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ABSTRACT Semantic segmentation is critical for agricultural applications such as crop-weed classi-
fication and precision farming. However, real-time segmentation in resource-constrained environments
requires lightweight and efficient networks. This paper introduces BiAgriNet, a novel agricultural
segmentation framework that combines full weight-and-activation binarization with a teacher–student
knowledge-distillation paradigm. The proposed student network employs a 1bit ResNet18 encoder and
a grouped dilated Atrous Spatial Pyramid Pooling bottleneck, enabling multiscale context capture while
maintaining a lightweight design. Trained using advanced teacher-student knowledge distillation with
ResNet18+DeepLabV3 as the teacher, BiAgriNet achieves 85.6% mIoU, with a memory footprint of only
0.8MB, which is 27× smaller than DeepLabv3while maintaining competitive accuracy. With an inference
speed of 180 FPS, nearly 5× faster than FCN8s (37 FPS), BiAgriNet demonstrates its practicality for
real-time precision agriculture on embedded systems, offering a compelling balance between efficiency and
performance.

INDEX TERMS Binary neural network (BNN), real-time semantic segmentation, computational efficiency.

I. INTRODUCTION
The growing demands for precision agriculture have empha-
sized the need for efficient and accurate computer vision
models tailored to agricultural applications. While tradi-
tional convolutional networks (CNNs) have demonstrated
exceptional performance in semantic segmentation tasks,
their high computational cost and memory demands limit
their deployment on resource-constrained systems in real-
world agricultural environments.Monitoring crop growth,
weeds, and disease at field scale increasingly relies on
semantic segmentation of high-resolution UAV and proxi-
mal imagery [1]. Networks such as ResLMFFNet already
reach 45 FPS while delineating tree-crowns and rust
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lesions [2], and multi-branch models have pushed real-
time crop/weed discrimination below 20ms per frame on
GPUs [3]. Transformer hybrids like TinySegformer further
demonstrate that lightweight designs can maintain accuracy
in cluttered pest scenes [4]. Field robots and UAVs operate
under strict power budgets; on-board ARM or RISC-V
SoCs rarely sustain 5W. Binary Neural Networks (BNNs)
slash memory and multiply-accumulate counts by two orders
of magnitude [5], enabling FPGA deployments for crop
recognition with 17% of a Zynq-MPSoC’s resources [6].
Dual-attention BNNs have already proven effective for plant-
disease classification, closing much of the accuracy gap
to 32-bit CNNs [7],while recent improvements in BNN
training dynamics e.g. XNOR-Net++ and Riptide stabilise
convergence on large-scale data sets [8], [9]. Parallel to
quantisation, knowledge distillation (KD) transfers structural

192374

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0009-0003-6980-8817
https://orcid.org/0009-0005-9970-7544
https://orcid.org/0000-0002-3300-1152
https://orcid.org/0000-0001-5790-050X
https://orcid.org/0000-0002-2803-8532


H. Khan et al.: BiAgriNet: Binarized Knowledge-Distilled Network

cues from a high-capacity teacher to a compact student.
Label-assisted KD [10], query-level KD for Mask2Former
transformers [11], raw-feature KD [12] and the recent I2CKD
triplet-loss formulation [13] deliver notable mean Intersec-
tion over Union (mIOU) gains on urban and agricultural
benchmarks. However, these methods assume at least 8-bit
activations and are not optimised for 1-bit arithmetic. There
is currently no framework that combines (i) segmentation-
aware distillation, (ii) aggressive 1 bit binarization, and
(iii) agriculture-specific data augmentation under a single
training protocol. Lightweight CNN-Transformer hybrids
continue to depend on INT8/FP16 computations [4], whereas
current BNNs concentrate on classification tasks [5]. This
creates a performance gap when implementing semantic
segmentation on low power device, where memory band-
width and battery longevity are critical. Addressing these
challenges, we propose BiAgriNet, a binarized knowledge-
distilled network designed to deliver real-time seman-
tic segmentation with minimal computational overhead.
We combine full binarization with knowledge distillation.
This preserves segmentation accuracy while cutting memory
and compute, as shown in Fig 1. The proposed framework
suits crop–weed classification, where high precision and
real-time inference are essential. With multi-scale features
and a lightweight design, BiAgriNet provides an efficient,
real-time solution for large-scale agricultural segmentation.
We evaluate the proposed architecture on the PhenoBench
dataset [14] and CWFID dataset [15], demonstrating its abil-
ity to achieve state-of-the-art efficiency while maintaining
competitive accuracy. Themain contributions of this work are
as follows:

• Fully binarised student network: We present a novel
architecture whose encoder, bottleneck, and decoder are
all 1-bit, reducing the model footprint to 0.8 MB and
the computational cost to 0.62G FLOPs per 1024 ×
1024 image, 27× smaller and ∼ 60× lighter than the
teacher.

• Teacher-guided optimization The student is trained
with a combined cross-entropy and Kullback–Leibler
divergence loss, enabling the transfer of fine-grained
logit information from the teacher and thereby recover-
ing much of the accuracy typically forfeited by binarised
neural networks.

• High accuracy and real-time throughput The pro-
posed BiAgriNet attains 85.6% mIoU on PhenoBench
and 86.7% mIoU on CWFID, while maintaining
180 FPS on an NVIDIA Jetson AGX Orin. This
outperformERFNet having 2× less computation and 5×
less parameters on PhenoBench dataset and surpasses
other lightweight models such as BiseNetV2, delivering
5–20× higher energy efficiency.

• Comprehensive evaluation: Ablation studies analyse
the impact of distillation weight, bottleneck config-
uration, and binarisation scheme, whereas a detailed
power–throughput assessment shows that BiAgriNet

FIGURE 1. Accuracy–efficiency trade-off on PhenoBench at
1024×1024 input. Circle size encodes inference speed (FPS) on jetson
AGX Orin (batch = 1). BiAgriNet attains competitive mIoU with real-time
throughput and the smallest memory footprint among compared models.

saves 10-35× energy compared with full-precision
counterparts.

The remainder of this paper is structured as follows: Section II
surveys related work on efficient agricultural segmentation,
binarisation, and distillation. Section III details the BiA-
griNet architecture and training methodology. Section IV
presents experimental setups, quantitative comparisons on
PhenoBench and CWFID, and qualitative results. Section V
Ablation Studies, and Section VI Conclusion.

