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Abstract—As computer networks expand, the demand for
robust security measures intensifies due to increasing threats
that jeopardize network integrity and confidentiality. This is
particularly critical in the context of the Internet of Things (IoT),
where interconnected devices significantly broaden the attack
surface. Despite the growing adoption of Intrusion Detection
Systems (IDS) enhanced with machine learning (ML), these
systems face a critical vulnerability: they can be easily deceived
by adversarial attacks specifically crafted to evade detection.
This paper addresses the problem of adversarial robustness in
ML based IDS, particularly under white-box attack scenarios, by
introducing the Adversarial Attack Detector (AAD) framework.
AAD incorporates a multi-layered defense mechanism, includ-
ing a request validator, a machine learning-based Adversarial
Discriminator (AD), and an Enhanced Intrusion Detection
System (EIDS). The EIDS combines adversarially trained Multi-
Layer Perceptrons, Convolutional Neural Networks, and Long
Short-Term Memory networks to improve detection accuracy
and robustness. The scope of this study is centered on securing
IoT environments, where conventional IDS models struggle due
to the limitations of constrained devices and heterogeneous
data. Our empirical analysis shows that the AAD framework
significantly mitigates the impact of various white-box adversarial
attack methods, and outperforms traditional and single-model
approaches. AAD’s components, particularly the EIDS, signif-
icantly recover model performance under adversarial settings,
improving accuracy from near-failure levels to near-perfect
classification in some scenarios.

Index Terms—Intrusion detection, NIDS, adversarial, FGSM,
PGD, BIM, DeepFool, white box attack, ensemble learning.
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I. INTRODUCTION

S COMPUTER networks continue to grow in size and

complexity, the demand for effective security measures
becomes increasingly critical [1], [2]. With the expansion
of these networks, the number of connected devices rises
exponentially, leading to heightened security threats [3]. This
growth is further accelerated by the proliferation of Internet
of Things (IoT) devices, which introduce unique security
challenges due to their resource constraints, heterogeneity, and
often limited built-in protection mechanisms. The availability,
integrity, and confidentiality of network assets are seriously
jeopardised by these attacks. Global cybercrime costs are
projected to reach $10.5 trillion annually by 2025, underscor-
ing the urgent need for enhanced cybersecurity measures [4].
Consequently, safeguarding networks and information systems
from potential attacks is paramount. Intrusion Detection
Systems (IDS) [5] play an increasingly vital role in IoT
ecosystems by monitoring network traffic and identifying
potential threats such as malware, network intrusions, and
denial-of-service attacks.

The rapid advancement of hardware technology, particularly
the advent of high-performance GPUs, has spurred researchers
to explore Machine Learning (ML) techniques [6], [7], [8] for
these IDS. However, adapting ML-based IDS to large network
architectures and complex conditions can be challenging and
costly. In contrast, Deep Learning (DL) based IDS, with its
multiple hidden layers, can extract deeper network features
and has become a focal point for researchers. DL models now
dominate the field [9], [10], accounting for over 80% of IDS
research [11], thanks to their superior performance.

Despite their advantages, Deep Neural Networks (DNNs)
are vulnerable to adversarial attacks [12], [13] and backdoor
attacks, where subtle input perturbations can lead to incorrect
inferences. Szegedy et al. [14] showed that these adversar-
ial manipulations are often hard to detect, posing risks to
DL-based Network Intrusion Detection Systems (NIDS).
Attackers can produce adversarial instances by altering small
subsets of network features and making requests to the NIDS,
adjusting their perturbations based on feedback until the NIDS
is bypassed, and remains undetected by the NIDS systems.

These adversarial attacks can be classified into three cat-
egories based on the attacker’s knowledge: black box [15],
white box [16], and grey box [17]. Grey-box attacks need a
basic grasp of the structure of the target model as well as
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previous knowledge of the training data. Typically, attackers
treat a NIDS as a black-box system, where internal workings
are hidden, and behavior is learned through queries and
feedback.

In white-box attacks, adversaries possess full insight into
the model’s structure, including its architecture, parameters,
and the data used for training. This level of access allows
attackers to craft highly effective adversarial examples that can
bypass even state-of-the-art NIDS, creating serious security
vulnerabilities. This scenario represents the primary threat
model we investigate in our research. Techniques such as
Fast Gradient Sign Method (FGSM), Projected Gradient
Descent (PGD), Basic Iterative Method, DeepFool, and Carlini
& Wagner (CW) attacks exploit this knowledge to craft
adversarial examples that deceive the DL model. Wang and
Wang [18] conducted a feature-level attack (FLA) on a Multi-
Layer Perceptron (MLP) model using a white-box approach.
Such methods allow malicious flows to mimic benign traffic,
evading detection by even the most accurate NIDS.

We present a novel methodology called the Adversarial
Attack Detector (AAD) for addressing the problem of white-
box attacks, particularly those involving internal actors in IoT
environment. The contributions of our paper are summarized
as:

o A key contribution of this work is the comprehensive
and systematic analysis of white-box adversarial attacks
on NIDS by employing a diverse set of state-of-the-art
attack methods, including FGSM, PGD, DeepFool, and
BIM. This extensive exploration enables the generation
of varied adversarial examples, fostering a robust evalu-
ation and training process capable of addressing a wide
spectrum of attack strategies.

o« The paper introduces a novel Adversarial-Aware
Detection (AAD) framework designed to strengthen
the robustness of NIDS wunder white-box attack
scenarios. The AAD framework employs a multi-layered
architecture that integrates three key components: a
validator for initial input screening, an adversarial
discriminator for detecting subtle perturbations, and an
Enhanced Intrusion Detection System (EIDS) trained
with adversarial data. This integrated design provides a
comprehensive and adaptive defense mechanism.

