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Abstract. Milk yield prediction is a cornerstone of smart dairy farm-
ing, yet existing approaches remain limited by the scarcity of annotated
data, environmental variability, and the restricted capacity of traditional
models such as convolutional neural networks (CNNs). Although prior
work has applied CNNs or lightweight image-based approaches, no study
to date has systematically combined pretrained deep models with en-
semble regressors for image-driven yield prediction. To address this gap,
we propose a novel hybrid framework that integrates transfer learning
with tree-based regressors for robust and accurate milk yield estimation.
Pretrained architectures (ResNet50, EfficientNetB0, and MobileNetV2)
were employed as feature extractors for side, rear, and combined cow
images, followed by fine-tuning. To further enhance predictive power,
deep features were coupled with XGBoost and Random Forest regressors,
enabling the capture of complex nonlinear dependencies. Experimental
results demonstrate that transfer learning consistently outperforms base-
line CNNs. At the same time, the hybrid ResNet50–XGBoost achieves
the best overall performance, with an RMSE of 1327.87, 1355.56, and
1287.87 for side, rear, and combined views, respectively, and correspond-
ing R2 values of 0.3648, 0.3146, and 0.3948. Compared with previously
reported benchmarks, our approach reduces RMSE by more than 110
units, establishing new state-of-the-art performance. The contributions
of this study are threefold: (1) a comprehensive evaluation of baseline,
transfer learning, and hybrid strategies for milk yield prediction; (2) a
demonstration of the effectiveness of pretrained CNNs in reducing depen-
dence on large labeled datasets; and (3) the introduction of a hybrid deep
feature–tree regressor framework that consistently enhances prediction
accuracy across multiple datasets. These results confirm the potential
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of the proposed framework as a scalable and reliable tool for precision
livestock farming.

Keywords: Computer vision · milk yield forecasting · Convolutional
neural network · transfer learning in smart farming · hybrid deep learn-
ing.

1 Introduction

In dairy farming, yield is a crucial performance metric that has a direct impact
on profitability as well as productivity [1]. The importance of the dairy sector in
terms of economic output lies mainly in two directions: its contribution to the
job market, and the production of food products and supplies [2]. Forecasting the
milk production of cows, particularly while they are still heifers, has gained the
interest of farmers and agricultural researchers. These forecasts can help farmers
with financial planning, feeding information, mating decisions, cow replacement
and culling, and identifying abnormal production trends that could be signs of
mastitis [2].

Dairy production plays a significant role in the Irish market. Family farming,
spanning multiple generations, forms the foundation of Ireland’s dairy industry,
with an estimated 16,000 family-run dairy farms across the country [3]. Irish ex-
ports of dairy products were estimated at €6.3 billion last year [4], with products
totaling more than 1.6 million tonnes transported to almost 140 markets around
the world [4]. Increased cow numbers, higher milk yields per cow, improved fat
and protein content, higher stocking rates, and more land entering the market
have all contributed to this strong performance. However, farmers must remain
committed to building a robust and successful long-term business, as the milk
industry still has much room to expand and improve its performance.

A well-known data-driven application in the field of farming is the forecasting
of milk yield, a strategically significant area being the primary source of revenue
for the dairy industry [5]. Nonetheless, milk yield prediction is a complicated
task, impacted by a number of diverse variables, such as the health of animals,
environmental circumstances, feeding habits, and genes [6]. Farmers face difficul-
ties in maximising production output while preserving sustainability, calling for
sophisticated prediction tools to improve decision-making processes. This call is
highlighted by the fact that variations in milk yield can lead to greater envi-
ronmental impact, wasteful resource use, and unstable financial situations [7].
Farming has advanced with the incorporation of digital technologies, leading
to the development of more environmentally friendly, information-driven, and
effective systems. Computer vision models based on deep learning techniques,
through the use of CNNs [8], enable the utilisation of visual data for predictions.
Several visual features could be utilised in the prediction of milk yield: udder
traits, rump width, and angularity [2].

