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 A B S T R A C T

Wastewater treatment plants (WWTPs) are among the most energy-intensive components of urban infras-
tructure and bear strict regulatory responsibilities for wastewater quality. These dual challenges, minimizing 
energy consumption and maintaining environmental compliance, are deeply interrelated and must be managed 
simultaneously to achieve sustainable plant operation. This study proposes a framework that comprises 
two customized components. The first component employs a voting ensemble model based on transformer 
architecture to predict energy consumption. It processes heterogeneous feature domains — including hydraulic, 
wastewater, and climatic variables — through parallel attention-driven streams. The outputs from these 
streams are then aggregated using a weighted voting mechanism to produce the final prediction. Second, a 
multitask Bidirectional Gated Recurrent Unit (Bi-GRU) forecasts wastewater quality indicators concurrently 
(ammonia, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD)), capturing shared 
temporal dependencies and reducing model complexity. A hybrid preprocessing strategy is applied, incor-
porating domain-aware outlier detection (z-score and Interquartile Range (IQR)), K-Nearest Neighbors (KNN) 
Imputation, and feature selection using Extreme Gradient Boosting (XGBoost).

Experimental results showed that. The voting ensemble model achieved the best results for energy 
consumption prediction with 31.61 of Root Mean Squared Error (RMSE). The multitask Bi-GRU achieved 
the best results for wastewater quality indicators with RMSE at 6.1689, 48.0323, and 88.2214 for ammonia, 
BOD, and COD, respectively. This work is among the first to integrate transformer ensembles and multitask 
learning in a unified WWTP forecasting system. Simultaneously addressing energy efficiency and water quality 
assurance, this offers a practical, scalable, and intelligent decision-support tool for sustainable wastewater 
management.
1. Introduction

Wastewater treatment plant facilities (WWTPs), a major source 
of operating expenses and greenhouse gas emissions in the indus-
try, are under pressure to improve efficiency while reducing energy 
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consumption as urbanization increases and environmental restrictions 
tighten. About 3% of the world’s power consumption is attributable 
to WWTPs, predicted to increase as the population and industrial 
demand expand (Cardoso et al., 2021). Since energy is a significant cost
contributor (Molinos-Senante et al., 2018), increases in energy
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consumption may result in a substantial increase in carbon diox-
ide emissions in the water sector when fossil fuels are utilized in 
power plants and a significant increase in operating costs (Hao et al., 
2015). Because of the significant energy footprint, WWTPs are an 
important target for optimization initiatives meant to promote climate-
resilient infrastructure and sustainable urban development. However, 
lowering energy use in WWTPs is fraught with challenges. Numerous 
variables, such as hydraulic load, pollution levels, and ambient envi-
ronmental conditions, all of which change over time, affect the energy 
consumption in these facilities.

Energy management has always depended on linear models and 
rule-based methodologies, which frequently fall short of capturing the 
intricate relationships between these factors (Zhou et al., 2024). Conse-
quently, the development of more sophisticated modeling methods that 
can interpret and forecast energy usage across varying operating sce-
narios is urgently required. The traditional analysis methods and non-
linear and interconnected linkages are difficult for traditional energy 
management techniques, which frequently rely on static or rule-based 
models, to capture, resulting in inefficiencies and lost energy-saving 
potential.

Promising solutions to overcome challenges in traditional analysis 
methods are provided by recent developments in deep learning (DL) 
and machine learning (ML). DL models like Long Short-Term Memory 
(LSTM) networks, Gated Recurrent Units (GRU), and Transformers 
can efficiently analyze multivariate time-series data by utilizing algo-
rithms that are very proficient in pattern recognition. The intelligent 
techniques allow them to capture both short-term and long-term depen-
dencies in WWTP operations (Niu et al., 2023; Ramli and Hamid, 2018; 
Ahmed et al., 2023; Bagherzadeh et al., 2021a). WWTP operators can 
modify their operating methods to reduce energy consumption while 
preserving treatment efficiency when they have access to quick and 
precise energy consumption data. For instance, when influent loading 
is minimal or influent quality is generally good, they may optimize aer-
ation levels, which lowers energy use (influent is untreated or partially 
treated wastewater). The volume of research examining DL in wastew-
ater treatment has increased recently (Alvi et al., 2023; Baarimah 
et al., 2024). However, the limitations of ML and DL approaches 
include their inability to fully capture intricate, nonlinear interac-
tions and dependencies among multivariate data, which sometimes 
necessitates considerable feature engineering or data augmentation. 
Furthermore, disappearing gradients and performance degradation over 
extended time sequences are problems that can plague models like 
RNNs, LSTMs, and GRUs, which reduces their ability to estimate en-
ergy usage properly in dynamic and multivariate settings like WWTPs. 
However, WWTPs must balance energy efficiency with treatment ef-
fectiveness. Energy use (especially for aeration, pumping, and heating) 
is tightly coupled with achieving effluent quality standards. Therefore, 
simultaneous prediction of energy consumption is essential for coordi-
nated, intelligent control, enabling cost savings without compromising 
regulatory compliance.