« A significant contribution lies in the development of the
Enhanced Intrusion Detection System (EIDS), which not
only counters adversarial attacks but also operates as a
full-featured NIDS. By applying a logical OR operation
across detection outputs, EIDS ensures high sensitivity to
threats, thereby improving overall detection accuracy and
robustness against adversarial manipulations.

While prior research on adversarial robustness in Network
Intrusion Detection Systems (NIDS) has primarily focused
on adversarial training, ensemble models, or detection-based
countermeasures in isolation, this work introduces a unified
and multi-layered defense strategy. Unlike standard adversarial
training approaches that often rely on a single attack method
or model architecture, the proposed framework incorporates
a wide range of white-box attack techniques (FGSM, PGD,
DeepFool, and BIM) to generate diverse adversarial examples,
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improving generalization across threats. In contrast to tra-
ditional ensemble-based systems that typically use majority
voting, the Enhanced Intrusion Detection System (EIDS)
employs a logical OR aggregation to boost detection sensitiv-
ity. Moreover, the inclusion of a dedicated validator and an
adversarial discriminator adds additional layers of defense that
are often absent in prior models, enabling early rejection and
fine-grained perturbation analysis. This holistic design offers
stronger resistance against adaptive attackers and outperforms
conventional defenses by combining multiple complementary
components in a coordinated framework.

II. RELATED WORK

There exists various strategies to defend DL systems
from adversarial instances. Commonly used methods include
Network Distillation [19], Adversarial Training (AT) [20],
Adversarial Detecting [21], Input Reconstruction [22],
Classifier Robustifying [23], Network Verification [24], and an
ensemble of them, which work either reactively or proactively.
To tackle white-box adversarial attacks, in particular, several
defense mechanisms have been proposed. AT, in which the
model training is done on a mixture of original and adversarial
examples, is one of the most effective strategies. This approach
aids the system in recognizing and resisting adversarial per-
turbations. Another method is gradient masking [25], which
involves obscuring the gradient information to make it harder
for attackers to calculate effective perturbations. However, this
technique may be misleading as attackers may find alternative
ways for bypassing the defense. Other approaches include
defensive distillation, which smooths the model’s decision
boundaries, and the use of robust optimization techniques
aiming to increase the system’s overall robustness.

For DL models, server breaches are especially dangerous.
A compromised model allows attackers to gain white-box
access, enabling them to craft adversarial examples against
which there are no effective defenses. This scenario is
particularly devastating for organizations that have invested
substantial time and resources into developing proprietary
models. Shan et al. [26] addressed the problem of post-
breach recovery for DNN models. Shan et al. introduced
Neo, a novel system generating new versions of compromised
models and includes an inference-time filter to remove adver-
sarial instances created using existing compromised models.
Neo detects the overfitting of attacks to the compromised
model used in their development by gently offsetting the
classification surfaces of several model versions using latent
distributions.

Gungor et al. [27] proposed a stacking ensemble learning
framework that is more resilient against adversarial attacks
than single DL methods. It employed four of attack meth-
ods and ten different DL models. The results suggest that
models based on RNNs demonstrate greater robustness, while
CNN architectures show high vulnerability to attacks The
most robust individual ML method varies depending upon
dataset or attack methodology. Javeed et al. [5] presents an
explainable and resilient IDS specifically designed for Industry
5.0. The proposed system integrates advanced neural network
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Fig. 1. Launching an adversarial attack.

architectures, including BiLSTM and Bi-GRU, along with
fully connected layers and a softmax classifier.

Wu et al. [28] uncovered two key insights: (1) the presence
of larger generalization gaps at hidden layers and (2) the
potential effectiveness of minimizing these gaps to mitigate
white-box Membership Inference Attack (MIA). Based on
these insights, it proposed a novel defense method called
Nirvana. Nirvana selects a hidden layer with significant
generalization gaps and employs a multi-sample convex com-
bination of features during training. This approach fortifies the
model against attacks seeking to infer membership status from
the model’s responses. Experimental results on CIFAR100,
Purchasel100, and Texas datasets demonstrated a balanced
trade-off between utility and privacy.

Alhussien et al. [29] proposed a novel set of domain
constraints for network traffic that preserve the statistical and
semantic relationships between traffic features while ensuring
the validity of the perturbed adversarial traffic. Four types of
constraints are identified for it: distribution-preserving con-
straints, feature mutability and value constraints, and feature
dependence constraints. Using two intrusion detection datasets,
Alhussien et al. assessed the effects of them on white-box and
black-box attacks.

Zhou et al. [30] proposed a generative adversarial network
(GAN)-based Siamese neuron network (GSNN) to defend
against white-box adversarial attacks in modulation classifica-
tion. In this, a generator (G) is trained to create perturbations
which could deceive the discriminator (D), while the D aims
for correctly classifying original and adversarial instancess
generated by the G. The D, implemented as a Siamese
network, transforms the classification problem into a pairwise
comparison task. Upon completing the GSNN training, it
used a distance-based nearest class mean (NCM) classifier to
perform the classification task.