II. RELATED WORK
In recent years, semantic segmentation has seen signifi-
cant advancements, with networks like DeepLabv3 [16],
U-Net [17], and PSPNet [18] pushing the boundaries of
accuracy and feature extraction capabilities. Motivated by
the demonstrated efficacy of these general-purpose archi-
tectures, recent research has increasingly sought to adapt
and optimise semantic-segmentation networks for the strict
real-time demands and distinctive environmental conditions
encountered in agricultural imagery.

A. REAL-TIME SEMANTIC SEGMENTATION IN
AGRICULTURE
Recent advancements in semantic segmentation for agricul-
ture have addressed challenges like data scarcity, small object
segmentation, and environmental variability. For instance,
Heschl et al. introduced SynthSet, a generative model for
creating annotated agricultural data [19]. Similarly, PD-
SegNet enhances the segmentation of small agricultural
targets in complex environments [20]. Moreover, approaches
utilizing style transfer and Generative Adversarial Networks
(GANs) have improved image-label datasets for dense veg-
etation [21]. This model achieved state-of-the-art results on
the challenging MinneApple dataset by combining dynamic
kernel updating with edge-aware refinement. Similarly,
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Yu et al. designed DCSAnet for crop–weed segmentation in
soybean fields, using MobileNetV3 blocks and asymmetric
convolutions to reach 85.95% mIoU with just 0.57M param-
eters [22]. Beyond weeds, researchers have tackled disease
symptom segmentation on leaves and canopy delineation:
transformer-based models have been applied to segment leaf
blight regions on crop imagery [23], while multispectral
approaches like Wu et al. fused RGB and thermal data to
accurately extract wheat canopies at tillering stage (mIoU
∼84–85%) [24]. These efforts underscore a broader trend for
real-time segmentation networks in agriculture, emphasize
both efficiency and task-specific robustness, enabling on the
fly weed detection, disease localization, and canopy analysis
under field conditions. Surveys also highlight progress in
crop cover analysis, pest detection, and disease identification,
underscoring the expanding role of segmentation in precision
agriculture [1]. However, these models’ heavy computational
demands hinder their use in real-time or resource-limited
settings like mobile and embedded systems. The demand
for computational efficiency has driven the exploration
of lightweight architectures like MobileNets [25], Shuf-
fleNet [26], BiSeNet [27], BiseNet-v2 [28], EdgeNet [29],
MSCFNet [30], and LETNet [31].

B. BINARIZED NETWORKS AND TINY TRANSFORMERS
In parallel, extreme model compression and compact trans-
former designs have been explored to meet strict speed
and memory constraints. Binarized neural networks (BNNs)
[8], which use 1-bit weights/activations, can drastically
reduce model size and computations. While BNNs have
shown promise in classification tasks (e.g., XNOR-Net [5]),
their use in dense segmentation is growing, especially
in agriculture, due to accuracy degradation challenges.
On the other hand, tiny Transformers have gained attraction
as lightweight backbones that retain strong representation
power. Xie et al. introduced SegFormer-B0 (‘‘TinySeg-
Former’’), a Transformer model with only 3.8M parameters
and ∼ 8.4G FLOPs that still achieved 37.4% mIoU on
ADE20K [32]. Such designs combine efficient self-attention
with convolutional stems [23], and have been adopted in
agriculture: for example, TinySegFormer has been used as
a baseline for segmenting fruit trees and diseased plants,
often outperforming heavier CNNs on a FPS-per-accuracy
basis. Purpose-built networks also merge transformers with
CNNs for speed: Zhang et al. developed LACTNet, a hybrid
encoder–decoder with a gated Transformer module, reaching
74.8%mIoU at 90 FPS on Cityscapes [33]. In the agricultural
domain, Feng et al. proposed Lodging-U2NetP (L-U2NetP)
an ultra-lightweight U-Net variant (1.1 M params) for
wheat lodging segmentation. By simplifying U2Net with
channel-wise attention, it accurately segmented lodged crop
areas from UAV images while being deployable on edge
devices (param count 1/40 of the original) [34]. These
advances illustrate howmodel size and complexity have been
aggressively reduced through binary convolutions, ensemble

pruning, or miniaturized transformers to meet real-time
requirements in precision agriculture. Nevertheless, no other
efficient model has achieved full network binarization and
knowledge distillation leveraging to the extent that we have.

C. KNOWLEDGE DISTILLATION FOR VISION MODELS
Knowledge distillation (KD) has become a powerful tech-
nique to transfer knowledge from large ‘‘teacher’’ models
to compact ‘‘student’’ models, often boosting the student’s
performance. In computer vision, recent distillation meth-
ods have pushed the state-of-the-art. Qiu et al. proposed
Label-Assisted Distillation (LAD) for semantic segmenta-
tion, which ingeniously injects perturbed ground-truth labels
into the teacher’s input to strengthen a lightweight teacher
model [10]. This yields a more informative teacher without
relying on an extra heavy model or modalities, and experi-
ments on Cityscapes and ADE20K showed consistent student
improvements with LAD. Another frontier is ensemble-
based distillation: Landgraf et al. introduced DUDES (Deep
Uncertainty Distillation using Ensembles for Segmentation),
wherein a deep ensemble’s predictive distribution is distilled
into a single student [35]. DUDES preserved not only accu-
racy but also uncertainty estimates, accurately mimicking
the ensemble’s confidence while simplifying deployment.
This is especially relevant for safety-critical agro-robotics,
where knowing when the model is unsure (e.g. in novel field
conditions) is valuable. A further innovation is cross-modal
distillation. Nair and Hänsch demonstrated that a model
trained on abundant RGB satellite imagery can teach a model
on scarce SAR radar imagery via cross-modal KD [36].
Their framework, winner of the EarthVision 2024 challenge,
used an RGB-segmentation teacher to generate pseudo-labels
for unlabeled SAR images, boosting IoU on SAR building
segmentation by 5–20%. This cross-domain knowledge
transfer opens doors for agricultural applications where
one sensing modality (e.g. RGB) has rich data to guide
another (e.g. thermal or LiDAR) in a student model.
In summary, modern KD techniques, from label-guided
training to ensemble and multi-modal distillation, offer
versatile tools to compress models without losing accuracy.
Table 1 compares segmentation models applied to various
agricultural vision tasks in the last few years. Although
numerous studies have advanced either model binarization
or knowledge-distillation techniques, none has yet integrated
full network binarization with teacher–student distillation in
the context of agricultural semantic segmentation. Existing
BNNwork is predominantly confined to image-classification
tasks or general-purpose benchmarks, whereas distillation
methods typically compress floating-point networks without
modifying numerical precision. BiAgriNet constitutes the
first agriculture-specific architecture that unifies these two
paradigms: a fully binarized student network trained under
the guidance of a high-capacity, full-precision teacher. This
dual strategy proves essential, while binarization alone tends
to degrade accuracy, the distillation process compensates by