This study proposes a unified predictive framework that supports 
the sustainable and cost-effective operation of wastewater treatment 
plants. By jointly forecasting energy consumption and critical effluent 
quality indicators, the framework enables data-driven decision making 
that balances energy efficiency with compliance with environmen-
tal regulations. Such dual forecasting is crucial to optimize aeration, 
pumping schedules, and treatment cycles in real time, promoting both 
operational efficiency and environmental sustainability. We propose 
an integrated prediction framework that combines a multi-task deep 
learning model with a voting ensemble of transformer models. By com-
bining forecasts from many data categories — hydraulic, wastewater, 
and climate — the transformer-based voting ensemble increases the 
precision and robustness of energy consumption forecasting. Simulta-
neously, the multi-task model leverages the shared common features 
across domains to forecast ammonia, COD, and BOD concurrently. This 
paper not only enhances the prediction performance but also empowers 
resource management in real time and contributes to sustainability and 
energy efficiency.
2 
1.1. Motivations and contributions

WWTPs are under increasing pressure to optimize energy consump-
tion due to rising energy costs, increasing urbanization, and tightening 
of environmental regulations. The increasing energy needs of urbaniza-
tion and strict environmental restrictions highlight the pressing need 
for creative energy management solutions in WWTPs. Most previous 
research in the domain of wastewater treatment and energy predic-
tion has taken a single-task, single-model approach, often relying on 
conventional machine learning models (e.g., GBM, RF, SVR) or basic 
deep learning architectures (e.g., LSTM, GRU) applied in isolation. 
These approaches typically target either energy consumption or a single 
wastewater quality indicator and often lack integration across multiple 
feature domains (hydraulic, climatic, and wastewater). These tradi-
tional energy management systems often fail to capture complex and 
non-linear interactions between dynamic parameters such as hydraulic 
load, wastewater composition, and climate, even with advances in 
DL. These restrictions result in inefficiencies, lost optimization, and 
increased greenhouse gas emissions.

This study bridges that gap by introducing a unified deep learning 
framework that addresses both energy consumption forecasting and 
wastewater quality prediction in parallel, using an architecture that 
is, to our knowledge, novel in the literature. Our first contribution is 
a transformer-based voting ensemble model that independently pro-
cesses features from hydraulic, climate, and wastewater categories 
using separate transformer blocks. It then fuses their outputs through 
a weighted voting mechanism. Unlike traditional monolithic or early-
fusion approaches, this architecture enables specialized learning in each 
domain while maintaining robustness through ensemble integration. 
Our second contribution is a multi-task Bi-GRU model that predicts 
ammonia, BOD, and COD concurrently using shared temporal repre-
sentations. This enables knowledge transfer between related prediction 
tasks, improving data efficiency and model generalization. Addition-
ally, we introduce a dual-strategy preprocessing pipeline that handles 
outliers and missing values using statistically appropriate methods 
tailored to the distributional characteristics of each feature. We also 
apply Bayesian optimization for hyperparameter tuning, ensuring high 
model performance and efficiency. Overall, this study is the first to 
jointly leverage transformer-based ensemble modeling and multitask 
recurrent networks for comprehensive energy and quality management 
in WWTPs, thus offering a generalizable, scalable, and high-performing 
framework for sustainable infrastructure operations. The contributions 
of this paper are summarized as follows:

• Transformer-based ensemble model for domain-aware energy predic-
tion: We propose a voting ensemble deep learning model that 
uniquely applies multiple Transformers models for energy con-
sumption forecasting in WWTPs. The proposed voting ensemble 
model improves performance and resilience by integrating out-
puts from diverse transformer models based on different data 
categories (i.e., hydraulic, wastewater, and climatic) in contrast 
to single-model techniques.

• Multi-task Bi-GRU model for joint quality forecasting: We propose 
a novel multi-task deep learning model for concurrently predict-
ing numerous vital wastewater quality indicators (i.e., ammonia, 
BOD, and COD). Bi-GRU has improved temporal and sequen-
tial data learning for leveraging shared features across domains. 
We use optimal feature selection by using the XGBoost regres-
sor to guarantee the model is computationally efficient while 
maintaining significant prediction accuracy performance.

• Hybrid preprocessing and feature selection pipeline: We apply a 
tailored and efficient data preprocessing strategy — z-score for 
normally distributed features, IQR + KNN for skewed features — 
and XGBoost-based feature selection. In particular, models trained 
on selected features outperformed full-feature models, confirming 
the value of compact, high-quality input.



H. Saleh et al. Engineering Applications of Artiϧcial Intelligence 162 (2025) 112338 
• Empirical validation on real-world WWTP data: Our models achieve 
competitive results: an RMSE of 31.61 for energy prediction 
and 6.1689 for ammonia, 48.0323 for BOD, and 88.2214 for 
COD, respectively. These results highlight the effectiveness of the 
proposed integrated framework for sustainable WWTP operation.

In summary, while prior studies have focused on either energy 
consumption or effluent quality separately, WWTPs require integrated 
monitoring and forecasting of both aspects to meet both their economic 
and sustainability goals. Operational decisions (e.g., aeration control) 
directly influence both energy use and treatment effectiveness. Hence, 
this paper introduces a unified deep learning framework that supports 
holistic decision support by simultaneously forecasting energy needs 
and water quality indicators. The goal is not just improved accuracy but 
a practical, dual-purpose tool to guide sustainable WWTP operation. 
The proposed approach is innovative in that it explicitly models the 
operational complexity of wastewater treatment plants by combining 
transformer-based domain-specific learners and a multi-task temporal 
forecaster. Our model aligns with real-world WWTPs’ goals by jointly 
forecasting interdependent targets while adapting to the structure of 
the input domains (hydraulic, climatic, and wastewater). 

1.2. Paper structure

The remainder of this paper is arranged as follows. Section 2 pro-
vides overview of previous studies related to this work. The proposed 
framework describes the proposed model of energy consumption and 
wastewater quality factors introduced in Section 3. The experimental 
results are discussed in Section 4. Section 5 discusses the summary of 
results. Finally, conclusions are shown in Section 6.

