Symmetric Encryption (SE) scheme
on digital images stored on a remote cloud platform within an IoT
environment and proposes a searchable SE scheme that integrates
a lightweight Advanced Encryption Standard in Galois Counter
Mode to secure the image data. This scheme enables search-
function operations to be performed directly on encrypted data
without requiring decryption, thereby preserving data privacy.
The proposed solution is evaluated through an in-house mobile
application for data stored by a remote cloud database containing
digital images, which can be retrieved through an annotations-
based search function.

Index Terms—Advanced Encryption Standard, Cloud storage,
Homomorphic Encryption, loMT, Image Annotation, Image Col-
lection

I. INTRODUCTION

Driven by rapid growth, multimedia has become central to
many IoT applications, leading to the Internet of Multimedia
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Things (IoMT) [1]. In areas such as surveillance and security,
massive image data is generated on devices with limited
resources, making them dependent on cloud providers for stor-
age and computation [2], [3]. IoMT faces unique challenges,
including heterogeneous data, high throughput, QoS demands,
and the CIA triad of security.

Effective IoMT security requires robust and sustainable
encryption algorithms [4], [5]. Traditional schemes secure
communication and storage but block computation on en-
crypted data. Since distributed and third-party cloud services
are central to IoT, risks arise when secret keys must be shared
with untrusted providers to enable processing [6].

Recent advancements in homomorphic encryption offer
promising solutions to the challenges outlined above. Since
the late 1970s, researchers have pursued the development of
cryptosystems capable of performing accurate computations
directly on encrypted data without requiring decryption. Mod-
ern schemes such as Brakerski/Fan-Vercauteren (BFV) and
Cheon-Kim-Kim-Song (CKKS) enable privacy preservation
and strengthen security when engaging with third-party cloud
providers in the context of Big Data [7]. Despite their poten-
tial, these schemes face significant efficiency challenges due to
their reliance on bootstrapping and modulus switching opera-
tions, which result in large ciphertext sizes. Furthermore, their
applicability remains limited, as operations such as encrypted
comparison, sorting, or evaluating regular expressions are not
yet feasible within Symmetric Encryption (SE) frameworks
[7].

The complexity and resource constraints in IoT and
IoMT environments hinder the adoption of intensive, privacy-
preserving security solutions. This paper introduces an SE
scheme using client-side AES to secure cloud data, evaluat-
ing SE’s feasibility and efficiency in IoT through simulated



scenarios. The key contributions of this research are:

1) A practical and efficient Searchable SE (SSE) scheme
integrating lightweight AES-GCM (Advanced Encryp-
tion Standard — Galois/Counter Mode) for client-side
encryption.

2) A custom mobile application to evaluate the feasibility
and resource requirements of the proposed scheme.

3) Demonstration of secure cloud-based image retrieval
without requiring decryption, simulating real-world sce-
narios.

4) Comprehensive assessment of computational efficiency,
resource utilisation, and retrieval accuracy for encrypted
images.

The remainder of this paper is organised as follows: Section

II describes a comprehensive recent research contribution
to this subject. In Section III a detailed description of the
proposed scheme is presented, which includes the creation of
an Android test environment to emulate an IoMT application
to store digital images with annotations and metadata in a
remote cloud solution and the retrieval of the images through
an annotation-based search function. Section IV presents the
results on mobile app design and implementation of the
searchable symmetric encryption scheme. The performance
analysis and limitations, along with future work extensions,
are also presented in Section V. Finally, Section VI presents
the concluding remarks.

II. BACKGROUND AND RELATED STUDIES

The widespread adoption of handheld devices equipped with
multimedia capabilities has led to an exponential increase
in the creation of digital images. Alongside visual content,
standardised information such as camera settings, licensing
details, geolocation, and time and date stamps is typically
embedded within images [8]. However, this metadata is often
lost when images are accessed, transferred, or stored outside
their original source. To address this challenge, [9] proposed
storing metadata in the Exif segment of the JPEG header
to ensure its persistence within digital images. Building on
this, recent research has explored the automatic embedding
of metadata using machine learning (ML) and artificial in-
telligence (AI) techniques for image recognition [3]. Other
approaches seek to integrate contextual data from nearby IoT
devices to enable advanced search, query, and organisation
functionalities. For example, [10] utilises embedded ubiquitous
sensing technologies to generate context-rich, time-sequenced
metadata. Similarly, [8] proposed a model that captures IoT
data from Bluetooth Low Energy devices—including wear-
ables, smartphones, and home-automation systems—to embed
metadata directly into digital snapshots.