192376 VOLUME 13, 2025



H. Khan et al.: BiAgriNet: Binarized Knowledge-Distilled Network

TABLE 1. Comparative summary of agricultural semantic-segmentation studies, with an emphasis on real-time or otherwise efficiency-oriented designs.

transferring fine-grained representational knowledge from
the teacher. Consequently, BiAgriNet attains unprecedented
computational efficiency (0.62 GOP) and real-time through-
put (180 FPS) without measurable loss in segmentation
accuracy, thereby filling a critical gap in the literature and
establishing a foundation for future systems that simultane-
ously optimise model size, speed, and precision in real-world
precision-agriculture deployments. Full network binarization
restricts the function class by quantizing weights/activations
to {−1,+1}, which tightens Lipschitz bounds but risks
underfitting high-frequency structure in dense prediction.
In this constrained regime, distillation supplies informative
targets pT that shape the student’s probability simplex beyond
hard labels. Formally, minimizing KL(pS∥pT ) at temperature
τ aligns the student’s logits with the teacher’s relative
class ordering, preserving inter-class margins even under
1-bit quantization. This coupling differs from prior efficient
segmentation that relies on INT8/FP16 activations or FP
students, and from BNN literature focused on classification;
BiAgriNet unifies complete binarization with segmentation-
aware KD, yielding stable training and accuracy at ultra-low
compute/memory. Unlike prior efficient segmentation that
retains ≥8-bit activations, our novelty is the first agricul-
tural segmentation framework that fully binarizes encoder–
bottleneck–decoder and couples it with KD, narrowing the
accuracy gap while preserving the 1-bit efficiency envelope.

III. PROPOSED METHOD
The BiAgriNet framework Fig. 2 integrates a full-precision
teacher model with a binarized student network for efficient
semantic segmentation. The architecture includes a binary
encoder, bottleneck, and decoder, which leverage skip con-
nections and multi-scale context modules to reduce parame-
ters while retaining accuracy. During training, a knowledge
distillation mechanism transfers knowledge from the teacher
to the student using supervised and distillation losses.
Optimized for real-world deployments, the binarized student

achieves real-time segmentation with minimal memory and
computation requirements.

A. TEACHER MODEL (FULL PRECISION)
To provide robust ‘‘dark knowledge,’’ we adopt a
full-precision encoder–decoder network as the teacher.
We trained five encoder–decoder combinations (VGG16–
FCN8, VGG16–U-Net, ResNet18–FCN8, ResNet18–U-Net,
and ResNet18–DeepLabV3) as potential teacher models.
The VGG16-based networks serve as classic, parameter-
heavy baselines, showcasing how earlier architectures
(e.g., FCN8) compare in modern contexts. ResNet18,
a more efficient backbone, is paired with simple (FCN8,
U-Net) and a state-of-the-art decoder (DeepLabV3) featuring
atrous convolutions and multi-scale context. This range of
configurations allows us to evaluate trade-offs betweenmodel
complexity, accuracy, and inference speed, ensuring that
comprehensive empirical insights drive our final teacher
selection. In particular, the ResNet18–DeepLabV3 model
typically achieves strong segmentation performance while
maintaining a relatively modest memory footprint, making
it an appealing teacher for knowledge distillation. At the
same time, examiningmid-range or older baselines (VGG16–
U-Net, ResNet18–U-Net) offers insight into how simpler
backbones and decoders fare in current benchmarks. This
diversity of teacher networks ultimately facilitates a more
robust analysis of teacher-student knowledge transfer.

B. BINARIZED STUDENT MODEL
1) BINARIZED ENCODER FOR FEATURE REPRESENTATION
a: BINARY CONVOLUTION
Tomaintain general applicability, consider an input activation
Al−1 ∈ Rh×w×c feeding into layer l. In a float-precision
network, the trainable weights Wl are real-valued, but here
they are projected into {−1,+1} to form binary tensors Bl .
In our approach, the encoder is based on ResNet18, yet every
convolutional layer beyond the first adopts binary weights.
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FIGURE 2. Overview of BiAgriNet: A full-precision teacher guides a binarized student with a binary encoder, bottleneck (dilated blocks and ASPP), and
decoder. Knowledge distillation and combined loss ensure efficient and accurate segmentation.

Specifically, each filter W is quantized into {−1,+1}
through a sign function, while a per-channel scaling factor
α approximates magnitude information. Thus, the binarized
convolution computes:

α · (x ⊗ sign(W ))

Where ⊗ represents XNOR multiplication in 1-bit space.
These binarized residual blocks preserve skip connections
vital for stable gradient flow while drastically shrinking
parameter storage and Multiply-Accumulate Operations
(MACs) operations. The first convolution (along with its
associated batch normalization) remains in a full float
precision to avoid early training instabilities, whereas sub-
sequent stages are fully binarized. ResNet18’s well-known
efficiency and residual shortcuts help mitigate the represen-
tational gap introduced by ±1 weights. By leveraging these
1-bit filters, the network preserves the essential capacity
for discriminative feature extraction yet remains lightweight,
making it ideal for scenarios like large-scale agricultural
imagery.

2) BOTTLENECK WITH BINARY DILATED CONVOLUTIONS
BiAgriNet adapts dilated convolutions in the bottleneck to
expand the receptive field without additional parameters.

Specifically, each dilated convolution in the bottleneck is
subject to the same binarization procedure—bothweights and
activations are quantized into ±1. Batch normalization and
a non-linear activation ReLU are applied after each binary
convolution to maintain distributional stability. Inspired by
DeepLab’s multi-dilation concept, BiAgriNet employs a
Grouped Binary ASPP, where channels are partitioned into
groups; each group uses a different dilation rate (e.g.,
{1, 6, 12, 18}). These parallel branches capture diverse scales
to detect partial regions in agricultural imagery. Concatenat-
ing these channels yields a robust mid-level representation.
Unlike a float-based approach, binarized dilated layers keep
overhead low, even when the network processes large input
sizes (e.g., 1024× 1024 fields).