Although CNNs have achieved very strong performance in agricultural com-
puter vision tasks, their practical deployment in smart farming remains con-
strained by several key limitations. Conventional CNN architectures typically



1. INTRODUCTION 3

require large, well-annotated datasets to achieve strong generalisation. Yet, such
datasets are often difficult to obtain due to the high cost and the variability of
environmental conditions [9, 10]. CNNs trained from scratch are prone to over-
fitting when data is limited, and may struggle to capture complex hierarchical
patterns without careful architectural optimisation [11, 12]. To mitigate these
challenges, transfer learning has emerged as a powerful paradigm. It enables
models to leverage feature representations learned from large-scale datasets such
as ImageNet and adapt them to domain-specific tasks. Pretrained architectures
such as ResNet50 [11], EfficientNet [12], and MobileNet [13] provide rich, general-
purpose features that can be fine-tuned to agricultural applications, significantly
reducing the need for extensive labeled data and accelerating convergence. These
pretrained models enhance resilience to environmental noise, image/video light-
ing variability, and heterogeneous data distributions, making transfer learning
a cornerstone technique for advancing deep learning applications in precision
agriculture [9, 10].

Recent research has explored hybrid transfer learning approaches in which the
final layer of a pretrained CNN is replaced by a strong machine learning regressor
to boost predictive accuracy. In this strategy, deep networks such as ResNet50,
EfficientNet, or MobileNet act as feature extractors, while gradient boosting
models like XGBoost or ensemble methods such as Random Forests learn from
the extracted features [14,15]. This combination exploits the rich representations
of deep models and the robustness of tree-based learners, often outperforming
purely deep or traditional methods, especially with limited labeled data [16].
Hybrid deep feature–tree ensemble frameworks have shown gains in tasks such
as crop yield estimation, livestock monitoring, and plant disease detection [16].
However, to the best of our knowledge, no existing work has applied a pretrained
CNN with an XGBoost regressor for milk yield prediction, revealing a clear
research gap that is addressed in this study. Less research has utilised images
with deep learning models for milk yield prediction. Only a modest number of
studies have utilized images with deep learning models for milk yield prediction.
For example, Jembere et al. [2] deployed a dataset that includes 1238 images of
side-view and rear-view images of 743 Holstein cows in their first or second parity,
along with their corresponding first lactation and 305-day milk yield values.
Different augmented methods, such as flipping, stretching, and adding Gaussian
noise were applied to the training set. They applied CNN models to side-view,
rear-view, and combined view images. The results showed that CNN models
recorded the best results with the combined view. Using the same dataset, Allan
et al. [17] applied YOLOv11 models to classify dairy cows into low, medium, and
high based on the milk yield. According to the authors, misclassifications mostly
happen close to class boundaries, building on the results of qualitative analysis,
and indicating the need for reliable picture acquisition settings. These results
show how vision-based models can be used to assist in decision-making in such
systems, especially in situations where conventional data collection techniques
are impractical or unavailable. These two studies did not use hybrid models
that combined transfer learning with machine learning to enhance the results
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of milk yield prediction. In our research, the contributions of the paper can be
summarised as follows:

– We propose a novel deep learning framework that integrates pretrained
CNN feature extractors (ResNet50, EfficientNetB0, and MobileNetV2) with
a powerful XGBoost regressor to predict milk yield from cow images.

– The study leverages transfer learning to minimise the need for large labeled
datasets while maintaining high predictive accuracy and robustness.

– We conduct extensive experiments, comparing multiple pretrained CNN
backbones and machine learning regressors, to identify the most effective
architecture for milk yield prediction.

The remainder of this paper is arranged as follows: the proposed framework
is introduced in Section 2. The experimental results are discussed in Section ??.
Finally, conclusions are given in Section 4.