Given the portable and compact nature of IoMT devices,
their memory and data processing capacities are inherently
limited. As a result, most [oMT clients rely on cloud services
for data storage and analytics to enhance efficiency and extend
device functionality [11]. However, the interconnection of such
devices, which frequently handle highly private and sensitive
information, introduces significant security risks. To address

these concerns, [12] proposed a multi-level encryption-based
security system for surveillance videos to strengthen the
protection of video data. Similarly, [13] introduced a secure
service discovery model leveraging blockchain-enabled fog
computing. In parallel, other studies suggest the use of com-
putationally lightweight encryption ciphers within selective
encryption schemes as a practical means to overcome the
resource constraints inherent in IoT environments [4], [5].

Symmetric Encryption (SE) is a promising solution for
securing cloud systems [14]. Homomorphic Encryption (HE)
was first introduced in 1978 by [15] to enable computations on
encrypted data without prior decryption. Since then, various
schemes have supported modular multiplication, addition, and
limited AND operations over ciphertexts [16]-[18]. Unlike
partial or somewhat homomorphic schemes, SE supports
unlimited operations [19]. A quick and efficient symmetric
encryption method that enables ranked search through the k-
means clustering algorithm, along with an asymmetric scalar-
product-preserving encryption approach for encrypting indexes
and queries, was proposed by [20]. [21] presents a tool for
protecting private data in cloud databases using agents and
APIs as an approach of SSE, preventing data leakage and
privacy breaches while allowing users to store data and search
keywords in their encrypted database.

On the server side, ciphertext batching via the Chinese
remainder theorem has accelerated computations, while com-
pression techniques using polynomial coefficients reduced data
traffic [22]. However, such compression is unsuitable for
client-side optimisation due to the lack of efficient unpacking
methods. However, client-side optimisations primarily focus
on reducing ciphertext size to improve the efficiency and
speed of encryption and decryption processes. [23] proposed
a transciphering approach that leverages an HE algorithm
in conjunction with an SE scheme. SE offers significant
advantages in this context, as the ciphertext size is equal to the
plaintext size, enabling faster encryption and reducing storage
requirements compared to alternative algorithms.

Only a few HE libraries, such as Microsoft SEAL (Mi-
crosoft, 2021), are available for Android, but their CKKS
implementation yields approximate results, making them un-
suitable for precise encrypted searches. To address this and
ensure efficiency in resource-constrained IoT environments,
this research uses client-side AES encryption to secure image
locations and protect the images from unauthorised access.

III. MATERIALS & METHODS

This work builds upon previous advances by incorporating
client-side AES-GCM encryption to create an efficient and
practical framework for SE. Implemented in an Android test
environment simulating an IoT application, it enables secure
cloud storage and retrieval of digital images. The main op-
eration is an unlimited search function performed directly on
the ciphertext without changing the plaintext, fully adhering
to the SE paradigm. The subsequent sections outline the
implementation and assessment of the searchable symmetric
encryption method designed for securing image retrieval.
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Fig. 1. Proposed Searchable Symmetric Encryption (SSE) scheme.

A. Proposed Searchable Symmetric Encryption (SSE) Scheme

At a high level, the proposed SSE scheme involves five main
steps:

1) Select and annotate images, then encrypt the image URL
on the local device.

Upload the encrypted image to cloud storage and store
its metadata in the cloud database.

Display and search plaintext metadata by indexing
(names, annotations, and other metadata) on the local
device.

Show search results in plaintext from the cloud database.
Decrypt the image URL client-side and display the
secured image.