3) BINARIZED DECODER FOR SEGMENTATION
Our method incorporates a binarized DeepLab decoder to
complete the segmentation pipeline. Traditionally, DeepLab
leverages atrous (dilated) convolutions and an Atrous Spatial
Pyramid Pooling (ASPP) block for multi-scale context.
In our binarized variant, each dilated 3 × 3 convolution
within the decoder also undergoes sign(W )-based quantiza-
tion, with a learned scaling factor appended post-XNOR.
This arrangement permits robust multi-scale feature fusion
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without increasing the FLOPs. The final classifier layer
typically remains in full precision to stabilize the generation
of class logits, ensuring that subtle boundary probabilities are
not lost to binarization. Consequently, the binarized DeepLab
decoder complements the lightweight encoder while retain-
ing enough representational power to refine coarse feature
maps into high-resolution, per-pixel predictions.

C. KNOWLEDGE DISTILLATION FOR BINARIZATION IN
BIAGRINET
Binarizing the network (weights and activations to ±1 via
the sign function) significantly reduces model precision and
disrupts gradient flow. Knowledge distillation is employed
in BiAgriNet to overcome these challenges by using the
teacher model’s soft logits as additional guidance. The full-
precision teacher’s output probabilities (soft targets) retain
rich class information (relative confidences for each class)
that would be lost in the hard binary activations. By training
the binarized student to match these soft logits, we mitigate
the information loss introduced by the non-differentiable
sign function. In essence, the teacher’s continuous output
distribution provides gradient signals and ‘‘dark knowl-
edge’’ that help the binary student learn nuanced decision
boundaries that a one-hot label alone cannot convey. This
extra supervision directs the student to mimic the teacher’s
feature representations despite the 1-bit weight constraint,
thereby addressing the accuracy drop typically caused by
binarization.We optimize a joint loss consisting of two terms:
the standard cross-entropy loss LCE with ground-truth labels,
and a distillation loss LKD defined as the Kullback–Leibler
divergence between the student’s prediction distribution pS
and the teacher’s distribution pT . Let zT (xi), zS (xi) ∈ RC

denote teacher and student logits at pixel i for C classes. With
temperature τ > 0, define softened distributions

qT (c | xi) = softmax
(
zT (xi)/τ

)
c, (1)

qS (c | xi) = softmax
(
zS (xi)/τ

)
c. (2)

We adopt the student-to-teacher Kullback–Leibler diver-
gence, averaged per pixel:

LKD = τ 2
1
|�|

∑
i∈�

C∑
c=1

qS (c | xi) log
qS (c | xi)
qT (c | xi)

. (3)

The full objective is

L = LCE + λLKD, LCE = −
1
|�|

∑
i∈�\{yi=ξ}

log pS (yi | xi),

(4)

where pS = softmax(zS ), ξ is the ignore-index, and
λ balances supervision and distillation. We use the standard
τ 2 factor to maintain gradient scale at higher τ . All losses use
natural logarithms and are averaged per image and per pixel.
In our best configuration, we fix τ = 4 and λ = 1.0. Without
distillation (λ = 0), the binarized student’s accuracy drops
sharply, whereas an optimal λ ≈ 1.0 can boost accuracy
by ∼ 5% absolute. Too large a λ may overemphasize

FIGURE 3. Layer-wise cosine similarity between the teacher (ResNet-18 +

DeepLabV3) and two binarized students. The ResNet-18 student
maintains high alignment with the teacher, achieving a cosine similarity
of ∼0.9 in deeper layers due to architectural affinity and effective
knowledge distillation. In contrast, the MobileNet-V3 student exhibits
lower similarity scores, indicating weaker feature transfer and reduced
representational fidelity.

the teacher at the expense of true labels. The knowledge-
distillation scheme for BiAgriNet is outlined in Algorithm 1.
In each iteration:

1) The frozen teacher computes logits pT for the input
mini-batch.

2) The binarized student computes logits pS (using the
sign function in each layer).

3) Compute LCE = H(pS ,Y ) and LKD = KL(pS ∥ pT ).
4) Form L = LCE + λLKD and backpropagate via the

straight-through estimator (STE), updating only the
student’s parameters.

After training, the teacher is discarded, the student runs
independently with binary weights for efficient inference.
Knowledge distillation markedly improves the alignment
between the teacher’s and student’s internal representations,
even under binarization. Fig 3 illustrates the layer-wise cosine
similarity between feature maps of the teacher and those of
two variant students (one with a ResNet-18 backbone, the
other with a MobileNet-V3 backbone). The ResNet-18 based
student, which closely matches the teacher’s architecture,
achieves an exceedingly high cosine similarity (around 0.9)
in deeper layers. This indicates that by the final layers,
the binarized ResNet-18 student’s feature representations are
almost indistinguishable from the teacher’s, a direct result
of the distillation pressure to mimic the teacher. In contrast,
the MobileNet-V3 student shows lower similarity values at
corresponding layers (i.e. weaker representation alignment).
This reduced alignment for MobileNet-V3 correlates with
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FIGURE 4. Cosine similarity distribution of feature representations across
all layers between the teacher and binarized students. The ResNet-18
student shows a narrow, high-peaked distribution close to 1.0,
demonstrating consistent feature alignment and minimal information
loss despite binarization. Conversely, the MobileNet-V3 student exhibits a
broader, lower-centered distribution, suggesting less effective knowledge
transfer and diminished capacity to mimic the teacher’s representations.

its larger drop in segmentation accuracy (a 3% lower
mIoU than the ResNet student under the same teacher),
underscoring that architectural disparity can make it harder
for the student to absorb the teacher’s knowledge. Fig 4
provides the distribution of cosine similarities across all
layers (or feature channels) for the two students. The ResNet-
18 student’s cosine similarity scores are not only higher
on average but also tightly clustered near 1.0, indicating
consistently strong alignment with the teacher’s features.
In comparison, the MobileNet-V3 student’s similarity scores
are more spread out and centered at a lower value,
reflecting more variable and generally poorer alignment.
This tighter representation alignment in the ResNet-18 case
demonstrates the effectiveness of knowledge distillation
in guiding a binarized model. When the student network
has sufficient capacity and a compatible architecture, the
distillation process can drive it to mirror the teacher’s
learned representations. Fig 3 and 4 shows that distillation
helps the binary student retain important feature information
that the sign quantization alone would have destroyed.
Consequently, the BiAgriNet student, aided by distillation,
achieves significantly improved accuracy compared to a
binarized model trained only with hard labels, closing much
of the gap towards its full-precision teacher. Knowledge dis-
tillation serves as a critical bridge in BiAgriNet, transferring
nuanced knowledge to the binarized network and thereby
alleviating the detrimental effects of binarization on model
performance.