2. Related work

Recent research has shown notable progress in using a variety of 
ML and DL approaches to optimize energy use in WWTPs. Bagherzadeh 
et al. (2021b) used feature selection and models such as artificial 
neural networks (ANN), Gradient Boosting Machine (GBM), and Ran-
dom Forest (RF) to examine the impact of climatic, hydrological, 
and wastewater characteristics on energy usage. Models trained and 
evaluated using public and open datasets (thanks to the Victoria Gov-
ernment’s open data policy) were collected from the Melbourne water 
facility for six years from 2014 to 2019. The results showed that 
GBM recorded the best performance; their investigation revealed that 
GBM was the best-performing model. Using the same dataset, Alali 
et al. (2023) made comparisons between 24 ML models that were 
optimized by Bayesian optimization for energy consumption prediction. 
Ensemble models using RF and XGboost were applied to select the most 
relevant features. In addition, they proposed lagged measurements 
as inputs to enhance the ML models’ ability to improve the model’s 
performance. Harrou et al. (2023) applied different DL models, RNN, 
LSTM, GRU, BiLSTM, and BiGRU, with feature selection (FS) and data 
augmentation techniques for predicting the WWTP’s energy consump-
tion. They applied a cubic spline as a data augmentation method 
to increase the dataset size and enhance the model’s performance. 
They made comparisons between models before and after applying 
data augmentation. The results showed that BiGRU recorded the best 
performance with data augmentation.

Additional studies by Zhang et al. (2021) used RF to build energy 
consumption models using urban drainage data from the China Sta-
tistical Yearbook, emphasizing the importance of discharge standards 
in energy predictions. Ramli and Hamid (2018) presented data-based 
modeling for a wastewater treatment facility employing ML techniques. 
The authors examined methods such as ANN, KNN, Support Vector 
Regression (SVR), and LR to forecast energy use. Data used for en-
ergy consumption was gathered from Tenaga Nasional Berhad (TNB) 
electrical bills in Malaysia between March 2011 and February 2015. 
3 
According to the study, ANNs outperformed the other machine learning 
techniques regarding prediction accuracy, having the lowest root mean 
square error. Torregrossa et al. (2016) have highlighted the benefits 
of data-driven approaches in achieving energy efficiency by emphasiz-
ing the effective use of ANNs, support vector regression (SVR), and 
linear regression (LR) to forecast energy usage. Bagherzadeh et al. 
(2021b) proposed studies of the effect of wastewater, hydraulic, and 
climate-based parameters on energy consumption (EC) and sustainable 
energy-saving WWTPs using feature selections (FS), ML, and ANN, and 
Gradient Boosting Machine (GBM), and Random Forest (RF). Further-
more, many creative approaches and procedures have been developed 
to improve energy consumption modeling in WWTPs. While Oliveira 
et al. (2021) produced remarkable results with a CNN model for 
energy predictions, Das et al. (2021) examined several DL models and 
found GRUs to be superior in predicting energy usage based on real-
world data. Yusuf et al. (2019) demonstrated the efficacy of LSTM 
in enhancing prediction accuracy by combining ARIMA and LSTM 
models to forecast electric load. By combining RF and neural networks 
to improve forecast accuracy, Torregrossa et al. (2018) presented a 
machine learning cost modeling technique that successfully evaluated 
energy costs across 317 WWTPs in Europe.

The fuzzy clustering approach by Qiao and Zhou (2018) enhanced 
fuzzy neural networks’ effluent quality and energy consumption model-
ing capabilities. Last, Oulebsir et al. (2020) promoted energy efficiency 
and sustainability in wastewater treatment processes by optimizing 
energy usage at the Boumerdes-WWTP using a data-driven approach. 
However, our proposed framework bridges a significant gap by of-
fering a comprehensive strategy that integrates various datasets and 
cutting-edge modeling techniques, opening the door for more effective 
and sustainable wastewater treatment processes than previous stud-
ies, which mainly concentrated on individual modeling techniques or 
limited data sources.

Mekaoussi et al. (2023) proposed a hybrid ML model based on an 
extreme learning machine (ELM) optimized by the Bat algorithm (ELM-
Bat) for predicting BOD in WWTP. The results showed that the hybrid 
ELM-Bat recorded the best performance compared with those of the 
multilayer perceptron(MLP), the RFR, and Gaussian process regression 
(GPR). In Baki et al. (2019), the authors used a dataset collected from 
2025 to 2026 from the laboratory of Antalya Hurmathat to predict 
BOD. The dataset includes different features: pH, chemical oxygen de-
mand, suspended sediment, total nitrogen, total phosphorus, electrical 
conductivity, and input discharge. In Alsulaili and Refaie (2021), the 
authors applied an ANN model with a minimal set of influent variables 
(temperature, conductivity, COD) to predict BOD. With R2 values in 
the 0.61–0.75 range, these models show promise for application as 
soft sensors in WWTP real-time control systems, speeding up decision-
making and optimization. In Saleh and Kayi (2021), the authors applied 
an ANN with different features: chloride ions, nitrate ions, phosphate 
ions, sulfate ions, ammonia, and BOD, which are included in the dataset 
collected from WWTP North Gas Company/Kirkuk, to predict COD. 
Abba and Elkiran (2017) applied an ANN and MLP with different 
features: pH, TSS, total nitrogen, total phosphates, conductivity, and 
SS, which are included in the dataset collected from WWTP mod-
els, to predict the COD in a wastewater treatment plant in Nicosia, 
North Cyprus. In Heddam et al. (2016), the authors proposed a gen-
eralized regression neural network (GRNN) with five variables: COD, 
pH, temperature, suspended solids, and electrical conductivity, which 
were collected from WWTPs in the east of Algeria, to predict BOD. 
In Qambar and Al Khalidy (2022), the authors applied different ML 
models: DT, RF, adaptive boosting, gradient boosting (GB), and extreme 
gradient boosting algorithms, using two WWTPs in the South Kingdom 
of Bahrain to predict BOD. The GB model obtained the best results.

To handle the previous challenges, we propose a comprehensive and 
purposefully integrated DL framework by combining transformer-based 
voting ensembles for energy prediction and multi-task temporal  models 
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Fig. 1. Proposed architecture for energy consumption and wastewater quality.
for effluent quality forecasting. Our approach mirrors the operational 
realities of WWTPs and leverages shared patterns in climate, hydraulic, 
and wastewater data. This integration is not incidental, but central to 
achieving accurate, robust, and interpretable forecasting that can be 
realistically adopted in practice.