2)

3)

4)
5)

“Fig. 17 illustrates the proposed scheme. The mobile app on
an Android device lets users select images and add metadata
(user ID, timestamp, keywords). The image URL is encrypted
at the client-side before upload. The encrypted image is stored
in cloud storage, while metadata and the encrypted URL are
saved in the cloud database. Searchable plaintext metadata is
listed locally for querying, and search results display relevant
metadata. With proper authorisation and private AES keys,
the image URL is decrypted locally, allowing secure image
display.

The privacy barrier in “Fig. 17 highlights the scheme’s
ability to preserve privacy: unencrypted data is never exposed
to external parties, including cloud providers. Sensitive fields
are selectively encrypted, keeping images searchable while
restricting access to authorised users with private AES keys.
Unlike traditional solutions (e.g., Microsoft Azure), which
require decryption for search and rely solely on provider
access controls, this approach ensures stronger data privacy.

B. System Architecture

As illustrated in “Fig. 27, the system architecture centres
on a smartphone device (client) that enables image capture
and annotation through text fields to aid retrieval. When an
image is selected, the app records the file extension, user ID,
and upload timestamp. The user ID is assigned by the app,
with authentication via email/password or Google/Microsoft
accounts (detailed later).

The application extracts the URL of the selected image,
encrypts it on the client side with a private key, and then
uploads the image file, name, and encrypted URL to the cloud.
The encryption keys are generated by the app and securely
stored on the client device or key store.

On the cloud side, the server hosts the code binary and
public keys, while the database records include the image
name, annotations, timestamp, user ID, and encrypted image
URL. The actual image and its metadata are stored in cloud
storage.

C. Test Environment Set-up and Implementation Process

To address the research challenges of creating the test
environment and implementing the proposed SSE scheme, the
implementation process is divided into four main components.
The first focuses on the development of the front-end Android
mobile application, while the second addresses the design of
the back-end cloud storage database. The third component
involves building the front-end image gallery with an inte-
grated search function for image retrieval. Finally, the fourth
component implements and evaluates the SSE scheme.

1) Creation of the front-end android mobile application:
The front-end application, SSEforloT, is designed to emulate
an IoT environment that requires image annotation and the
uploading of digital images to a remote cloud database for
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storage or further analysis, such as in surveillance systems.
As shown in “Fig. 37, the application includes both the
authentication activity and the image-upload activity, which
enables users to retrieve digital images from the device’s
internal memory or gallery. The application begins with an
authentication request managed through Firebase Authentica-
tion. The initial screen, illustrated in “Fig. 3", presents the
standard email and password login option, while the two icons
located beneath the “Log In” button provide alternatives for
authentication via Microsoft or Google accounts.

: ; SSEforloT
SSEforloT

SSEforloT

Click to upload a picture Clckopiced s plctvy

Allow SSEforloT to access
photos and media on your device

ALLOW

DENY

Write annotation
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(a) Authentication
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(c) Allow SSEforloT to
access Gallery

Fig. 3. SSEforloT Authentication and picture upload activities.

2) Creation of the back-end cloud storage database: M-10T
applications typically generate and transmit large volumes of
data to remote cloud providers. To replicate this behavior, the
test application SSEforloT stores digital images along with
their metadata and annotations in Firebase Realtime Database
and Firebase Storage. The back-end database supports image
retrieval by maintaining structured records that include annota-
tions and relevant metadata for each image. Without the direct
link to the storage location, the image cannot be retrieved by
the front-end application.

3) Creation of the image gallery with search function: To
enable image retrieval from the cloud storage back end, the
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Fig. 4. Visual results of image search and image detail view.

SSEforloT application includes an activity designed to display
images along with their annotations and associated metadata.
As shown in “Fig. 47, this information is presented in a user-
friendly list or gallery view. To ensure optimal responsiveness,
the gallery is implemented using a RecyclerView rather than a
traditional ListView or GridView. Users type a keyword in the
app’s search bar positioned at the top of the gallery; the list
(RecyclerView) is then filtered case-insensitively by entering
those plaintext metadata fields. If no matches are found, the
list remains empty. Else, selecting the found match opens a
detailed view that displays the image, its name, annotations,
upload date and time, user ID, and the unencrypted image
location.

At this stage of development, client-side AES encryption
has not yet been applied, meaning that images, annotations,
and metadata remain fully visible within the gallery. The
next section discusses the gallery implementation with secured
images.