1) TRAINING SCHEME OF BIAGRINET
The proposed BiAgriNet model is trained on 3 A4000 GPU
(16 GB), and an NVIDIA AGX ORIN is used for inference.
Training BiAgriNet begins with a pre-trained teacher net-
work (e.g., a full-precision ResNet+DeepLab model) whose
weights remain frozen. A dataset of images I and pixel-level
labels Y is fed in mini-batches; each batch is processed
by both the teacher (frozen) and the student (BiAgriNet).
The teacher produces ‘‘soft’’ logits pteacher, while BiAgriNet,
composed of binarized convolution layers, generates its
predictions Ŷ . For the student’s forward pass, each binarized
convolution uses sign(Wl) for the weights, along with
normalization and ReLU. During backpropagation, only
the student’s parameters are updated. A straight-through
estimator (STE) handles the non-differentiable sign function,
effectively allowing real-valued latent weights to receive
gradients and be binarized anew each iteration. We employ
a combined loss LCE enforces alignment with ground-truth
labels, and LKD encourages the binarized student to mimic
the teacher’s richer predictions. The teacher itself remains
unchanged throughout. BiAgriNet gradually refines its
1-bit convolution filters by iterating over these mini-batches
and losses, balancing semantic accuracy (from cross-entropy)
with teacher knowledge (from distillation). Once trained, the
student is deployed alone, capitalizing on binarized weights
for fast, memory-efficient inference, an ideal characteristic
for real-time agricultural applications. We use STE for sign(·)
with gradient clipping (norm=1), cosine LR with warm-up,
BN momentum 0.9, and KD with τ=4. These mitigated
training instability and boundary artifacts in the 1-bit regime.

IV. EXPERIMENTS AND RESULTS
A. DATASETS AND EVALUATION METRICS
1) PHENOBENCH
The PhenoBench dataset [14] comprises 1,407 training
images and 772 validation images, each with corresponding
ground truth labels. Ground truth labels for the test set are not
publicly available. Each image, sized at 1024×1024 pixels,
includes pixel-wise semantic masks with label IDs assigned
as follows: background (0), crop (1), and weed (2).

2) CWFID (CROP/WEED FIELD IMAGE DATASET)
The CWFID dataset [15] consists of 60 RGB images
captured in organic carrot fields using a BoniRob mobile
robot. Early-growth carrot plants and inter-row weeds are
present near, making pixel-level crop–weed discrimination
necessary. Each image is annotated with a binary vegetation
mask, further labeled as crop vs. weed (background soil
is implicitly the third class). In total, CWFID includes
162 annotated crop plants and 332 weeds. The original image
resolution is on the order of 1 megapixel (approximately
1296×966 pixels), which we rescaled to 1024×1024 for
consistency with our model’s input. We split the 60 images
for training and validation (e.g., an 80/20 split, ensuring a mix
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Algorithm 1 Training BiAgriNet With Knowledge Distilla-
tion (frozen Teacher; Binarized student)
Require: Teacher T (full precision; frozen), student S (bina-

rized with straight-through estimator, STE), training
set {(x, y)} with ignore-index ξ , temperature τ = 4,
distillation weight λ = 1.0, optimizer O

Ensure: Trained student parameters θS (teacher discarded at
inference)

1: for epoch = 1, . . . ,E do
2: for mini-batch B = {(xb, yb)} do
3: Teacher forward (no gradients): zT ← T (xb);
qT ← softmax(zT /τ )

4: Student forward (binarized; STE in back-
prop): zS ← S(xb); qS ← softmax(zS/τ ); pS ←
softmax(zS )

5: Losses (pixel-wise means; ignore y = ξ ):

6: LCE←−
1
|�|

∑
i/∈{yi=ξ}

log pS (yi | xi)

7: LKD← τ 2
1
|�|

∑
i

∑
c

qS (c | xi) log
qS (c | xi)
qT (c | xi)

8: L← LCE + λLKD
9: Update student only: θS ← O

(
θS ,∇θSL

)
▷

STE handles sign(·)
10: end for
11: end for
12: return S

of field conditions in each) when evaluating our models on
this dataset. Despite its smaller scale, CWFID is a standard
benchmark in precision agriculture vision, allowing us to
validate BiAgriNet’s generalization to a different crop type
and sensor scenario.

3) PERFORMANCE METRICS
The metrics reported in these experiments include Mean
Intersection-over-Union (mIoU), Average Precision (AP),
False Positive Rate (FPR), and False Negative Rate (FNR).
For agriculture field applications, perception models must
operate in real time.

B. IMPLEMENTATION DETAILS
1) TRAINING PROCEDURE
The binarized student network is trained with the Adam
optimizer, using a base learning rate η = 0.001 and
weight decay λ = 0.0005. We set momentum parameters
β1 = 0.9 and β2 = 0.999. The learning rate is decayed
by a factor of 0.8 every 10 epochs. The network is trained
for 200 epochs, after which we reinitialize and fine-tune the
batch normalization statistics for stability.