2 Methodology

This section describes the proposed image-based milk-yield prediction framework
following the processing flow shown in Fig. 1. The pipeline is organised into six
phases: (1) data acquisition; (2) image pre-processing and augmentation; (3)
dataset splitting; (4) baseline deep learning models; (5) model optimisation; and
(6) model evaluation.

2.1 Phase 1: Data acquisition

The dataset [2] comprises images from four farms containing 228, 151, 241, and
123 cows, with 360, 260, 394, and 224 images, respectively. The dataset includes
two CSV files: training and testing. Each file contains milk yield values and
the path of images (side-view and rear-view) for the caw in either their first or
second lactation. It also includes a CSV file that contains milk yield values with
the corresponding 305-day milk yield. Images include both side and rear views
and depict cows in either their first or second lactation; milk-yield records are
prospective for first-lactation cows and retrospective for second-lactation cows.

2.2 Phase 2: Image pre-processing and augmentation

Pre-processing is the deterministic mapping P : X → X̃ that standardises raw
images prior to feeding them to a backbone network. Components of P include:

– Resizing: rescale input images to a fixed resolution (H0,W0) appropriate
for the chosen backbone (e.g., 224× 224);

– Cropping: center or content-aware cropping to emphasise anatomically rel-
evant regions (e.g. udder, rump);
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Fig. 1. The proposed image-based milk-yield prediction framework
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– Channel normalisation: for each color channel c normalise by per-channel
mean and standard deviation,

x̃(c) =
x(c) − µc

σc
,

where (µc, σc) are precomputed (e.g., ImageNet statistics or dataset-specific
values).

2.3 Phase 3: Dataset splitting

The dataset includes two CSV files: training (1000 rows) and testing (237 rows).
Each file includes milk yield values, path of images for side view and path of
image for side-view and rear-view.

2.4 Phase 4: Baseline deep learning models

We applied ResNet50, EfficientNetB0, and MobileNetV2 as pre-trained CNNs
to compare with hybrid models.

2.5 Phase 5: Models optimization

Phase 5 covers parameter estimation, transfer-learning regimes, hybridization
with tree-based regressors, and hyperparameter search.

Transfer learning: feature extraction vs. fine-tuning. Two transfer regimes are
used: (1) Feature extraction (frozen backbone): initialise backbone parameters
θ = θ0 from ImageNet pretraining and keep them fixed. Optimise only the
regression head:

ϕ⋆ = argmin
ϕ

1

|Dtr|
∑

(x,y)∈Dtr

ℓ
(
y, gϕ(fθ0(x))

)
+R(ϕ),

where R(ϕ) is a regulariser (e.g., ℓ2). (2) Fine-tuning: update a subset (or all)
of backbone parameters θt together with head parameters ϕ:

(θ⋆t , ϕ
⋆) = argmin

θt,ϕ

1

|Dtr|
∑

(x,y)∈Dtr

ℓ
(
y, gϕ(f[θ0\θt;θt](x))

)
+ λ

(
∥θt∥22 + ∥ϕ∥22

)
,

where f[θ0\θt;θt] denotes that parameters outside θt are fixed to their pretrained
values.

Fine-tuning is typically performed with a lower learning rate for θt relative
to the head to mitigate catastrophic forgetting.
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Hybrid models: pretrained deep features + tree regressor. The central method-
ological novelty in this work is the systematic evaluation of hybrid predictors
in which the network backbone yields deep features and the final prediction is
produced by a tree-based regressor (XGBoost or Random Forest). The pipeline
is:(1) feature extraction: zi = ψ(fθ(xi)) ∈ Rd, where ψ(·) denotes pooling and
optional dimensionality reduction (e.g., principal components or selected inter-
mediate activations); (2) tree-based regression: fit an ensemble to (zi, yi). For
XGBoost the model is an additive ensemble ŷi =

∑K
k=1 fk(zi) learned by min-

imising

J ({fk}) =
|Dtr|∑
i=1

ℓ
(
yi,

K∑
k=1

fk(zi)
)
+

K∑
k=1

Ω(fk),

with regulariser
Ω(f) = γT + 1

2λ∥w∥22,

where T is the number of leaves in tree f and w are leaf weights. We evaluate
both: (1) frozen-features hybrid by extract zi from θ0 and train the tree ensem-
ble; (2) fine-tuned-features hybrid by first fine-tune the backbone (as described
above), then extract improved features zi and train the tree ensemble. The latter
often produces features more adapted to the downstream regressor.