3. Methodology

Fig.  1 presents the main components of the proposed methodology, 
which comprises five key stages: (1) Data acquisition, incorporating 
hydraulic, climate, wastewater features, and energy consumption data; 
(2) Data preprocessing, where outliers in energy consumption are 
handled using the z-score method, while outliers in the other features 
are treated with the IQR method combined with KNN imputation; (3)
Data splitting, dividing the dataset into training and testing subsets; 
(4) Proposed models, including a voting ensemble Transformer-based 
model for forecasting energy consumption, and a multi-task Trans-
former model for predicting wastewater quality indicators such as BOD, 
COD, and ammonia; and (5) Evaluation, performed using RMSE, MAE, 
and MAPE as performance metrics. Each of these steps is described in 
detail in the following subsections.
4 
3.1. Data acquisition

Multivariate data from the Melbourne water treatment plant and 
airport weather station1 is used to enhance methods for predicting 
energy consumption. The dataset covers five years, from January 2014 
to June 2019, and is comprised of 1382 entries that includes nineteen 
variables, as outlined in Table  1. The variables cover essential elements, 
including energy consumption, biological, hydraulic factors, and cli-
matic. Information regarding water quality and biological traits was ac-
quired through sensor readings, while weather data was obtained from 
the Melbourne airport weather station. The dataset encompasses time-
related information, which is utilized to enhance prediction accuracy. 
Further information about the used dataset is given in Bagherzadeh 
et al. (2021b).

3.2. Data preprocessing

To guarantee the reliability of the data, a meticulous data-cleaning 
procedure is conducted through the following steps:

1 https://data.mendeley.com/datasets/pprkvz3vbd/1.

https://data.mendeley.com/datasets/pprkvz3vbd/1
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Table 1
Features and corresponding name of dataset.
 Categories Parameters (Abbreviation) Unit  
 – Energy consumption MWh 
 Hydraulic Average inflow m3/s  
 Average outflow m3/s  
 
Wastewater

Ammonia (NH4–N)  
 Biological Oxygen Demand (BOD) mg/L 
 Chemical Oxygen Demand (COD) mg/L 
 Total Nitrogen (TN) mg/L 
 

Climate

Average temperature ◦C  
 Maximum temperature ◦C  
 Minimum temperature ◦C  
 Atmospheric pressure hPa  
 Average humidity  
 Total rainfall (Pr)  
 Average visibility km  
 Average wind speed km/h 
 Maximum wind speed km/h 
 
Time

Year –  
 Month –  
 Day –  

• Outliers in energy consumption — data points exhibiting un-
usually high or low usage — were removed using the z-score 
method. This choice was grounded in empirical distribution anal-
ysis, which indicated that the energy consumption followed a 
near-normal distribution. The z-score method, being sensitive to 
deviations in Gaussian distributions, was thus appropriate for this 
context (Chikodili et al., 2020).
We applied the z-score method using a standard threshold of 
±1.96. Data points with z-scores greater than +1.96 or less than 
−1.96 were considered statistical outliers and were excluded from 
further analysis. This threshold corresponds to the conventional 
95% confidence interval for normally distributed data. The de-
cision was supported by visual inspection, which confirmed that 
energy consumption followed a near-Gaussian distribution.
Approximately 5.43% of the data points were removed through 
this step. The z-score indicates how many standard deviations 
a data point is from the mean of the dataset, allowing us to 
systematically detect and eliminate outliers.
To compute a z-score for a specific data point, Eq. (1) is used. 
𝑧 =

𝑥 − 𝜇
𝜎

, (1)

where z is the z-score, 𝑥 is the data point, 𝜇 is the mean of the 
dataset, and 𝜎 is the standard deviation of the dataset.

• In contrast, the distributions of other features (hydraulic, wastew-
ater, and climatic variables) were found to be skewed or non-
Gaussian, as confirmed by descriptive statistics and visual in-
spections. Consequently, we employed the Interquartile Range 
(IQR) method for detecting outliers in these variables, given its 
robustness to distributional assumptions (Vinutha et al., 2018), a 
statistical technique that measures data dispersion. Detected out-
liers were subsequently imputed using the K-Nearest Neighbors 
(KNN) algorithm (Peterson, 2009). This approach was particularly 
suitable as the majority of features exhibited skewed or non-
Gaussian distributions, for which the IQR method is known to 
be more robust and effective compared to other outlier detection 
techniques.
To determine the IQR for a provided dataset, Eq. (2) is applied 
after arranging the data in ascending order. 
𝐼𝑄𝑅 = 𝑄3 −𝑄1, (2)

where Q1 represents the median of the lower half of the dataset, 
while Q3 represents the median of the upper half of the dataset. 
An outlier is defined as any value that falls outside the range:
[𝑄 − 1.5 × 𝐼𝑄𝑅, 𝑄 + 1.5 × 𝐼𝑄𝑅]
1 3

5 
Following outlier detection, once outliers are detected across all 
features. The features are treated as missing values and handled 
using the KNN imputation procedure, which involves calculating 
distances and imputing missing values based on the nearest neigh-
bors as follows: The Euclidean distance between two data points 
𝑎 and 𝑏 in an 𝑛 dimensional space is calculated by using Eq. (3). 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) =

√

√

√

√

𝑛
∑

𝑖=1
(𝑎 − 𝑏) (3)

Then, the nearest neighbors 𝐾 is used to determine the data point 
with missing values based on the calculated distances. The value 
of K = 3 was empirically chosen after conducting a grid search 
across values from 1 to 10. The optimal K was determined based 
on imputation accuracy metrics (RMSE, MAE) on a validation 
subset, and K = 3 achieved a balance between local sensitivity 
and computational stability, minimizing potential overfitting.
For imputing the missing value 𝑚 (in feature 𝑓𝑚) of a data 
point, the imputed value is calculated as the weighted average of 
the corresponding feature values from the 𝐾 nearest neighbors, 
utilizing Eq. (4). 