III. PRELIMINARIES

Adversarial attacks provide tiny, sometimes unnoticeable
modifications to the input data in order to take advantage of
flaws in DL models. With healthcare, these perturbations may
lead to incorrect findings from the model. The repercussions of
such attacks are vast, affecting fields ranging from autonomous
driving to healthcare. Developing strong defences requires an
understanding of attacks from adversaries and their varied
dynamics. Fig. 1 gives the general scenario of launching
adversarial attacks.

Adversarial attacks could be divided based on their objec-
tives: In targeted attacks the attacker aims for misleading the
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model to classify the input as a desired, wrong class. This
requires more precise perturbations but can be more damaging
if the targeted class has significant implications whereas in
non-targeted attacks the goal is to cause any incorrect classi-
fication. These attacks are generally easier to perform since
any deviation from the correct class is considered successful.
Evasion attacks [31] occur during the model’s deployment
phase. The attacker creates adversarial examples that bypass
the model’s defenses and evade detection. These attacks are
particularly concerning for real-time systems like biometric
authentication [32] and autonomous vehicles [33]. Unlike
evasion attacks, poisoning attacks [34] happen during the
training phase. Attackers introduce malicious data in training
data, leading the model in learning undesired patterns. This
can lead to a degraded performance or specific vulnerabilities
in the deployed model.

A. FGSM Method

FGSM is a technique used in generating adversarial
instances, that are slightly perturbed inputs built for fooling a
DL model in making undesired predictions. It takes advantage
of gradient of the loss function with respect to the input data
in creating these perturbations.

Given a DL model with parameters p, an original input a,
and a true label b, the objective is to create an adversarial
example adv, which is near to a but causes the model in
misclassifying it.

Initially, the gradient of the loss function J(P, a, b) with
respect to the input a is calculated. This gradient indicates
how the loss changes with small changes in the input data.
Mathematically, this is represented as:

ViJ(P,a, b) (1)

The gradient V,J(P,a,b) moves in the direction of the
steepest ascent of the loss function. Considering the sign of
V4, FGSM determines the direction in which to modify every
part of input for increasing loss.

Using 1, the direction for perturbing the input a is
determined by the sign of the computed gradient.

p = c-sign(V,J(P, a, b)) 2)

where: ¢ is scalar value which controls the amount of the
perturbation. sign(-) is the element-wise sign function that
outputs +1, —1, or 0.

Small value ¢ ensures that the perturbation is subtle, often
unrecognizable to humans, yet sufficient in causing neural
network to make a mistake.

Finally, the perturbation p is added to a to generate the
adversarial instance adv,:

advg =a+p=a+c-sign(V,J(P,a, b)) 3)

B. BIM Method

BIM is an extension of the FGSM that generates adversarial
examples through multiple iterations of small perturbations.
Using FGSM iteratively with a smaller step size, BIM refines
adversarial perturbation, making it more effective at fooling
neural networks.
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At the beginning, the adversarial instance adv, is initialized
same as the original input a:

advgo) =a 4

For each iteration itr from 1 to I (the total number of
iterations), adv, is updated using FGSM with a small step size
a:

adv{" = clip,, . (adv{" ) + o - sign(Vaav, J (P, advi" D, 1)) (5)

where: advflm)' is the adversarial example at iteration itr.
Vadv, J (P, adv? ™V b) is the gradient of the loss function with
(itr—1) . .

respect to adv, . « is the step size, a small scalar value
able to control the amount of each perturbation. clip, .(-)
ensures that the perturbed input remains within an e-ball
around the original input a, to maintain the perturbation’s
imperceptibility:

clip, . (adv,) = min(max(adv,, a — €), a + €) (6)

The clipping function 6 ensures that the total perturbation
across all iterations does not exceed the specified e-ball around
a, keeping perturbation subtle and imperceptible.

C. PGD Method

PGD is powerful and widely applied method for generating
adversarial examples. It extends the BIM by incorporating
projection for ensuring that the perturbations stay into a
specified norm bound. PGD is often considered the strongest
first-order adversary in AT contexts.

Given a DL model with parameters P, an original input a,
a true label b, and a perturbation bound €, the goal of PGD is
finding an adversarial instance adv, which maximizes the loss
function while ensuring that the perturbation stays within the
e-ball around a. Finally the adversarial example adv, to the a
with a random perturbation is initialized:

adv) =a+p where [pllo <e (7)

For each iteration itr from 1 to I (the total number of
iterations): '
the gradient of the loss function J(P, advg”_l), b) in respect

to the adversarial example adv((lm_l) is calculated:

8™ = Vaa,d (P, adv(" V. b) ®)

the adversarial instance is updated by taking a step in direction
of the gradient:

advi™ = advi™V 4 o . sign (g(itr)> 9

At the end, the updated adversarial example is projected
back into the e-ball around the original input:

adv(™ = clip, . (advfj")> = min(max(advg”), a—e),a+ e) (10)
Here: o is the step size. Vg, J(P, advgtr_l), b) is the
gradient of the loss function with respect to advg”_l). sign(+)
is the element-wise sign function.