2.6 Phase 6: Models evaluation

Evaluation is performed on the held-out test set Dte = {(xj , yj)}Mj=1 using
the standard regression evaluation metrics including root mean square error
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
and coefficient of determination (R2).

3 Results

We conducted experiments to predict milk yield values based on side-view, rear-
view, and combined views. In addition, we compare the results of CNN baseline
models: MobileNetV2, ResNet50 and EfficientNetB0 based on default weights,
transfer learning models using a default regressor as a linear layer, and hybrid
models in which we replace the linear layer with strong regression, including
XGBoost and random forest regression.

3.1 Experimental Setup

The experimental platform’s hardware configuration includes an Intel i7-6700
CPU, an RTX 4090 graphics card, 16 GB of memory, a Windows 11 operating
system, and a model implemented using Python and the PyTorch framework.
For setting the model parameters, the optimiser is AdamW, the batch size is 32,
the number of epochs is 50 (with early stopping), the loss function is MSELoss,
and the learning rate (LR) is 1e-3.
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To prepare the target labels, the mean and standard deviation of the label
column are first calculated. Additionally, a denormalisation function is provided
to convert the normalised predictions back to their original scale after inference.

3.2 Results of models

The results based on the three versions of the data are discussed below. Table 1
presents the predictive performance of the proposed framework across the three
datasets (Side view, Rear view, and Combined view) using different learning
strategies. The findings clearly demonstrate that transfer learning consistently
improves model performance over the baseline CNN models, and the hybrid
integration of ResNet50 features with tree-based regressor (XGBoost or RF)
yields further notable gains.

With the Side View Dataset, as shown in Table 1, ResNet50 transfer
learning reduced the RMSE from 1392.80 to 1375.58 and improved R2 from
0.3262 to 0.3489. The hybrid ResNet50–XGBoost achieved the best results with
an RMSE of 1327.87, MAPE of 15.59, and R2 of 0.3648, outperforming both
baseline and transfer-only models. Importantly, while transfer learning slightly
increased MAE (1115.75 to 1187.26), the hybrid reduced it to 1105.45, thus
correcting the inconsistency and delivering the most balanced results across all
metrics.

Figure 2 (a) shows the scatter plot of actual versus predicted milk yield val-
ues using the side-view dataset with the hybrid ResNet50–XGBoost model. The
points are generally well aligned with the regression line, indicating good pre-
dictive accuracy. However, some dispersion remains at the upper yield range,
suggesting that side-view features alone may not fully capture all predictive
cues for high-producing cows. Nevertheless, the model achieves substantial im-
provements compared with baseline and transfer-only models, reducing RMSE
to 1327.87 and increasing R2 to 0.3648, confirming that the hybrid approach
extracts more meaningful side-view features.

With the Rear View Dataset, transfer learning achieved substantial im-
provements, as shown in Table 1. With ResNet50, RMSE decreased from 1533.06
to 1370.42 and R2 rose from 0.2043 to 0.2692. The hybrid ResNet50–XGBoost
further enhanced performance, lowering RMSE to 1355.56, reducing MAE to
1122.91, and increasing R2 to 0.3146. The cumulative baseline-to-hybrid im-
provements are significant: a reduction of 177.49 in RMSE and a gain of +0.1103
in R2. This indicates that hybridisation is particularly effective in handling rear
images, which capture critical predictive features.