D. Implementation of the SSE Scheme

This stage aims to implement the proposed SSE scheme to
ensure secure storage and retrieval of digital images in the
cloud. As noted earlier, third-party cloud providers typically
apply server-side encryption by encrypting data before writing
it to disk and decrypting it upon access by authenticated
or authorised users. In this work, server-side encryption is
complemented with client-side encryption, whereby SSEforloT
applies encryption prior to transmitting data to the cloud,
thereby securing it during transit.

The SSE scheme is realised in the SSEforloT application
through client-side AES-GCM encryption of the image URL
during the image upload activity. AES-GCM employs counter
(CTR) mode encryption while generating a Message Authen-
tication Code (MAC) using 128-bit binary multiplication [24].
This approach ensures both confidentiality and integrity.

The encrypted element is the image URL only, which allows
the system to maintain a searchable database while restricting



direct access to the images themselves. The SSE framework
thus enables specific operations—most notably the search
function—to be executed directly on encrypted data without
requiring decryption, thereby preserving privacy. The app
searches with plaintext metadata (image name, annotations,
and other metadata). There is no encrypted keyword matching
over ciphertext fields.

Furthermore, SSEforloT securely stores the private encryp-
tion keys on the client device, with key management handled
through the Android KeyStore. The algorithm for the SE
scheme is illustrated in “Algorithms 1 and 2”.

Algorithm 1: Performing SSE Scheme

Data: Load SSEforloT on the mobile

while SSEforloT == True do
image_select <= select image from gallery
image_annotate <= Annotate(image_select)
image_urlEncrypt <= AES(selected_image_url)
image_encrypt < AES(image_select)
image_cloudStore < Cloud(image_encrypt)

Algorithm 2: Retrieve image without encryption alter-
ation
Data: From Cloud
search_image < imageSearch (using Name
Annotation or Metadata)
if SSEforloT == True then
image_display < imageDisplay(search results)
image_select <= imageClick(choose
image_display)
securelmage_retrieved <=
imageRetrieved_from_cloud(image_select)
tmage_decrypt <=
AES_decrypt(secureImage_retrieved)
tmage_Urldecrypt <
AES_decrypt(secureImage_retrieved_url)
Original_image <= image_decrypted
andimage_Urldecrypted

else
L Empty_list <= search_image

IV. RESULTS AND DISCUSSION

The SSEforloT app was developed in Android Studio 4.2
using Java, targeting devices with a minimum SDK of API
28 (Android 9.0 Pie). CPU Profiler measured memory, CPU,
and network usage for key functions. The app uses Firebase
Storage and Realtime Database to simulate cloud-based IToMT
data storage.

This section evaluates the proposed SSE scheme for secur-
ing digital images in the cloud. Both server-side and client-
side encryption are tested to assess resource requirements and
feasibility in resource-constrained IoT environments.

1) Server-side security: The SSEforloT application inte-
grates multiple layers of server-side security features, includ-
ing access control and encryption of data at rest, in transit,
and in use. User authentication is managed through Firebase

Authentication, supporting login via email/password, Google,
or Microsoft accounts—all of which are based on OAuth 2.0
and OpenlID Connect. These authentication providers enhance
security by protecting users’ long-term credentials and identity,
eliminating the need for the mobile application itself to store
sensitive credentials. Instead, the client is issued an access
token, which is used to obtain authorisation, thereby separating
the role of the client from that of the resource owner.

In addition to authentication, SSEforloT enforces se-
cure access control for stored data through Firebase Re-
altime Database and Cloud Storage Security Rules. When
a user successfully authenticates via Firebase Authentica-
tion, the request.auth variable in Cloud Storage Security
Rules becomes an object containing the user’s unique ID
(request.auth.uid) and all relevant user information included
in the authentication token (request.auth.token). This mech-
anism enables fine-grained, per-user access control, ensuring
that only authorised users can access their data. If a user is
not authenticated, request.auth defaults to null, and access is
denied [25].

Firebase stores records like name, annotations, times-
tamp, userld, encryptedUrl. The app first queries or
fetches records by user scope (for example, orderBy-
Child(’userld”).equalTo(currentUid) or a simple collec-
tion read), then filters on-device by keyword across
name/annotations. The encryptedUrl is not queryable; it is
decrypted locally only after a user selects a result.