C. TEACHER MODEL SELECTION
The following analysis aims to identify suitable modules for
BiAgriNet, including the encoder and decoder, a local binary
approximation method (e.g., XNOR [5], CompactBNN [45],

TABLE 2. Comparison of State-of-the-Art encoder/decoder configurations
at 1024×1024 input resolution for teacher model on phenobench dataset.

and ABC [46]), and structural approximation strategies for
the bottleneck. Table 2 demonstrates on the PhenoBench
dataset how various encoder–decoder pairs perform on
a 1024 × 1024 input resolution when used as teacher
models, measuring mIoU, GOPs, and memory. Notably,
ResNet18 + DeepLabV3 achieves the highest mIoU
(89.97%) while maintaining a relatively modest 44.7 GOPs
and a memory footprint of 21.6 MB. In contrast, VGG16-
based configurations (e.g., FCN8, U-Net) offer competitive
accuracy but at a significantly higher computational and
memory cost, this is partly due to VGG16’s parameter-heavy
structure. ResNet18-based FCN8 or U-Net remain more
efficient in compute (31.4–35.7 GOPs) but delivers slightly
lowermIoU (88.95–89.23%). Thus, ResNet18+DeepLabV3
emerges as a strong ‘‘teacher’’ candidate, balancing advanced
multi-scale features (via DeepLab) with a lighter backbone
(ResNet18).

D. BINARISATION SCHEMES AND STUDENT CAPACITY
Tables 3 and 4 indicate that both student capacity and
teacher strength influence distillation performance. We chose
ResNet-18+DeepLabV3 as the final student due to its
optimal balance of accuracy and efficiency, while preserving
a robust architectural affinity with the teacher. When derived
from the more robust teacher (ResNet-18+DeepLabV3),
the ResNet-based student achieves a mIoU of 85.46%,
while the MobileNet-V3 student attains 82.72%, reflecting
a decrease of 3.2% in mIoU. With the less effective teacher
(ResNet-18+FCN8), the loss increases to 5.34% mIOU,
suggesting that MobileNet-V3 is unable to completely
assimilate the teacher’s knowledge when the supervision
is less informative. The margins, although quantitatively
low, result in misclassified pixels on standard field images,
which is essential for subsequent operations like precision
spraying, where each inaccurate weed identification leads
to herbicide wastage. The ResNet-18 backbone preserves
skip connections and channel widths analogous to the
teacher, facilitating a high layer-wise cosine similarity
(approximately 0.9 in deeper blocks) without additional
memory (0.86 MB) or computational cost (0.62 GFLOPs).
The MobileNet-V3 variant is 0.36 MB smaller and
0.24 GFLOPs lighter; however, its weaker feature alignment
results in the observed accuracy decline. The Jetson AGX
Orin readily supports the extra 0.36 MB and 0.24 GFLOPs
while functioning well within its thermal limits.
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TABLE 3. Local binary approximation in teacher–student
frameworks(ResNet18 + DeepLabV3 student).

TABLE 4. Local binary approximation in teacher–student frameworks
(MobileNet-V3 student).

The BiAgriNet with Dilations and ASPP achieves supe-
rior performance due to its ability to capture multi-scale
context using the ASPP module and expanded receptive
fields through dilated convolutions. The other configu-
rations prioritize computational efficiency by excluding
ASPP or dilations, which limits their feature extrac-
tion capabilities. This underscores the importance of
advanced bottleneck designs in balancing performance and
efficiency.

E. BOTTLENECK CONFIGURATION STUDY
Table 5 focuses on bottleneck design within the binarized
student (BiAgriNet). It compares a BiAgriNet without
dilations and no ASPP, a BiAgriNet with dilations but no
ASPP, and a BiAgriNet with dilations and an ASPP block.
We see a progression in mIoU: 83.37% rises to 84.26%,
then 85.46% for the full ‘‘BiAgriNet’’ approach. At the same
time, the number of flops increases slightly (0.54–0.62) while
memory usage remains relatively constant (0.58–0.86 MB).
Hence, adding dilations and an ASPP module improves
segmentation quality (by 2% absolute mIoU), though it
slightly increases memory usage.

TABLE 5. Different bottleneck configuration for BiAgriNet.

TABLE 6. Performance comparison of BiAgriNet to baseline models
(phenobench dataset).

F. DISCUSSION
Table 6 compares our BiAgriNet in terms of accuracy, com-
putational efficiency, and memory usage against state-of-the-
art segmentation architectures. Most prominently, BiAgriNet
uses only 0.8 MB of parameters—an extreme reduction
compared to classical models like FCN8s (33.9 MB) or
DeepLabv3 (21.5 MB). It is 27× smaller than DeepLabv3,
reflecting how binarized weights drastically cut memory
requirements. Despite this compression, BiAgriNet main-
tains competitive mIoU (85.5%), comparable to FCN8s
(85.8%) and outpacing model like ERFNet having 2× less
computation and 5× less parameters. BiAgriNet achieves
180 FPS, placing it among the fastest approaches—nearly
5× faster than FCN8s (37 FPS) and 9× faster than
DeepLabv3 (19 FPS). The accuracy (85.8%) remains robust,
and FPR/FNR values (2.1% and 6.5%) are on par with
other real-time networks such as BiseNetv2 confirming
that such a dramatic reduction in parameters and compute
does not incur a prohibitive drop in segmentation quality.
Overall BiAgriNet shows ultra-low memory consumption,
high speed, and competitive accuracy, underscoring the
viability of binarized networks in demanding, real-time
applications. We compare BiAgriNet against prior models
on the Crop/Weed Field Image Dataset (CWFID), focusing
on network size, computational cost, accuracy, and speed.
Table 7 summarizes the results. BiAgriNet matches the top
mIoU on CWFID with far fewer parameters and FLOPs,
yielding much higher FPS. BiAgriNet achieves state-of-
the-art segmentation accuracy (mIoU) on CWFID while
using significantly fewer parameters and FLOPs than earlier
architectures, resulting in much higher inference speed.
In Table 7, earlier deep CNNs like SegNet and U-Net
delivered moderate accuracy on CWFID (around 74.06%
mIoU for U-Net) but with large size(33 MB). Their inference
speed on the Jetson Orin is relatively low (26–32 FPS) due to
heavy computation. Even FCN-8s, with 31.4MB size (after
converting VGG16 fully-connected layers to convolutions),
only achieved 59.31% mIoU, indicating that mere model
size did not translate to better performance on this task.
DeepLabv3 (with 21.2MB size) reached 70.7% mIoU,
slightly below U-Net’s accuracy on CWFID, likely because
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TABLE 7. Semantic segmentation on CWFID. BiAgriNet matches the best
mIoU while using far fewer parameters and FLOPs, achieving 187 FPS on
Jetson Orin.