Figure 2 (b) illustrates the performance of the hybrid model when trained on
rear-view images. Here, predictions are closely clustered around the regression
line, with less variability compared to the side view. This suggests that rear-
view features, such as udder and hindquarter characteristics, provide stronger
predictive signals for milk yield. The model achieved RMSE of 1355.56 and R2

of 0.3146, improving over both baseline CNNs and transfer learning. Although
performance slightly lags behind the side view in terms of R2, the reduced MAE
of 1122.91 highlights the robustness of rear-view predictions.
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With the Combined View Dataset, transfer learning again provided con-
sistent gains, as shown in Table 1. ResNet50 reduced RMSE from 1325.60 to
1317.44, MAE from 1144.63 to 1076.23, and improved R2 from 0.3329 to 0.3619.
The hybrid ResNet50–XGBoost achieved the best performance overall, with
RMSE of 1287.87, MAE of 1005.45, MAPE of 15.20, and R2 of 0.3948. These
results demonstrate that combining multiple views enriches feature representa-
tion and benefits most from the hybrid strategy. Overall, the results across all
datasets confirm three key contributions: (1) transfer learning consistently en-
hanced prediction accuracy compared with baseline CNN models, (2) ResNet50
provides the strongest backbone among the tested architectures, and (3) hybri-
dising ResNet50 features with XGBoost yields further improvements in RMSE,
MAE, MAPE, and R2, achieving the best balance between accuracy and robust-
ness. The consistency of these improvements highlights the effectiveness of the
proposed framework for smart farming applications.

Figure 2 (c) presents the results for the combined-view dataset, where side
and rear images were integrated. The scatter plot demonstrates the closest align-
ment between predicted and actual values, with minimal dispersion across the
yield range, including high-producing cows. This dataset achieved the best over-
all results, with RMSE reduced to 1287.87, MAE to 1005.45, and R2 reaching
0.3948. The tight clustering of points highlights the complementary nature of
side and rear features, confirming that multimodal visual information enhances
predictive power.

3.3 Comparison with literature study

When compared with previously reported benchmark results [2], our proposed
Hybrid ResNet50–XGBoost framework demonstrates consistent and substantial
improvements across all datasets. On the side view dataset, the hybrid approach
reduced RMSE to 1327.87 (a decrease of 132.8 units, ≈9.1%), lowered MAE to
1105.45 (41 points lower), and improved R2 to 0.3648 (+0.0448). For the Rear
view dataset, RMSE dropped to 1355.56 (124.9 units lower, ≈8.4%), MAE de-
creased to 1122.91 (25.4 points lower), and R2 increased to 0.3146 (+0.0126).
On the Combined view dataset, the hybrid model achieved the strongest perfor-
mance, with RMSE reduced to 1287.87 (113.3 units lower, ≈8.1%), MAE lowered
to 1005.45 (107.5 points lower), and R2 reaching 0.3948 (+0.0198). These con-
sistent gains across all evaluation metrics highlight three key contributions of
our study: (1) systematic reductions in RMSE of more than 110 units for every
dataset, (2) notable decreases in MAE, including an improvement exceeding 100
points on the combined view dataset, and (3) steady enhancements in explana-
tory power, with R2 increases of up to +0.045. Collectively, these results confirm
that integrating transfer learning with tree-based regressor not only strengthens
the predictive capacity of deep models but also surpasses previously published
state-of-the-art results, establishing a more accurate and robust framework for
smart farming applications.
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Table 1. The results of models for side view, rear view and combined view

Side Approaches Models RMSE MAE MAPE R2

Side view

Baseline

Models

ResNet50 1392.7975 1115.750 16.905 0.3262
EfficientNetB0 1544.677 1314.671 18.591 0.1748
MobileNetv2 1453.361 1131.875 17.438 0.3067