𝑚̂ =
∑𝐾

𝑖=1 𝑤𝑖 × 𝑚𝑖
∑𝐾

𝑖=1 𝑤𝑖
, (4)

where 𝑤 represents the weighted average, which can be computed 
through different weighting methods including inverse distance 
weighting as shown in Eq. (5). 

𝑤𝑖 =
1

Distance(𝑎, 𝑏𝑖)
(5)

3.3. Data splitting

In this step, the dataset has been split into two subsets: a training set 
comprising 80% of the data, and a testing set comprising the remaining 
20%. The training set has been used to train the proposed models, 
while the testing set (unseen data) has been employed to evaluate their 
performance.

3.4. Proposed models

3.4.1. Voting ensemble model for energy consumption
A novel voting ensemble model has been developed as an integrated 

predictive tool to enhance performance and data analysis capabilities 
significantly. The integrated model combines three distinct feature 
categories (i.e., hydraulic, wastewater, and climate) allowing for a 
comprehensive approach to improving predictive accuracy, as depicted 
in Fig.  2. To effectively capture the nuances of each feature set, the 
model utilizes parallel transformer architectures, each dedicated to one 
of the three feature categories. This parallelization takes advantage of 
the unique strengths and specialized capabilities of each model type, 
ensuring that the specific characteristics of each feature set are fully 
leveraged.

After generating predictions from the individual models, a weighted 
average voting method is used to combine them. In this approach, 
each model’s prediction is assigned a weight that reflects its relative 
importance or reliability. These weights were determined based on the 
models’ individual performance on the validation dataset. Specifically, 
we evaluated each model using performance metrics such as RMSE 
and MAE, and assigned higher weights to models that demonstrated 
better predictive accuracy. Therefore, these weights were manually se-
lected through iterative experimentation to balance performance across 
different input sources, rather than being learned during training.

The final output is then obtained by multiplying each model’s 
prediction by its corresponding weight and summing the results. This 
ensemble approach enhances the robustness and accuracy of the fi-
nal predictions by reducing the influence of less reliable models. A 
step-by-step outline of this method is provided in Algorithm 1.
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Fig. 2. Voting ensemble model with transformer model for energy consumption.
Algorithm 1 Weighted Average Voting for Multi-Source Prediction
Require: Hydraulic_features, Wastewater_features, Climate_features
Ensure: Final_predictions
1: 𝑃hyd ← Hydraulic_Model(Hydraulic_features)
2: 𝑃ww ←Wastewater_Model(Wastewater_features)
3: 𝑃cl ← Climate_Model(Climate_features)
4: 𝑤hyd ← 0.2
5: 𝑤ww ← 0.5
6: 𝑤cl ← 0.4
7: Final_predictions ← 𝑤hyd ⋅ 𝑃hyd +𝑤ww ⋅ 𝑃ww +𝑤cl ⋅ 𝑃cl
8: return Final_predictions

The transformer model employed in the voting ensemble model, as 
depicted in Fig.  2, begins with an input layer that receives a tensor 
𝑋 of shape (1, number of features) at each time step. This input is 
then passed through a dense layer, which projects the features into an 
embedding space, as defined in Eq. (6). 
𝐸 = 𝑊𝐸𝑋 + 𝑏𝐸 , (6)

where 𝐸 represents the embedding output, 𝑋 is the input, 𝑊𝐸 is the 
weight matrix, and 𝑏𝐸 is the bias vector. Then, Positional Encoding (PE) 
is added to the embedding 𝐸 in (7). 
𝐸𝑃𝐸 = 𝐸 + 𝑃𝐸 (7)

where 𝐸𝑃𝐸 represents what is then processed through the transformer 
block, which incorporates a Multi-Head Attention mechanism and a 
Feed-Forward Neural Network (FFNN) with normalization and dropout 
layers, as illustrated in Fig.  2. The advantage of the Multi-Head Atten-
tion mechanism is its ability to capture complex dependencies between 
different parts of the input by concentrating on various ‘‘head’’ or 
aspects of the data (Lv et al., 2022). Therefore, 𝐸𝑃𝐸 goes through a 
Multi-Head Attention mechanism as follows: 
𝑎𝑡𝑡𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ), (8)

where 𝑄,𝐾, 𝑎𝑛𝑑𝑉  are the Query, Key, and Value matrices derived from 
𝐸  since this is a self-attention mechanism (Yang et al., 2024). The 
𝑃𝐸

6 
Multi-Head Attention output for each head is computed as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑑

(

𝑄𝐾𝑇
√

𝑑𝑘

)

)𝑉 , (9)

where 𝑑𝑘 is the dimensionality of the keys used for scaling. The final 
Multi-Head Attention output is obtained by concatenating the outputs 
of all heads and projecting them using a weight matrix, as in the 
following equation. 
𝑎𝑡𝑡𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡

(

ℎ𝑒𝑎𝑑1,… ., ℎ𝑒𝑎𝑑ℎ
)

𝑊𝑂 , (10)

where 𝑊𝑂 is the output projection matrix. After that, dropout is applied 
to the attention output, and a residual connection adds the original 
input to the attention output, using Eqs.  (11) and (12). This step helps 
stabilize the training by maintaining gradient flow. 
𝑎𝑡𝑡𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑎𝑡𝑡𝑛_𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝 = 0.1) , (11)

where 𝑝 is the dropout probability. The output from the attention block, 
out1, is given by: 
𝑜𝑢𝑡1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚

(

𝐸𝑃𝐸 + 𝑎𝑡𝑡𝑛_𝑜𝑢𝑡𝑝𝑢𝑡
)

(12)

It is processed through a Feed-Forward Network consisting of two 
Dense layers, as described in Eq. (13). 
𝑓𝑓𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈

(

𝑊1 ∗ 𝑜𝑢𝑡1 + 𝑏1
)