The projection step ensures that the total perturbation
remains within the e-ball, maintaining the perturbation’s
imperceptibility.
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The final adversarial example adv, = advff) is obtained

after [ iterations.

D. DeepFool Method

DeepFool is designed for finding the minimal perturbation
needed for changing the classification of an input. It iteratively
linearizes classifier’s decision boundary and finds the smallest
perturbation that can push the input across this boundary.

Given a binary classifier B with parameters P, an original
input a, and a true label b € {0, 1}, DeepFool aims finding
tiny perturbation p such that the perturbed input adv, = a+p
is misclassified. Assume the decision boundary is defined by
B(a) = 0.

Initially the adversarial example advc(lo) is assigned to be the
original input a:

adv® =a

Y

For each iteration itr, until the classifier’s decision changes:
The gradient of the classifier is computed with respect to
the input:

__ 0B

== (12)

VB (advfft n )

ai”

The perturbation needed to cross the linearized decision
boundary is computed:

B (advgtr) )

pin = %~ . VB(advfj”)) (13)
1VB(adv{™ )2
Finally, the updated adversarial example is given as:
adv{ Y = ggyim 4 plin) (14)
At end, it is check if the classifier’s decision changes:
if B(advfj'"“)) £ B(x), stop. (15)

The final adversarial example adv, = adv?" P

after the decision boundary is crossed.

is obtained

IV. PROPOSED FRAMEWORK

In this section, we introduce Adversarial Attack Detector
(AAD), as shown in Fig. 2. AAD is designed to be highly
resilient against adversarial attacks and enhances intrusion
detection capabilities. Unlike conventional IDS), which are
often vulnerable to adversarial manipulations, AAD provides
superior protection and reliability in identifying and mitigating
such threats.

The primary advantage of AAD lies in its dual functionality.
Firstly, it serves as a robust defense against adversarial
attacks, which are intentional attempts by attackers to falsify
information in order to get around security mechanisms.
Secondly, AAD contributes significantly to intrusion detection.
Traditional IDS frameworks often struggle with accurately
detecting and responding to intrusions when adversarial
attacks are involved. However, AAD detects a broader range
of malicious activities.
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Fig. 2. Proposed AAD methodology.

Initially, instead of routing the traffic directly from the
sender to the traditional IDS, it is first passed through a
validator. This validator has a set of predefined rules for
incoming traffic, which are generated using an inbound ana-
lyzer. The validator uses these rules to assess the authenticity
& legitimacy of the incoming traffic. If the traffic meets the
predefined criteria, it is then forwarded to the adversarial
discriminator.

The adversarial discriminator is responsible for identifying
potential adversarial attacks. If the traffic passes through the
adversarial discriminator, it is then sent to the EIDS, which is
an adversarially trained ensembled IDS. The EIDS not only
checks for adversarial attacks but also identifies any other
types of intrusions. Once the traffic clears this stage, it is
allowed into the private network of the organization or user.
This multi-layered approach ensures robust protection against
both adversarial and traditional attacks, enhancing the overall
security of the network. There are several components to AAD,
which are covered in more detail as follows.

A. Validator

The validator functions as the initial bar of defense against
undesired traffic. It operates on a set of predefined rules
derived from the knowledge of an inbound analyzer. The
inbound analyzer meticulously examines incoming traffic and
defines specific rules for each feature of the traffic. These
regulations set the standard for what constitutes appropriate
and typical traffic. When traffic arrives, the validator compares
it against the predefined rules. If any aspect of the traffic falls
outside the established parameters, the validator rejects it as an
attack. However, if the traffic complies with the guidelines, it
moves on to the adversarial discriminator for further scrutiny.
This process ensures that only traffic deemed legitimate by the
validator proceeds, effectively filtering out potentially harmful
data at an early stage. Thus validator acts as a preliminary
filter for incoming traffic and applies a set of lightweight
statistical and heuristic checks to identify anomalous patterns

that may indicate adversarial manipulation. For example, it
flags inputs with unusual feature distributions (e.g., excessive
feature perturbation beyond a defined threshold or sudden
shifts in traffic volume). However, it should be noted that a
validator just does the initial check, which may be easier to
surpass by white box attacks.

B. Adversarial Discriminator (AD)

AD consists of an RF classifier that uses ensemble learning
to build multiple decision trees during training. The final
classification is determined by the most common output among
these individual trees. One of the key elements of constructing
decision trees within an RF is the splitting criterion, which can
be based on various metrics such as the one we used, named
Gini impurity.

For a node ¢ with K classes, the Gini impurity GIP(¢) is:

K
GIP(H) = 1 — Z r?

i=1

(16)

r; is the proportion of instances of class i in the node ¢.

In a base tree, the goal is splitting the data at each node in

a way that the emerging child nodes have lower impurity than

the parent node. For a split S that divides a node ¢ into two

child nodes #;, (left) and ¢z (right), the Gini gain (reduction in
impurity) from the split is:

T Tr
AGIP = GIP(t) — (?GIP(IL) + ?GIP(fR)> (17)

where: GIP(¢) is the Gini impurity of the parent node. GIP(tr,)
and GIP(tg) are the Gini impurities of the left and right child
nodes, respectively. T is the total number of instances in the
parent node. 7y and T are the numbers of instances in the
left and right child nodes, respectively.