“Table I” gives an overview of the main similarities
and differences between authentication through Firebase
Email/Password, Google and Microsoft.

In addition, all cloud providers implement 256-bit AES
to protect the data at REST and Transport Layer Security
(TLS) for data in TRANSIT. SSEforloT on the other hand
implements client-side encryption which secures the data in
transit by applying encryption before it is transferred into
storage. Firebase, AWS and Azure also offer similar cen-
tralised key management services to facilitate the creation and
management of cryptographic keys. Google Transpiler and Mi-
crosoft SEAL both offer symmetric encryption libraries which
incorporate the BFV and the CKKS encryption algorithms.

2) Client-Side Encryption: The efficiency of client-side
encryption in SSEforloT was evaluated by applying AES-
GCM encryption with locally stored keys to the image URL
during the image upload process. The image URL, stored as
part of the database record, serves as the critical link between
the image file in cloud storage and the corresponding metadata
in the cloud database.

As illustrated in “Fig. 5 (a)”, once the URL is encrypted,
images are no longer directly populated in the gallery view.
Nevertheless, users can still execute search queries and select
items to open the detailed view. In this view, the image
initially remains hidden, and the image location is shown in
its encrypted form. When the user clicks the “Decrypt Image
Location” button, decryption is performed—provided the user
possesses the appropriate encryption keys. At that point, the
image is rendered in the view, and the plaintext URL is



TABLE I
OVERVIEW OF AUTHENTICATION THROUGH FIREBASE EMAIL/PASSWORD, GOOGLE AND MICROSOFT.

Authentication Credentials stored ~ OAuth 2.0 & OpenID Two-step Email Verif  Rules for Password  Implementation
Provider Verification ication Creation
Firebase Email/Password Yes No No No No Easy
Google No Yes No Yes Yes Moderate
Microsoft No Yes Yes Yes Yes Difficult
displayed as shown in “Fig' 5 (b)”' Importantly, throughout Image timeToStore with and without client-side encryption
this entire process, the URL stored in the database record wm
remains encrypted, thereby preserving data confidentiality.
&000 e
V. PERFORMANCE EVALUATION = ~

This section evaluates the performance and robustness of
the proposed SSE scheme, focusing on efficiency (time and
resource use), accuracy, and reliability of retrieving secured
cloud images, and security against potential threats.

A. Efficiency Analysis

Several tests have been undertaken to ensure the efficiency
of the scheme in terms of time, as well as the resources,
such as CPU, memory and network requirements for the client
device.

1) Test Case 1: In test case 1, the efficiency of the scheme
is tested by measuring the time required to complete the
process of sending data to Cloud storage with and without
client-side encryption. The calculation of the time needed
to complete an upload to the Cloud database is coded into
the activity. Initially, a sample of 200 images was uploaded
through the SSEforloT app. To increase the reliability of the
results, pictures of different sized were selected. The smallest
image had a size of 14.86KB and had a timeToStore of 1810
milliseconds, while the largest picture was 5.70MB in size
and required 6596 milliseconds timeToStore. The average size
of the images used in the test sample was 899.67kB, while
the average timeToStore was 3248.2 milliseconds. This seems
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Fig. 5. Visual Results of Proposed SSE on Stored Images.
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Fig. 6. Comparison of timeToStore with and without client-side encryption.

to suggest that the estimated timeToStore is roughly 3.61
milliseconds per kilobyte.

In order to compare different cloud storage solutions, a sim-
ilar exercise was executed on Microsoft Azure Blob storage.
The results of this test also validate that larger pictures take a
longer time to upload. “Table II” compares TimeToStore for
Firebase uploads without client-side encryption, and for MS
Azure using 10 images from the 200 uploaded images. Up-
loads to MS Azure were faster, averaging 940.5 ms, compared
to 3272.2 ms for Firebase.

TABLE I
COMPARATIVE UPLOAD TIME OF IMAGE DATASETS WITHOUT CLIENT-SIDE
ENCRYPTION FOR FIREBASE AND AZURE.