Transfer learning
ResNet50 1375.577 1187.262 16.380 0.3489
EfficientNetB0 1524.658 1293.775 18.141 0.2168
MobileNetv2 1423.883 1138.036 16.806 0.3345

Hybrid models ResNet50-XGBoost 1327.870 1105.451 15.586 0.3648
ResNet50-RF 1406.273 1066.502 15.872 0.3509

Rear view

Baseline

Models

ResNet50 1533.0564 1301.6388 18.423 0.2043
EfficientNetB0 1636.702 1497.691 19.319 0.1272
MobileNetv2 1564.6033 1204.4005 18.205 0.2024

Transfer learning
ResNet50 1370.417 1262.937 17.501 0.2692
EfficientNetB0 1545.7710 1322.676 18.653 0.1857
MobileNetv2 1516.244 1217.767 17.900 0.2510

Hybrid models ResNet50-Xgboost 1355.563 1122.913 17.079 0.3146
ResNet50-RF 1477.898 1163.156 17.580 0.2830

Combined

view

Baseline

Models

ResNet50 1325.598 1144.628 16.460 0.3329
EfficientNetB0 1542.399 1216.919 18.379 0.2192
MobileNetv2 1456.246 1137.355 16.906 0.3239

Transfer learning
ResNet50 1317.44 1076.234 15.596 0.3619
EfficientNetB0 1530.297 1205.612 18.244 0.2213
MobileNetv2 1326.283 1041.247 15.838 0.3533

Hybrid models ResNet50-XGBoost 1287.870 1005.451 15.198 0.3948
ResNet50-RF 1291.128 1061.126 15.386 0.3829

4 Conclusion

This study presented a novel image-based framework for milk yield prediction
that integrates transfer learning with hybrid deep learning models. By leveraging
pretrained CNN architectures (ResNet50, EfficientNetB0, and MobileNetV2) as
feature extractors and coupling them with tree-based regressors, we addressed
the challenges of limited annotated datasets, environmental variability, and the
limited generalisation of conventional CNNs. Extensive experiments on side, rear,
and combined image views of cows demonstrated three key findings. Firstly,
transfer learning consistently improved prediction accuracy compared to base-
line CNN models, reducing error magnitudes and enhancing explanatory power
across all datasets. Secondly, ResNet50 emerged as the most effective backbone,
offering superior performance relative to other tested architectures. Thirdly,
the proposed hybrid ResNet50–XGBoost model achieved state-of-the-art results,
with RMSE values of 1327.87, 1355.56, and 1287.87 for side, rear, and combined
views, respectively, and corresponding R2 values of 0.3648, 0.3146, and 0.3948.
Compared with previously reported benchmarks, these results correspond to
RMSE reductions exceeding 110 units and R2 gains of up to +0.045, confirming
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Fig. 2. the scatter plot of actual versus predicted milk yield values using the side-view
dataset with the hybrid ResNet50–XGBoost model

the robustness and practical utility of the proposed framework for smart farming
applications.

Beyond the contributions of this work, several promising directions emerge for
future research. Firstly, explainable artificial intelligence (XAI) methods could
be integrated to provide interpretability of the predictive decisions and highlight
which anatomical features drive yield predictions. Secondly, incorporating uncer-
tainty estimations would increase trustworthiness by quantifying confidence in
model outputs, a crucial factor in decision making carried out under risk condi-
tions. Thirdly, external validation on independent datasets from different herds,
farms, or geographic regions is necessary to confirm the model’s generalisabil-
ity. Fourthly, optimisation strategies such as advanced hyperparameter tuning,
evolutionary algorithms, or neural architecture search (NAS) could be applied
to further improve predictive performance. Finally, extending the framework to
multimodal integration (e.g., combining images with genetic or environmental
data) could provide richer representations and further boost accuracy.