C. AE Generator

Adversarial Example (AE) generator is a pivotal element
of the AAD methodology, tasked with creating adversarial
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samples to train both the AD and the EIDS. This generator
employs several advanced techniques to produce these sam-
ples, including the FGSM, PGD, DeepFool, and the BIM.
These techniques are all meant to quietly alter input data in a
way that skews ML models’ predictions, thus simulating the
kinds of adversarial attacks that the AAD system must defend
against.

By utilizing a variety of adversarial attack methods, the AE
generator ensures a diverse and comprehensive set of training
examples. This variety is crucial for training the AD and the
EIDS to recognize and mitigate different types of adversarial
attacks. This comprehensive training approach makes the AAD
system is effective in maintaining network security against
sophisticated adversarial threats.

D. Inbound Analyzer

The inbound analyzer continuously monitors the traffic
entering and leaving the private network. By analyzing
this traffic, the inbound analyzer gathers vital information
on normal and potentially malicious activity patterns. This
information is essential for the AE generator and the validator,
as it helps in defining the rules and characteristics for iden-
tifying legitimate traffic and generating realistic adversarial
examples. The validator uses these insights to establish a
baseline of acceptable traffic, ensuring that only genuine data
passes through. Meanwhile, the AE generator leverages this
information to create adversarial samples that mimic real-
world attacks, thereby improving the training and effectiveness
of the AD and the EIDS.

E. Enhanced Intrusion Detection System (EIDS)

The EIDS is a sophisticated component of the AAD that
leverages an ensemble of ML models to provide robust
security against adversarial attacks. This ensemble model
combines three distinct types of neural networks: MLP, CNN,
and LSTM. Each of these models has unique strengths, making
the ensemble highly effective to detect and mitigate a broad set
of cyber threats. The MLP excels at handling structured data,
the CNN is adept at recognizing patterns in traffic data, and
the LSTM is particularly suited for sequential data, capturing
temporal dependencies in network traffic.

The convolutional layer is the foundational component of
a CNN model, functioning by applying filters to the input to
obtain its features. Every filter, also known as kernel, slides
over the input, doing a convolution operation. This involves
producing the dot product between the kernel’s weights and
the corresponding features of the input. The result is a feature
map, which can be mathematically described by the following
equation:

(18)

In this equation: zf-‘ j Tepresents the value at the (i,j)-th

position of the k-th feature map. @jym,jin,c 18 the value at
position (i4m, j+n) of the c-th input channel. w’,‘n,n’ . denotes

the weights of the filter for the k-th feature map, with m and
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n indicating the filter dimensions, and c representing the input
channel. o is the bias term for the k-th feature map.

LSTM layers are a type of RNN layer built to model tem-
poral sequences and long-range dependencies more effectively
than standard RNNs. LSTMs achieve this by using a unique
structure including memory cells and gates.

Dense layers, also known as fully connected layers are
fundamental components of neural networks where each
neuron is connected to every neuron in the previous and
subsequent layers. These layers are typically used for tasks
like classification and regression.

For a dense layer with input a, weights W, bias o, and
activation function ¢, the output b is computed as follows:

b=¢(W-a+b) (19)

Here: a is the input vector. W is the weight matrix. o is
the bias vector. ¢ is the activation function, such as ReLU,
sigmoid, or softmax.

If the input has n dimensions and the output has m
dimensions, then: W is an m X n matrix. ¢ is an m-dimensional
vector.

Mathematically, the ensemble model can be represented as
a combination of the predictions from the MLP, CNN, and
LSTM models. Let fyzp(a), fcnn(a), and frstar(a) denote the
outputs of the MLP, CNN, and LSTM models respectively for
an input a. The final prediction ¥ of the ensemble model is
determined by a logical OR operation across the individual
model predictions. This means that if any one of the models
predicts the input as an attack, the ensemble system will
classify it as an attack. Formally, this can be expressed as:

Y = furp(a) V fenn (@) V frstm(a) (20)

where  is the final output, and V represents the logical OR
operation. This approach ensures a high sensitivity to attacks,
as the system errs on the side of caution by flagging any
suspicious activity detected by any of the models.

The EIDS operates as both a NIDS and a defense mech-
anism against adversarial attacks. By training the ensemble
model on adversarial examples generated by the AE generator,
the EIDS learns to identify and counteract sophisticated attack
strategies. This training involves minimizing a loss function J
that accounts for both the accuracy of detecting standard intru-
sions and the ability to recognize adversarial manipulations.
The robustness of the EIDS is enhanced by the diversity of its
constituent models, as each model contributes its strengths to
the ensemble, ensuring comprehensive coverage of different
attack vectors.

Overall, the AAD provides a highly effective defense system
that not only mitigates adversarial attacks but also functions
as a robust NIDS.