S/N Image Name Picture Firebase MS Azure
Size Upload Time Upload Time
(Kilobytes)  (Milliseconds)  (Milliseconds)
1 Stamen_Botany 16.53 2418 995.00
2 Fly_Insect_Animal 27.27 2007 509.00
3 Meerkat_Animal 28.47 2149 547.00
4 Belguim_Tourism 121.42 1880 531.00
5 Iceland_Arctic 143.01 2017 321.00
6 Lions_Couple 301.84 2548 653.00
7 Boy_Teddybear 736.12 2956 916.00
8 Gum_Water_Bird 2170 5493 1334.00
9 Turtles_Animal 2790 4658 1202.00
10 Lavenda_Flower 5700 6596 2397.00
Total 12034.66 32722 9405
Averages 1203.466 3272.2 940.5

To assess the impact of client-side AES encryption, the
test was repeated with sample images. “Fig. 6 shows that
encryption increases upload time by less than 500 ms, indi-
cating minimal effect on Firebase TimeToStore. Despite the
small sample size, this provides insight into cloud upload
performance dynamics.
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Fig. 7. Comparison of resource utilisation without and with encryption.
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Fig. 8. Peak in memory utilisation comparison without and with encryption.

2) Test Case 2: To compare efficiency with and without
local encryption, the Android CPU profiler measured resource
use from gallery access to Firebase upload. “Fig. 7(a) & (b)”
shows minimal overhead from encryption: with client-side
encryption, CPU peaked at 26%, memory at 204.3MB, and
network at 5.1KB/s received and 1.5KB/s sent; without en-
cryption, CPU was 21%, memory 200.3MB, 5.2KB/s received
and 1.4KB/s sent.

“Fig. 8(a) & (b)” compares memory during image display.
For unencrypted data, memory averaged 133.4MB (16.8MB
Java, 49.5MB Native, 10.4MB Graphics, 47.8MB Code). For
encrypted data, the peak occurred at decryption with 169.9MB
(25.9MB Java, 78.9MB Native, 9.9MB Graphics, 49.8MB
Code). Overall, results show negligible memory differences,
confirming resource use is acceptable even for constrained
IoMT devices.

B. Security Analysis

The robustness of the proposed SSE scheme was evaluated
against common attacks:

1) Authentication Attack: Strong authentication is vital, as
compromised credentials can expose all data. Appthority re-
ported thousands of apps leaking data due to insecure Firebase
use [26]. In this work, authentication is central: when users
log in to SSEforloT with Google credentials, OpenID verifies
them in the background and issues a JSON Web Token (JWT)
for access, as shown in ‘Fig. 3 (a)”. Microsoft login uses

the MSAL library, which supports Azure AD and Microsoft
Accounts, adding an extra verification step. In Android Studio,
MSAL and Microsoft Graph are configured separately.

2) Man-in-the-Middle Attack (MITM): Here an adver-
sary intercepts data in transit. SSEforloT prevents this by
encrypting data client-side before cloud upload and keeping
it encrypted throughout storage. Only users with AES keys
can decrypt image URLs, protecting against MITM.

3) Replay Attack: In replay attacks, intercepted data is
resent. Countermeasures include tagging encrypted images
with timestamps or nonces. Our design records annotations,
upload time, and user UID, enabling detection and rejection
of replayed submissions.

4) Encryption Strength Analysis: The implemented
scheme in SSEforloT employs AES-256 in GCM mode for
client-side encryption, which offers a 256-bit key size, pro-
viding an estimated 2256 possible key combinations, making
brute-force attacks computationally infeasible under current
technology. Each encryption operation generates a 128-bit
authentication tag to verify data integrity and authenticity.
The ciphertext expansion in AES-GCM is limited to the
size of the authentication tag (16 bytes), keeping ciphertexts
compact, which is well suited for IoT devices with storage
and bandwidth constraints. Formally, the scheme provides:

1) Confidentiality: 256-bit symmetric security level (AES-

256).

2) Integrity and Authenticity: 128-bit GCM tag ensuring

protection against tampering and replay.

3) Ciphertext Length: |C| = |P| 4 16 bytes (for authen-

tication tag).