𝑊2 + 𝑏2, (13)

where 𝑊1 and 𝑏1 are the weights and biases for the first dense layer, 𝑊2
and 𝑏2 are the weights and biases for the second dense layer, and ReLU 
is the activation function applied to the first dense layer. Subsequently, 
dropout is applied to the FFNN output, and a residual connection adds 
𝑜𝑢𝑡1 to the FFNN output, as shown in Eqs.  (14) and (15). 
𝑓𝑓𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑓𝑓𝑛_𝑜𝑢𝑡𝑝𝑢𝑡, 𝑝 = 0.1) , (14)

where 𝑝 is the dropout probability. Next, the output from the trans-
former block is given by: 
𝑡𝑟𝑎𝑛𝑠_𝑜𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑜𝑢𝑡1 + 𝑓𝑓𝑛_𝑜𝑢𝑡𝑝𝑢𝑡) (15)

It passes through the Global Average Pooling1D layer, which re-
duces the data’s dimensions by averaging each feature across all time 
steps, using Eq. (16): 
𝑚𝑎𝑥_𝑜𝑢𝑡 = 𝑚𝑎𝑥(𝑡𝑟𝑎𝑛𝑠_𝑜𝑢𝑡) (16)
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Subsequently, a fully connected layer is applied, consisting of a dense 
layer with a ReLU activation function (giving 𝑦), followed by a dropout 
layer to mitigate overfitting (giving 𝑦𝑑𝑟𝑜𝑝). Finally, a dense layer pro-
duces a single output value (𝑦̃), making it suitable for regression tasks. 
Since this is a regression model, the output layer does not use an 
activation function, as demonstrated by the following equations: 
𝑦 = 𝑅𝑒𝐿𝑈 (𝑊𝑓𝑐1 ∗ 𝑚𝑎𝑥_𝑜𝑢𝑡 + 𝑏𝑓𝑐1), (17)

where 𝑊𝑓𝑐1 is a weight matrix of a fully connected layer and 𝑏𝑓𝑐1 is 
the bias vector. 
𝑦𝑑𝑟𝑜𝑝 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑦, 𝑝 = 0.1), (18)

where 𝑝 is the dropout probability (0.1 in this case). 
𝑦̃ = 𝑊𝑜𝑢𝑡 ∗ 𝑦𝑑𝑟𝑜𝑝 + 𝑏𝑜𝑢𝑡, (19)

where 𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are a weight matrix and the bias vector of the 
output layer, respectively.

3.4.2. Multi-task model for wastewater quality
The second proposed model is designed to analyze the influence 

of multiple features on wastewater characteristics. It is structured as 
a multitask forecasting model, where the same set of input features 
is shared across multiple output targets, enabling the model to make 
predictions on various wastewater levels simultaneously. The model 
takes energy consumption, hydraulic data, climate variables, and time-
based features (such as the day and month) as inputs. The shared 
features are then used to predict three different wastewater charac-
teristics: ammonia, BOD, and COD. To identify which input features 
are most influential, the model employs the XGBRegressor technique, 
which is applied across all input features.

The architecture of the proposed multitask model is illustrated in 
Fig.  3. The architecture is comprised of a shared input layer and three 
distinct Bi-GRU sub-networks, one for each target output (ammonia, 
BOD, and COD). Each of these sub-networks produces a separate re-
gression output, effectively forecasting the values for each wastewater 
characteristic. The first layer in the model is a shared input layer that 
expects a tensor with dimensions (1, number of features) for a single 
time step. Let 𝑋 denote this input tensor. The next component of the 
model consists of three independent sub-networks, one for each target. 
Each sub-network includes a Bi-GRU layer, which processes the input 
data in both forward and backward directions.

To prevent overfitting and improve generalization, a dropout layer 
with a rate of 0.2 is applied after the Bi-GRU layer. This is followed by 
a dense layer with ReLU activation, which introduces non-linearity and 
allows the model to capture more complex patterns in the data. Another 
dropout layer is added to further regularize the network. Finally, the 
model ends with a dense output layer for each sub-network, which 
produces a single regression value for each target output (ammonia, 
BOD, or COD). These outputs are generated using a linear activation 
function to ensure that the predicted values are continuous and can 
represent the range of possible wastewater characteristics, as shown in 
the following equations. 
ℎ𝑡 = GRU(𝑋𝑡, ℎ𝑡−1) (20)

⃖⃖ ⃖ℎ𝑡 = GRU(𝑋𝑡, ⃖⃖ ⃖⃖⃖⃖⃖ℎ𝑡−1) (21)

ℎBiGRU𝑡 =
[

ℎ𝑡, ⃖⃖ ⃖ℎ𝑡
]

(22)

ℎ𝑑𝑟𝑜𝑝 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡
(

ℎBiGRU𝑡 , 0.2
)

(23)

𝑑 = 𝑅𝑒𝐿𝑈
(

ℎ𝑑𝑟𝑜𝑝 ∗ 𝑊1 + 𝑏1
)

, (24)

where 𝑊1 is a weight matrix of a dense layer and 𝑏1 is the bias vector. 

𝑑 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑑, 0.2 (25)
𝑑𝑟𝑜𝑝 ( )
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𝑦𝑖 = 𝑑𝑑𝑟𝑜𝑝 ∗ 𝑊𝑜𝑢𝑡 + 𝑏𝑜𝑢𝑡, (26)

where 𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are the weight matrix and the bias vector of the 
output layer. This equation produces a single scalar output 𝑦𝑖 for each 
target. The model’s design allows it to learn shared patterns across 
multiple outputs while also accounting for the unique characteristics 
of each target. By leveraging the Bi-GRU layers and regularization 
techniques such as dropout, the model aims to make accurate and 
robust predictions on wastewater characteristics, even in the presence 
of complex temporal dependencies and potentially noisy data.

In summary, the choice to model each feature category (hydraulic, 
climatic, wastewater) with a separate transformer stream stems from 
operational insights in WWTPs. Each domain affects energy and efflu-
ent behavior differently, e.g., rainfall impacts inflow dynamics, temper-
ature affects biological processing, and influent COD levels determine 
aeration load. This structure allows the model to specialize in the 
temporal and contextual patterns of each domain before fusing insights 
through ensemble voting.