V. RESULTS & PERFORMANCE ANALYSIS
A. Experimental Setup

The proposed AAD methodology was developed in Python
using TensorFlow 2.13, with the adversarial samples generated
via the Adversarial Robustness Toolbox (ART) [35]. The
implementation and evaluation were carried out using Python
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TABLE I
STATISTICAL DESCRIPTION OF THE CSE-CIC-IDS2018 DATASET

Flow Type  Number of instances  Percentage
Benign 14,94,781 71.280
Typel 4,61,912 22.020
Type2 1,39,890 6.670
Type3 362 0.020
Type4 151 0.010
Type5 53 0.002
TABLE II

STATISTICAL DESCRIPTION OF THE DATASET USED TO PRODUCE
ADVERSARIAL SAMPLES

Flow Type = Number of instances  Percentage
Benign 46,00,200 76.670
Typel 13,36,200 22.270
Type2 61,200 1.020
Type3 1200 0.020
Type4 180 0.003
TypeS 120 0.002

3.10.11 on an Asus Vivobook gaming laptop with NVIDIA
1650 graphics. The AD was configured using scikit-learn. For
each tensorflow-created DL model, we employed the cross-
entropy loss function.

B. Dataset Description

We perform all experiments (including NID, white-box
adversarial attacks, and attacks on NIDS enhanced with the
proposed defenses) using the publicly available CSE-CIC-
IDS2018 dataset [36]. This dataset includes 14 types of
network intrusion traffic flows as well as benign traffic con-
sisting of multiple files but due to computational constraints,
we only used 2 of the data files dated 02-16-2018, and 02-
23-2018. The attacks are classified as: D_o_S_Hulk (Typel),
D_o_S_SlowHTTPTest (Type2), Brute_Force_Web (Type3),
Brute_Force_XSS (Type4), SQL_Injection (TypeS). The
infrastructure for CSE-CIC-IDS2018 consists of 50 machines
attempting to intrude on a victim network composed of 420
end hosts and 30 servers. Table I underlines the details of the
dataset used for adversarial detection.

Table II describes the data used to generate the adversarial
samples for our study. A total of 60,000 adversarial samples
were created, with 5,000 samples generated per adversarial
method,namely FGSM, PGD, DeepFool, and BIM, for each
MLP, CNN, and LSTM classifier.

C. Performance Metrics

Performance evaluation of AAD frameworks, especially
when dealing with adversarial attacks, relies on several tra-
ditional metrics used for intrusion detection systems, such
as Accuracy, Precision, Recall, F1 Score, and Loss [34].
However, apart from traditional metrics in the realm of adver-
sarial attack detection, another vital metric is the success rate.
This measure quantifies the model’s proficiency in recognizing
malicious inputs. Specifically, it’s calculated as the percentage
of adversarial samples that the model correctly flags as
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TABLE III
NIDS ACCURACY AND LOSS

Model Accuracy Validation Training  Validation

accuracy  Loss loss

MLP 99.98 99.97 0.01 0.00

CNN 99.92 99.91 0.02 0.00

LSTM 99.80 99.79 0.21 0.01

W Accuracy W Accuracy for adversarial attack (average) F1-score

B F1 score for adversarial attack (average)
100
75
50
25
0
MLP CNN LSTM

Model

Fig. 3. Comparing the NIDS.

harmful. The formula for success rate in this context can be
expressed as:
Correctly_Identified_Adversarial_Samples

Success Rate =
Total_Number_of Adversarial_Samples 0

Together, these evaluation measures offer a thorough assess-
ment of a model’s capabilities to correctly classify both benign
and adversarial samples and its effectiveness in distinguishing
adversarial examples from benign traffic.

D. Results Analysis

1) Analyzing State-of-Art NIDS Models in Case of
Intrusions and Adversarial Attacks: Table III presents the
comparison three NIDS models: MLP, CNN, and LSTM. MLP
performs best with 99.98% accuracy and lowest loss. CNN fol-
lows closely, while LSTM shows slightly lower performance.
All models demonstrate high accuracy and low validation loss,
indicating their effectiveness in network intrusion detection,
with MLP and CNN outperforming LSTM slightly.

Upon launching the adversarial attacks, it is seen that these
models become vulnerable and fall prey to attackers as shown
in Fig. 3. It compares the performance of the above three
models on a standard evaluation set and under adversarial
attack conditions. The MLP model shows excellent accuracy
(99.98%) and F1-score (99.95%) on standard evaluation, but
its performance significantly drops under adversarial attacks,
with an accuracy of 24.95% and an F1-score of 26.83%. This
indicates that while the MLP performs well under normal
conditions, it is highly susceptible to adversarial perturbations.

Similarly, the CNN model exhibits strong performance
with an accuracy of 99.92% and an Fl-score of 99.83% on
standard evaluation. However, it retains better robustness under
adversarial attacks compared to the MLP, with an accuracy
of 49.76% and an Fl-score of 50.8275. The LSTM model,
while demonstrating high accuracy (99.80%) and Fl1-score
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Fig. 4. NIDS success rate.

(99.57%) under normal conditions, suffers the most under
adversarial attacks, with an accuracy of just 4.89% and
an Fl-score of 8.9075. This highlights the varying degrees
of vulnerability among different model architectures when
subjected to adversarial inputs.

Additionally, Fig. 4 highlights the success rates of adver-
sarial attacks. For the MLP model, the adversarial attack
success rate is 75.05%, indicating that a significant majority
of adversarial attempts successfully compromised the model’s
performance. This aligns with the earlier observation of the
MLP’s substantial drop in accuracy and F1 score under
adversarial conditions, showcasing its high vulnerability to
such attacks.