The security analysis demonstrates that the proposed SSE
using AES-GCM is secured against brute-force, replay, and
MITM attacks.

C. Comparative Analysis

The security and encryption methods of well-known cloud
providers, such as Google Firebase, Amazon Web Services,
and Microsoft Azure, are evaluated here. The SSEforloT appli-
cation uses Firebase for file storage and database management.
Cloud security generally follows a shared responsibility model:
providers secure infrastructure and configurations, while cus-
tomers manage their own OS, databases, and applications,
especially in PaaS or IaaS models. “Table III” compares
security features of these providers and SSEforloT regarding
access control and encryption during storage, transit, and use,
including symmetric encryption capabilities.

VI. CONCLUSIONS

As ToT systems expand globally, the massive amount of
data from resource-limited devices must be transferred to cloud
servers for processing and storage. With the rise of compact
imaging and video devices, there is a shift from traditional
IoT to multimedia-focused IoMT networks, which increases
complexity due to the heterogeneous nature of data and the
diversity of devices. This research work aimed to design,
implement, and evaluate an SSE scheme. An assessment



TABLE III
OVERVIEW OF AUTHENTICATION THROUGH FIREBASE EMAIL/PASSWORD, GOOGLE, AND MICROSOFT.

Access Data Encryption Data Encryption Centralised Key Symmetric
Control at REST in Transit Management Encryption
Google Firebase  Firebase AIM & Security Rules 256-bit AES TLS — HTTPS Android Keystore ~ Google Transpiler
Amazon Web AWS TAM, ACLs & Bucket 256-bit AES TLS — HTTPS, CloudFront AWS KMS N/A
Services (AWS) Policies
Microsoft Azure Azure AIM & RBAC 256-bit AES TLS — HTTPS, SMB 3.0 Azure Key Vault Microsoft SEAL
SSEforloT Firebase AIM & Security 256-bit AES TLS - HTTPS, Client- Android Keystore = AES Client-side

Security Rules

side Encryption encryption

revealed that the protections offered by Google Firebase,
Amazon Web Services, and Microsoft Azure are similar. To
boost privacy, client-side encryption using AES-GCM was
added in the SSEforloT environment to encrypt image URLs.
Its feasibility was tested in terms of storage time and resource
use. Results showed minimal additional time for uploading
encrypted images to Firebase storage. Memory, CPU, network,
and power consumption grew slightly but remained man-
ageable for resource-constrained IoMT devices. The scheme
allows search operations directly on encrypted data without
decryption, maintaining privacy. The homomorphic search can
be repeated on ciphertexts without exposing data. Using AES
in GCM mode avoids the large ciphertexts and noise issues
typically associated with SE, which provides an efficient and
practical solution for secure image storage and retrieval in IoT
environments.

[1]
[2]

[3]
[4]

[5]

[9]

[10]

REFERENCES

W. Stallings, B. L. Stallings, and Brown, Computer Security: Principles
and Practice, 4th ed. Pearson, 2018.

I. Aribilola, M. N. Asghar, N. Kanwal, M. Fleury, and B. Lee, “Se-
curecam: Selective detection and encryption enabled application for
dynamic camera surveillance videos,” IEEE Transactions on Consumer
Electronics, vol. 69, no. 2, pp. 156-169, May 2023.

M. Milenkovic, Internet of Things: Concepts and System Design.
Springer International Publishing, 2020.

A. Shifa, M. N. Asghar, S. Noor, N. Gohar, and M. Fleury, “Lightweight
cipher for h.264 videos in the internet of multimedia things with
encryption space ratio diagnostics,” Sensors, vol. 19, no. 5, 2019.
[Online]. Available: https://www.mdpi.com/1424-8220/19/5/1228

I. Aribilola, S. H. Alsamhi, J. G. Breslin, and M. N. Asghar,
“Supor: A lightweight stream cipher for confidentiality and attack-
resilient visual data security in iot,” International Journal of Critical
Infrastructure Protection, p. 100786, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1874548225000472
B. Li and D. Micciancio, “On the security of homomorphic encryption
on approximate numbers,” in Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 12696 LNCS:648-677, 2021.