3.5. Baseline deep learning models

We compared the proposed models with several DL models: Recur-
rent Neural Network (RNN), Gated Recurrent Unit (GRU), Long Short-
Term Memory (LSTM), Bidirectional (Bi-LSTM), Bi-GRU (Bi-GRU).

• RNN: RNN is a form of neural network that interprets data in 
succession, keeping a hidden state updated throughout each time 
step, permitting it to record temporal dependencies (Sherstinsky, 
2020). The key procedure integrates the current input with the 
prior hidden state, resulting in the current hidden state (Ming 
et al., 2017). Hidden state ℎ𝑡 updated each time t as: 

ℎ𝑡 = 𝑓 (𝑤ℎℎ𝑡−1 +𝑤𝑥𝑥𝑡 + 𝑏ℎ) (27)

where 𝑤ℎ is the weight matrix for the hidden state, 𝑤𝑥 is the 
weight matrix for the input, 𝑥𝑡 is the input at time t, 𝑏ℎ is the 
bias term, and f is the activation function used. The output can 
be calculated as: 
𝑦𝑡 = 𝑤𝑦ℎ𝑡 + 𝑏𝑦 (28)

where 𝑤𝑦 is the weight matrix, and 𝑏𝑦 is the bias vector for the 
output. Throughout training, gradients are generated using the 
chain rule, considering the dependencies within time steps.

• GRU: GRU is a variant of RNN that uses gating techniques to 
boost efficiency on sequence tasks, specifically for tackling the 
vanishing gradient problem (Shewalkar et al., 2019). GRUs are 
intended to record long-term dependencies in sequential data 
with greater efficiency. 𝑧𝑡 is the update gate, 𝑟𝑡 is the reset gate, 
and ⊙ represents the element-wise multiplication. ℎ(𝑡−1) is the 
hidden state at previous time stamp 𝑡 − 1, 𝑥𝑡 input at time 𝑡, 𝑤𝑧, 
𝑤𝑟, 𝑤ℎ are the weight matrices for the update, reset, and hidden 
state, respectively, 𝑏𝑧, 𝑏𝑟, 𝑏ℎ bias vectors, and 𝜎 is the sigmoid 
activation function. 
𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (29)

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (30)

ℎ̄𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) (31)

ℎ𝑡 = (1 − 𝑧𝑡)⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̄𝑡 (32)

• LSTM: LSTM is a powerful variant of RNN architecture that 
employs a cell state, and three gates, i.e., the input gate, governs 
the cell’s input, the forget gate decides what information to give 
up, and the output gate regulates the cell’s output (Yu et al., 
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Fig. 3. Proposed multitask forecasting model for wastewater quality.
2019). The gating mechanisms enable LSTMs to retain and for-
get information selectively, making them an appealing option in 
various machine learning and deep learning applications (Belletti 
et al., 2019). where 𝜎 is sigmoid activation function, 𝐶𝑖 is cell 
state at time t, ℎ(𝑡−1) is the hidden state at previous time stamp 
t−1, 𝑥𝑡 is the input at time t, 𝑤𝑓 , 𝑤𝑖, 𝑤𝑐 , 𝑤𝑜 are the weight 
matrices for the forget, input, candidate cell state and output 
respectively, ⊙ represents the element-wise multiplication., and 
𝑏𝑓 , 𝑏𝑖, 𝑏𝑐 , 𝑏𝑜 are bias vectors. 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ) (33)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (34)

𝐶̃𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐 ) (35)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 (36)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (37)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) (38)

• Bi-LSTM: Bi-LSTM is a type of LSTM that analyzes input se-
quences in both forward and reverse directions (Siami-Namini 
et al., 2019). Bi-LSTM comprises two independent LSTM layers: 
forward LSTM, which handles the sequence from beginning to 
end. Backward LSTM evaluates the sequence from end to begin-
ning (Siami-Namini et al., 2019). The outputs of both LSTM layers 
concatenate using summation, resulting in an expanded version of 
the input sequence. 
ℎ𝑡 = LSTM(𝑥𝑡, ℎ𝑡−1) (39)

⃖⃖ ⃖ℎ = LSTM(𝑥 , ⃖⃖ ⃖⃖⃖⃖⃖ℎ ) (40)
𝑡 𝑡 𝑡−1
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ℎBiLSTM𝑡 =
[

ℎ𝑡, ⃖⃖ ⃖ℎ𝑡
]

(41)

where (ℎ𝑡) is the hidden state of the backward LSTM, this dual 
approach allows them to capture richer contextual information, 
making them highly effective for various applications in sequen-
tial data tasks.

• Bi-GRU: Bi-GRU leverages GRUs to process sequences in both 
directions. It integrates the hidden states of the forward and 
backward GRU, permitting it to access context from both ends of 
the sequence, improving the performance on various sequence-
based tasks (Abdelgwad et al., 2022). The outputs of both GRU 
layers can be concatenated, summed, or merged to offer a more 
complete representation of the input sequence.

3.6. Performance evaluating

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 
are used to evaluate models. 

𝐑𝐌𝐒𝐄 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦obs 𝑖 − 𝑦pred 𝑖

)2
(42)

𝐌𝐀𝐄 = 1
𝐧

n
∑

𝐢=1

|

|

|

𝐲obs 𝐢 − 𝐲pred 𝐢
|

|

|

(43)

The Mean Absolute Percentage Error (MAPE) is a common metric 
for evaluating forecasting accuracy. The formula for MAPE is: 

MAPE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

|

|

|

× 100 (44)

4. Results and discussion

The results include two main sections that present the results of 
models for predicting energy consumption and the results of predicting 
wastewater targets (ammonia, COD, and BOD) using multitask models.
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Fig. 4. 3D surface of average inflow, average outflow, and energy consumption.
4.1. Experimental setup

A NVIDIA RTX 3090 GPU was utilized to run our experiments. The 
programming language implemented for this experimentation is Python 
3, which is used for implementations based on different libraries. 
Seaborn and Matplotlib are used to visualize results, and TensorFlow 
and Keras are used for the DL models. We removed atmospheric pres-
sure from the climate category because it has the same value of 0. Dif-
ferent data-cleaning processes are implemented: Outliers in energy con-
sumption are removed using the z-score method. In contrast, outliers 
across all features are identified using IQR and replaced by applying 
KNN.