Conversely, CNN demonstrates a better resilience to adver-
sarial attacks with a success rate of 49.88%. While still
significant, this rate is notably lower than that of the MLP,
reflecting the CNN’s comparatively stronger robustness. The
LSTM model, however, exhibits the highest susceptibility with
a success rate of 95.11%, indicating that nearly all adversarial
attempts succeed in disrupting its performance. This extreme
vulnerability underscores the need for enhanced defensive
mechanisms for LSTM models in adversarial settings.

2) Analyzing the Performance of Adversarial Discriminator
(AD) Against Adversarial Attacks: Fig. 5 presents the
performance metrics for different classifiers in context to
adversarial attacks.

The AD using RF achieved perfect performance, with
accuracy, precision, recall, and F1 score all at 100%. This
indicates that the RF model correctly identifies all samples,
both benign and adversarial, without any false positives or
false negatives. Such a high level of performance suggests that
the RF model is highly effective in distinguishing adversarial
examples from normal traffic.!

The Naive Bayes classifier achieved 97.26% accuracy but
struggles with precision (59.83%) and recall (74.79%), result-
ing in an F1 score of 66.49%. This suggests it correctly
classifies many samples but produces more false positives
than other models. In contrast, the Perceptron model excels,
with 98.98% accuracy, 98.86% precision, 98.63% recall, and
a 98.75% F1 score. These metrics indicate the Perceptron’s
effectiveness in balancing true positive and negative identifica-
tions, making it a superior classifier for adversarial detection

1t should noted that the AD is only trained on the adversarial samples and
identifies adversarial samples only. There is a possibility that the intrusion
attacks me surpass the AD systems. This is where EIDS comes into picture
and acts as both NIDS and adversarial attack detector.
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Fig. 5. Comparison of various ML models for AD.
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Fig. 6. Analysing success rate based on adversarial attack.

The LR classifier also shows strong performance with an
accuracy of 99.04%, precision of 98.02%, recall of 99.05%,
and an F1 score of 98.13%. These results demonstrate that LR
is particularly good at recall, indicating it can identify almost
all actual positive adversarial examples, with slightly lower
precision compared to Perceptron and SVC.

Lastly, the SVC exhibits high accuracy at 98.99%, with
precision, recall, and F1 scores all around 98.85% to 98.94%.
This consistency across all metrics signifies that the SVC
is highly effective and reliable in classifying adversarial
examples, comparable to the Perceptron and LR models.

3) Analyzing the Performance of EIDS Against Adversarial
Attacks®: Fig. 6 showcases the effectiveness of an EIDS in
mitigating adversarial attacks. It compares the success rates of
various attack methods before and after the implementation of
EIDS.

For the FGSM, the success rate slightly decreases from
99.30% to 95.96% after EIDS, indicating that while the
defense mechanism reduces the attack’s effectiveness, it
remains highly successful. The BIM shows a dramatic
decrease in success rate from 63.06% to 0.01% after EIDS
is applied. This nearly complete mitigation highlights the
robustness of EIDS against iterative attacks like BIM.

Similarly, PGD attacks experience a significant reduction in
success rate from 62.76% to 0.01% post-EIDS implementa-
tion, demonstrating the defense’s efficacy against this robust

2The efficacy of the EIDS in case of NIDS attacks can already be
established using Table III as it’s an ensemble of these models. However,
more detail is also discussed in the next sub-section.
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Fig. 7. Comparing the accuracy of EIDS with respect to different adversarial
attacks.

attack method. In contrast, the DeepFool attack’s success rate
decreases only slightly from 68.27% to 65.82% with EIDS.
This suggests that while EIDS provides some level of defense,
it is individually effective against DeepFool compared to BIM
and PGD.

Fig. 7 provides insight into the effectiveness of an EIDS by
comparing model accuracies before and after its implementa-
tion under various adversarial attack methods.

For the FGSM, the accuracy improves from 0.70% to
1.00% after applying EIDS. Although this is an improvement,
the accuracy remains quite low, indicating that while EIDS
offers some defense, FGSM attacks still significantly affect
the model’s performance. This can also be pre-countered using
the AD, which achieved 100% on adversarial attack detection.
The BIM shows a remarkable improvement in accuracy from
36.94% to 99.98% with EIDS. This dramatic increase demon-
strates the high effectiveness of EIDS in defending against
BIM attacks, essentially restoring the model’s performance to
its original accuracy level.

The DeepFool attack detection also sees a significant
increase in accuracy from 31.73% to 95.20% after EIDS is
applied. While not as complete as the defense against BIM,
this substantial improvement indicates that EIDS is highly
effective in mitigating the impact of DeepFool attacks. The
PGD method experiences a perfect restoration of accuracy
from 36.76% to 100.00% post-EIDS implementation. This
complete recovery highlights EIDS’s robust defense capabili-
ties against PGD attacks, effectively neutralizing their impact.

Apart from attack success rate and accuracy, Fig. 8 high-
lights the impact of the EIDS on the F1 scores. For the FGSM,
the F1 score decreases from 1.37 before EIDS to 0.10 after
EIDS, indicating that while EIDS changes the attack’s impact,
it does not improve the model’s performance under FGSM
attacks. This suggests that the defense mechanism, in this
case, might be causing excessive caution, reducing the model’s
ability to correctly classify even non-adversarial examples.