M. Alloghani, M. Alani, A.-J. M, B. D, M. T, H. J, J. A, and A., “A
systematic review on the status and progress of homomorphic encryption
technologies,” Journal of Information Security and Applications, vol. 48,
no. 102362, 2019.

H. Tseng, C. Lee, C. Lin, and P. Chou, “Iot metadata creation system
for mobile images and its applications,” in Proceedings - 11th IEEE In-
ternational Symposium on Service-Oriented System Engineering, SOSE
2017:63-68, 2017.

N. Woods and C. Robert, “Encapsulation of image metadata for ease of
retrieval and mobility,” Applied Computer Science, vol. 15, p. 62-73,
2019.

G. Wilkinson, T. Bartindale, T. Nappey, M. Evans, P. Wright, and
P. Olivier, “Media of things: Supporting the production of metadata rich

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

media through iot sensing,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, 2018.

0. Ali, M. Ishak, and M. Bhatti, “Emerging iot domains, current
standings and open research challenges: a review,” PeerJ Computer
Science, vol. 7, no. 1-49, p. 10 7717 — 659 -8, 2021.

A. Shifa, M. Asghar, M. Fleury, N. Kanwal, M. Ansari, B. Lee,
M. Herbst, and Y. Qiao, “Mulvis: Multi-level encryption based security
system for surveillance videos,” IEEE Access, vol. 8, p. 177131-177155,
2020.

H. Liang, J. Wu, X. Zheng, M. Zhang, J. Li, and A. Jolfaei, “Fog-
based secure service discovery for internet of multimedia things,” in
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 16, 2020.

H. Yousuf, M. Lahzi, S. Salloum, and K. Shaalan, “Systematic review
on fully homomorphic encryption scheme and its application,” Studies
in Systems, Decision and Control, vol. 295, p. 537-551, 2021.

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, p. 120-126, 1978.

F. Armknecht and A. Sadeghi, “A new approach for algebraically
homomorphic encryption,” 2008, iACR Cryptol. ePrint Arch.:422.

A. Acar, H. Aksu, A. Uluagac, and M. Conti, “survey on homomorphic
encryption schemes: Theory and implementation,” ACM Computing
Surveys, vol. 51, 2018.

G. Kalyani and S. Chaudhari, “An efficient approach for enhancing
security in internet of things using the optimum authentication key,” In-
ternational Journal of Computers and Applications, vol. 42, p. 306-314,
2019.

F. Li, J. Ma, Y. Miao, X. Liu, J. Ning, and R. H. Deng, “A survey on
searchable symmetric encryption,” ACM Comput. Surv., vol. 56, no. 5,
Nov. 2023. [Online]. Available: https://doi.org/10.1145/3617991

W. He, Y. Zhang, and Y. Li, “Fast, searchable, symmetric encryption
scheme supporting ranked search,” Symmetry, vol. 14, no. 5, 2022.
[Online]. Available: https://www.mdpi.com/2073-8994/14/5/1029

M. M. Silveira, D. S. Silva, S. J. R. Rodriguez, and R. L. Gomes,
“Searchable symmetric encryption for private data protection in cloud
environments,” in Proceedings of the 11th Latin-American Symposium
on Dependable Computing. New York, NY, USA: Association
for Computing Machinery, 2023, p. 95-98. [Online]. Available:
https://doi.org/10.1145/3569902.3570171

A. El-Yahyaoui and M. El Kettani, “A noise-free homomorphic eval-
uation of the aes circuits to optimize secure big data storage in
cloud computing,” Lecture Notes in Networks and Systems, vol. 37, p.
420-431, 2017.

K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of the 3rd ACM workshop on
Cloud computing security workshop - CCSW 11, 2011.

D. McGrew and J. Viega, “The galois/counter mode of operation (gcm).
undefined,” 2005.

Cobb, “Cobb m.how was google firebase security bypassed?”
2018, available at. [Online]. Available: https://www.techtarget.com/
searchsecurity/answer/How-was-Google-Firebase-security-bypassed

A. Conway, “Millions of wusers’ data leaked through
misconfigured firebase backends,” https://www.xda-developers.com/
user-data-leak-misconfigured-firebase-backends/, Jul. 2018, accessed:
2025-9-22.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