CWFID’s small training set (60 images) limits the benefit of
very deep or complex backbones. Conventional models still
struggle on CWFID despite their larger capacity. Specialized
architectures tailored for crop-weed segmentation show clear
improvements. CED-Net introduced a cascaded encoder-
decoder design, boosting mIoU to 77.6% on CWFID about
3% higher than U-Net. This efficiency reflects CED-Net’s
focused design for two-class (crop vs weed) segmentation.
Building on that idea, MTS-CNN added multi-task learning
(jointly optimizing crop, weed, and combined classes) to
better exploit class correlation. MTS-CNN achieved 83.7%
mIoU on CWFID, a significant jump of 6% over CED-Net.
This made MTS-CNN one of the top performers on CWFID,
though with a slightly larger model. A recent approach by
Janneh et al. [40] incorporated a hybrid feature selection
(Hybrid F.S.) module, pushing mean IoU to 86.13% the
highest reported on CWFID by effectively fusing multi-level
features. This Hybrid F.S. model outperformed MTS-CNN
by 2.4 percentage points, indicating diminishing returns as
accuracy nears the dataset’s ceiling. Its model size (32MB)
is still moderate, and it was designed with some emphasis on
efficiency. BiAgriNet exceeds this state-of-the-art accuracy
(86% mIoU) on CWFID while being substantially lighter
and faster with 0.9 MB model size, BiAgriNet (binarized) is
approximately 20× smaller than networks (FP32). Its FLOPs
are correspondingly low (0.65 G), which, combined with
an optimized architecture (e.g. efficient grouped ASPP and
streamlined decoder), enables real-time inference. As seen
in Table 7, BiAgriNet runs at 187 FPS on the AGX Orin –
roughly 7-9× faster than U-Net or DeepLabv3. BiAgriNet
achieves high precision (86.7% mIoU) on the CWFID
dataset without the heavy computation and large memory
footprint of earlier models. BiAgriNet’s performance is on
par with the crop-weed segmentation methods (exceeding
older ones by a large margin) while offering superior
efficiency. Recent works prioritized speed at the cost of
accuracy. For example, Liu et al. [3] proposed a real-time
multi-branch CNN for crop-weed recognition at resolution of
512× 512 that achieved only 74.6%mIoU onCWFID having
lower memory footprint (21.2MB) and faster (93.6 FPS) than
U-Net(balancing speed/accuracy). In contrast, BiAgriNet
manages to balance both, maintaining SOTA-level accuracy
with real-time throughput. The comparison demonstrate

FIGURE 5. Qualitative Results (PhenoBench Dataset): DeepLabv3 [16]
(first column), BiseNetv2 [28] (second column), and BiAgriNet (Ours, third
column).

how BiAgriNet’s design (knowledge distillation, lightweight
modules) yields an excellent trade-off: it outperforms older
large models (U-Net, DeepLabv3) by 10–15% absolute
mIoU, and is on par with the best modern specialized models,
remain smaller and faster than all of them.

Fig 5 presents qualitative results on various images from
the PhenoBench dataset. The predictions demonstrate that
the slight accuracy degradation is negligible when weighed
against the significant performance benefits.

G. RUNTIME AND ENERGY EFFICIENCY
The results (Table 8 and Fig 6, Fig 7) characterise how
much computational work each network extracts from a fixed
power budget. BiAgriNet consumes just 0.028 J frame-1,
whereas classical, full-precision U–Net, DeepLabV3 and
FCN8s require 0.54–1.05 J frame-1 20–35× more energy
for the same 1024 × 1024 inference (Fig. 6). This gap
stems from BiAgriNet’s 1-bit weights and 0.62GFLOPs
workload, versus the multi-gigaflop workloads and heavier
memory traffic of the VGG-16 and ResNet-based baselines.
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FIGURE 6. Throughput per watt on Jetson AGX Orin (idle→active power
as in Table 8). BiAgriNet delivers 12 FPS W−1, doubling ERFNet/BiseNetV2
and exceeding FP baselines by 10–20×.

FIGURE 7. Energy per frame (J) at 1024×1024 on Jetson AGX Orin.
BiAgriNet uses 0.028 J/frame, an order of magnitude lower than U-Net,
DeepLabV3, and FCN-8s.

Throughput per watt favours binarised or heavily pruned
models. All lightweight models outperform the legacy
networks in FPSW-1 (Fig. 7), but BiAgriNet attains the
highest score (12 FPSW-1). ENet and FCN8s-XNOR also
benefit from reduced precision, yet remain 15–20% less
efficient because they either (i) lack multi-scale context
modules, forcing deeper layers to process larger feature
maps (ENet), or (ii) retain VGG-style 5 × 5 pooling paths
that hurt cache locality (FCN8s-XNOR). BiseNetv2 adds
guided-aggregation branches and dilated context blocks
to boost accuracy, but the extra memory traffic raises
active power to 22W, making its FPSW-1 lower than
BiAgriNet even though raw FPS is comparable (196 vs
180). Architectural overhead can erase the energy gains of
lightweight backbones. BiAgriNet raises board power by
only 5W (10→ 15W). DeepLabV3 and U–Net triple that
increase (120W), saturating the Orin’s thermal headroom
and risking throttling. In field robotics where additional

FIGURE 8. Effect of distillation weight λ on CWFID mIoU (teacher:
ResNet-18 + DeepLabV3, τ = 4). Moderate λ values are best;
λ ≈ 1.0 achieves peak accuracy.

FIGURE 9. Accuracy–speed trade-off on CWFID when ablating BiAgriNet.
Removing grouped-ASPP or dilations yields 2–5 FPS gains but lowers
mIoU by 4–6 pp; the baseline model provides the best accuracy–speed
operating point.

TABLE 8. Power–throughput metrics on Jetson AGX Orin (idle→active).
BiAgriNet combines the smallest 1Power (5 W) with 180 FPS, yielding the
lowest energy per frame and the highest FPS/W among contenders.

sensors and locomotion already tax the battery such deltas
often determine whether autonomous operation lasts minutes
or hours. The grouped-ASPP maintains multi-scale context
without increasing parameter groups, while the binarized
convolutions minimize computational load, which decreases
energy consumption per frame and enhances frames-per-
second per watt (FPSW−1) on Jetson Orin. Empirically,
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FIGURE 10. Pixel-level confusion matrices for segmentation models on the PhenoBench Validation set (15 images, 15,728,640 pixels).