12 H. Saleh et al.

Acknowledgment

This publication has emanated from research supported by grants from Taighde
Éireann - Research Ireland under Grant Numbers 12/RC/2289_P2 (Insight) and
21/RC/10303_P2 (VistaMilk). For the purpose of Open Access, the author has
applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission.

References

1. S. Ruikar, P. Salve et al., “Assessing reproductive performance, milk yield, and
influential factors in dairy cows: A comprehensive investigation into productivity
and efficiency,” Rev. Electrón. Vet., vol. 25, pp. 368–378, 2024.

2. L. Jembere and M. Chimonyo, “Prediction of milk yield using visual images of cows
through deep learning,” South African Journal of Animal Science, vol. 54, no. 1,
pp. 47–58, 2024.

3. European Dairy, “Dairy Farming in Ireland,” https://european-dairy.eu/
dairy-farming-in-ireland/, 2025, accessed: Aug. 15, 2025.

4. Bord Bia, “Vision for the Irish Dairy Sector,” https://www.bordbia.ie/industry/
irish-sector-profiles/dairy-sector-profile/, 2025, accessed: Aug. 15, 2025.

5. P. R. Shorten, “Computer vision and weigh scale-based prediction of milk yield
and udder traits for individual cows,” Computers and Electronics in Agriculture,
vol. 188, p. 106364, 2021.

6. J. Hooker, B. de Medeiros, C. Saha, T. Abdulrahman, and A. Alves, “Evaluating the
contribution of behavioral, milking system, and environmental data to short-term
milk yield prediction in commercial dairy cows using machine learning,” Journal
of Dairy Science, 2025.

7. C. A. Wolf and J. Karszes, “Financial risk and resiliency on us dairy farms: Mea-
sures, thresholds, and management implications,” Journal of Dairy Science, vol.
106, no. 5, pp. 3301–3311, 2023.

8. H. Saleh, S. H. Alsamhi, M. McCann, N. O’Brolchain, and J. G. Breslin, “Ai
meets climate: Advanced transformer multimodal model for early and accurate
plant disease detection,” in 2024 10th International Conference on Computing,
Engineering and Design (ICCED). IEEE, 2024, pp. 1–6.

9. C. Chen, W. Zhu, and T. Norton, “Behaviour recognition of pigs and cattle: Journey
from computer vision to deep learning,” Computers and electronics in agriculture,
vol. 187, p. 106255, 2021.

10. Y. Yuan, “Computer vision and deep learning for precise agriculture: a case study
of lemon leaf image classification,” in Journal of Physics: Conference Series, vol.
2547, no. 1. IOP Publishing, 2023, p. 012024.

11. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

12. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International conference on machine learning. PMLR, 2019, pp.
6105–6114.

13. A. Howard and e. a. Sandler, “Searching for mobilenetv3,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp. 1314–1324.

14. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

https://european-dairy.eu/dairy-farming-in-ireland/
https://european-dairy.eu/dairy-farming-in-ireland/
https://www.bordbia.ie/industry/irish-sector-profiles/dairy-sector-profile/
https://www.bordbia.ie/industry/irish-sector-profiles/dairy-sector-profile/


4. CONCLUSION 13

15. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, 2016, pp. 785–794.

16. S. B. Punuri, S. K. Kuanar, M. Kolhar, T. K. Mishra, A. Alameen, H. Mohapatra,
and S. R. Mishra, “Efficient net-xgboost: an implementation for facial emotion
recognition using transfer learning,” Mathematics, vol. 11, no. 3, p. 776, 2023.

17. A. Hall-Solorio, G. Ramirez-Alonso, A. J. Chay-Canul, H. A. Lee-Rangel,
E. Vargas-Bello-Pérez, and D. R. Lopez-Flores, “Smart dairy farming: A mobile
application for milk yield classification tasks,” Animals, vol. 15, no. 14, p. 2146,
2025.


	From Cattle Images to Yield: Hybrid Transfer Learning Framework for Robust Milk Yield Prediction in Smart Dairy Farming