Conversely, for the BIM and PGD, the F1 scores improved
dramatically after implementing EIDS. The F1 score for
BIM rises from 40.88 to 99.95, and for PGD, it increases
from 40.38 to 99.99. These near-perfect post-EIDS F1 scores
highlight the efficacy of EIDS in defending against these
iterative attack methods. In contrast, the F1 score for DeepFool
remains relatively unchanged, decreasing slightly from 32.79
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Fig. 8. Comparing the F1 score of EIDS for different adversarial attacks.
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Fig. 9. Comparison of EIDS with other NIDS against intrusion and
adversarial attacks.

to 32.46, indicating that EIDS does not significantly affect
the model’s resilience to DeepFool attacks. This underscores
that while EIDS is highly effective against certain attacks, its
effectiveness can vary depending on the attack method.

In summary, EIDS significantly enhances model robustness
against various adversarial attacks, with especially notable
improvements for iterative methods like BIM and PGD,
while also providing substantial defenses against FGSM and
DeepFool attacks.

4) Analyzing the Performance of EIDS Against Adversarial
and Intrusion Attacks: Fig. 9 compares the performance of
the EIDS against individual models (MLP, CNN, LSTM) in
a comprehensive scenario that includes both intrusion attacks,
adversarial attacks, and benign traffic. EIDS demonstrates
superior performance with an accuracy of 99.96%, a recall of
99.96%, and an F1 score of 99.98%. This indicates that EIDS
is highly effective in correctly identifying and classifying both
benign and malicious traffic, maintaining a balance between
precision and recall, and achieving near-perfect performance
across all metrics.

In contrast, the MLP model shows significantly lower
performance with an accuracy of 44.18%, a recall of 30.98%,
and an F1 score of 47.3%. This suggests that MLP struggles
considerably in this mixed scenario, particularly with recall,
indicating a high rate of false negatives where actual threats
are missed.

The CNN model performs better than MLP but still falls
short compared to EIDS, with an accuracy of 74.81%, recall
of 68.87%, and an F1 score of 81.56%. While CNN shows
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a more balanced performance, it still has considerable room
for improvement, especially in recall, reflecting challenges in
detecting all intrusions and adversarial attacks accurately.

The LSTM model exhibits the lowest performance, with
an accuracy of 26.18%, a recall of 8.75%, and an F1 score
of 16.09%. These metrics highlight the LSTM’s difficulty
in handling the combined scenario, particularly in detecting
actual threats, as indicated by its extremely low recall and
F1 score.

Overall, it underscores the robustness of EIDS and high-
lights its effectiveness in providing a resilient and reliable
defense mechanism against a wide range of cyber threats.

Overall, the combined power of the validator, AD, and EIDS
presents a robust and comprehensive solution to the challenges
posed by adversarial attacks. The validator acts as the first line
of defense, filtering out potential adversarial inputs before they
reach the core detection system. The AD ensures that subtle
adversarial manipulations are effectively detected and classi-
fied. Finally, the EIDS, employing an ensemble of DL models
further enhances the robustness by leveraging the strengths of
each model to accurately identify and mitigate a wide range of
threats. This multi-layered approach not only improves detec-
tion accuracy and reduces false positives but also significantly
enhances the overall resilience of the network security system
against sophisticated adversarial attacks, thereby providing a
highly effective defense mechanism.

VI. CONCLUSION AND FUTURE WORK

In summary, this paper addresses the critical vulnerability
of ML and DL-based Intrusion Detection Systems (IDS) to
white-box adversarial attacks, with a focus on IoT environ-
ments. While standalone models like MLP, CNN, and LSTM
achieved higher performance under normal conditions, their
accuracy and F1 scores drop drastically when exposed to
adversarial inputs; highlighting a significant security gap. To
counter this, we introduced the Adversarial Attack Detector
(AAD) framework, a multi-layered defense system comprising
a request validator, an Adversarial Discriminator (AD), and
an Enhanced IDS (EIDS). Empirical results show that AAD
substantially improves resilience against a range of white-box
attacks, restoring detection performance even under adversarial
pressure.

Although the framework shows strong potential in exper-
imental settings, further research is needed to assess its
real-world applicability and generalizability. Future work will
focus on deploying AAD in practical environments to validate
its effectiveness under real-world network conditions.

APPENDIX

A complete list of abbreviations is included in the Appendix
(Section A) for the reader’s convenience.

« Intrusion Detection Systems (IDS)

o Multi-Layer Perceptron (MLP)

o Convolutional Neural Network (CNN)

« Long Short-Term Memory (LSTM)

o Internet of Things (IoT)

o Machine Learning (ML)
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o Deep Learning (DL)

o Deep Neural Networks (DNNs)

o Network Intrusion Detection Systems (NIDS)
o Generative Adversarial Network (GAN)

« Fast Gradient Sign Method (FGSM)

« Projected Gradient Descent (PGD)

o Carlini & Wagner (CW)

o Feature-Level Attack (FLA)

« Membership Inference Attack (MIA)

o Adversarial Robustness Toolbox (ART)

o Nearest Class Mean (NCM)

o Adversarial Discriminator (AD)

« Enhanced Intrusion Detection System (EIDS)
o Enhanced IDS (EIDS)

o Adversarial Attack Detector (AAD)
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