TABLE 9. Comparison of dataset image sizes and total input pixels per model inference.

BiAgriNet increases board power by only ∼ 5W yet
attains the highest FPSW−1 and the lowest energy per
frame among contenders, whereas heavier baselines saturate
thermal headroom (+20W), risking throttling. In field
robotics, added sensor and locomotion loads tax the battery.
These power deltas can determine whether missions last
minutes or hours.

H. PRACTICAL DEPLOYMENT CONSIDERATIONS
Agricultural environments present domain shifts from
weather, illumination, occlusion, and sensor noise.
BiAgriNet’s binarized convolutions stabilize power draw,
while grouped-dilated ASPP preserves multi-scale context
without expanding parameter groups. Distillation with
KL(pS ∥pT ) maintains teacher-relative class ordering, which
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FIGURE 11. Pixel-level confusion matrices for segmentation models on the CWFID Test set (10 images, 10,485,760 pixels).

we observe to reduce overconfident errors under illumination
changes. Combined with the measured energy-per-frame
and FPS-per-watt advantages on Jetson Orin, these factors
support operation in battery- and thermally-constrained field
robots, where power headroom and runtime directly affect
mission duration.

V. ABLATION STUDY
We conducted an ablation study to further justify BiA-
griNet’s choices. We examined two key aspects: (a) the effect
of the distillation weight (λ) used in training BiAgriNet
with a teacher model, and (b) the impact of removing certain
architectural components (grouped ASPP module and dilated

convolutions) on accuracy and speed. As shown in Fig 8, the
distillation weight λ has a noticeable effect on final mIoU.
Without distillation (λ ≈ 0), BiAgriNet attained around
81.5%mIoU. As we increase λ to givemore weight to teacher
guidance, the student’s precision improves substantially,
peaking at λ = 1.0 with ∼ 86.7% mIoU. At this optimal
setting, the distillation loss and the standard segmentation
loss are balanced, BiAgriNet effectively learns from both
the ground-truth labels and the teacher’s softer predictions.
This helps the student network generalize better despite its
limited capacity. However, using an overly large distillation
weight can hurt performance. Atλ = 2.0 (twice theweight on
distillation vs. classification loss), mIoU drops to ∼ 84.1%.
In this regime, the student may overemphasize mimicking
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TABLE 10. Architecture details for BiAgriNet. All convolutions in the encoder, bottleneck, and decoder are binarized (±1) with STE during backprop; the
final classifier is full precision.

the teacher at the expense of learning the true class signals,
especially if the teacher model has its own biases or errors.
The trend in the plot (λ vs. mIoU) suggests a concave shape,
an optimal middle ground exists. In practice, λ ≈ 1.0 gave
the best results, indicating that knowledge distillation
significantly boosted BiAgriNet’s accuracy (by ∼ 5.2%
absolute) when properly weighted, but too much reliance
on the teacher can be counterproductive. Fig 9 shows the
accuracy–speed trade-off. The baseline BiAgriNet operates
at 86.7% mIoU and ∼187 FPS. Removing grouped-ASPP
yields ∼192 FPS with ∼82.1% mIoU; removing dilations
yields ∼195 FPS with ∼80.3% mIoU. We therefore keep
both to maximize accuracy at real-time speed. Similarly,
eliminating network dilations by, for instance, replacing
dilated layers with standard convolution results in an even
greater speedup (to about 195 FPS) at the expense of
accuracy dropping to about 80.3%mIoU. The grouped ASPP
contributed approximately +4.6% mIoU (from 82.1% →
86.7%) at a speed cost of about 2.6%, while the dilated
convolutions contributed approximately +6.4% mIoU (from
80.3% → 86.7%) at a runtime-per-frame cost of about
half. This represents a traditional balanced trade-off between
accuracy and efficiency. The ablation study shows that
BiAgriNet’s complete architecture is strategically selected:
the grouped ASPP and dilated convolutions each enhance
IoU, and collectively they facilitate the model in achieving
state-of-the-art accuracy. Removing grouped-ASPP or

dilations yields small frame-rate gains (∼ 2 − 5 FPS)
but degrades mIoU by 4− 6 pp; in weed-control robotics,
this increases false actuations and downstream costs,
so the baseline BiAgriNet configuration is the preferred
accuracy–speed operating point. The trade-off analysis
visually highlights how each architectural component alters
the equilibrium. By maintaining both, BiAgriNet functions
at the optimal intersection of this trade-off, providing high
precision while simultaneously satisfying real-time speed
demands.

VI. CONCLUSION
This paper introduces a novel BiAgriNet, a binarized
knowledge distilled network designed for efficient, high-
accuracy semantic segmentation in resource-constrained
environments. By integrating advanced bottleneck designs,
including dilated convolutions and the group ASPP module,
and leveraging efficient teacher-student knowledge distil-
lation with XNOR binarization, BiAgriNet achieves an
excellent balance between performance and computational
efficiency. Comprehensive evaluations demonstrate its supe-
rior speed, minimal memory usage, and competitive accuracy
compared to state-of-the-art segmentation models, making it
particularly suitable for real-time applications like precision
agriculture. Future work will explore further enhancements
in binarization techniques and deploy BiAgriNet on edge
devices for practical validation.
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TABLE 11. Training hyperparameters used for BiAgriNet.

APPENDIX A
CONSTRUCTION OF PIXEL LEVEL CONFUSION MATRICES
See Table 9, Fig 10 and 11. In the binary panels (rows:
ground truth; columns: prediction), the two off-diagonals
correspond to (i) plant→background errors (FN, top-right)
and (ii) background→plant errors (FP, bottom-left). On
PhenoBench (Fig. 10), BiAgriNet concentrates mass on the
diagonal and the dominant residual is FN at thin boundaries
and under difficult lighting; FP is comparatively smaller,
indicating that the model is conservative rather than over-
segmenting. On CWFID (Fig. 11), errors are more balanced,
with a modest increase in FP due to soil/stubble textures
that resemble vegetation, while boundary FN persists as
the second main mode. Across baselines, larger FP blocks
indicate over-segmentation; BiAgriNet reduces these FP
errors while maintaining low FN, consistent with its higher
mIoU and energy efficiency.

APPENDIX B
BIAGRINET ARCHITECTURE AND HYPERPARAMETER
SETTINGS
See Table 10 and Table 11.
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