4.1.1. Dataset splitting
The dataset is split into a 75% training set and a 25% testing set. 

A training set was used to train models, and a testing set was used to 
evaluate models.

4.1.2. Hyperparameter values
Hyperparameter values for transformer models, Each transformer 

model within the voting ensemble (hydraulic, wastewater, and climate 
branches) follows a consistent architecture composed of four Multi-
Head Attention. The input features from each domain are embedded 
into a vector of size 64. The feed-forward network following each 
attention layer uses a 128-dimensional hidden layer and a ReLU acti-
vation, with a dropout rate of 0.1 applied after both the attention and 
FFN blocks. The models were trained using the Adam optimizer with 
a learning rate of 0.001. The batch size was set to 16, and training 
was conducted for 50 epochs, with early stopping triggered if the 
validation RMSE did not improve for 10 consecutive epochs. The same 
hyperparameter configuration was used for all three domain-specific 
transformers to ensure consistency and fair ensemble integration. 
9 
Hyperparameter values for DL models: LSTM, GRU, Bi-LSTM, Bi-
GRU, RNN, The models were trained using the Adam optimizer with 
a learning rate of 0.001, 50 epochs, with early stopping triggered if the 
validation RMSE did not improve for 10 consecutive epochs. Models 
include 400 hidden units with Relu as activation functions, with a 
dropout layer of 0.3. 

4.2. Data analysis

This section presents the effect of each category on energy consump-
tion and wastewater.

4.2.1. Data analysis of energy consumption
The correlation between three variables, i.e., average inflow, av-

erage outflow, and the energy consumption is depicted in a three-
dimensional surface graph, an in Fig.  4. The 𝑥-axis shows average 
inflow, the 𝑦-axis shows average outflow, and the 𝑧-axis shows energy 
consumption. Variations in energy consumption are displayed on the 
surface graph according to average inflow and outflow levels. The 
complex and sweeping surface of the graph, which has several peaks 
and valleys, indicates that energy consumption was significantly im-
pacted by the interplay between average input and average outflow. 
The surface’s colors correspond to energy consumption; warmer hues 
(red and yellow) indicate higher consumption, while bluer and purpler 
hues indicate lower consumption. Pumping and treatment operations 
usually use more energy at higher average inflow rates. Pumps must 
work harder as more water reaches the plant, which boosts energy 
usage. Additionally, sustaining pressure and flow rates often requires 
more energy when outflow is higher. Therefore, optimizing energy 
efficiency and operational costs requires effectively controlling these 
features. From the graph, it is clear that there is a direct relationship 
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Fig. 5. RadViz visualization of wastewater factors impacting energy consumption.
between the higher the average inflow and average outflow, the higher 
the energy consumption.

The RadViz graph in Fig.  5 is an important visualization technique, 
that allows for the simultaneous analysis of multiple interconnected 
factors, resulting in a comprehensive understanding of the system 
and guiding decision-making to improve the environmental and eco-
nomic sustainability of the wastewater treatment process. Here the 
graph depicts the interactions between four parameters in a wastewater 
treatment system: BOD, COD, ammonia, and total nitrogen. The three 
vertices of the top triangular graph indicate the extremes of BOD, 
COD, and ammonia, respectively. In contrast, the data points within 
the graph reflect a variety of these three elements in terms of total 
nitrogen content. Higher energy consumption is indicated colors (yel-
low, orange, and green), and lower energy consumption is indicated 
by purple colors. The data points in the graph are labeled with colors 
corresponding to the respective ranges of energy use. The amounts of 
organic matter in the water are indicated by high BOD levels, while 
the use of more energy-intensive biological treatment techniques. Since 
maintaining microbial activity is one of the most energy-intensive ac-
tivities in biological treatment systems, increased BOD greater aeration. 
COD tracks all oxidizable chemicals in water, and more significant 
levels frequently demand chemical treatments such as oxidation, which 
can be energy-intensive. Like BOD, greater COD levels necessitate more 
aeration and mixing, increasing energy usage. Ammonia raises the 
oxygen demand in biological treatment procedures, requiring extra 
energy for aeration and nitrification. Temperature can also influence 
the energy required for nitrification, with colder temperatures requiring 
10 
more energy to maintain treatment efficiency. Nitrogen removal fre-
quently entails both nitrification and denitrification procedures, which 
can be energy-intensive depending on the need for aeration and mixing. 
Therefore, high levels of BOD, COD, ammonia, and total nitrogen 
increase energy consumption in a wastewater treatment plant.

Using data points grouped according to the similarities in the fea-
ture values, RadViz in Fig.  6 shows how various climate-related vari-
ables correspond with different amounts of energy usage. When more 
energy consumption points (dark green) are drawn towards Maximum 
Temperature or Average Humidity, it may indicate that the aspects of 
the climate influence energy consumption. A link between a feature 
and greater energy consumption may be implied if a certain energy 
consumption range has a propensity to cluster around specific anchors 
(for example, Range 4 close to Average Temperature). Similar feature 
profiles are probably shared by points that are closer to one another 
inside the circle. locations near the ‘‘Average Temperature’’ and ‘‘Aver-
age Humidity’’ anchors, for instance, may have greater values for these 
characteristics than other locations. On the other hand, points that are 
more centrally located are drawn equally by several features, indicating 
that the feature values are balanced.

4.2.2. Data analysis of wastewater quality
This section presents the relationship between all factors and

wastewater factors (ammonia, COD, BOD). Firstly, we determine the 
most critical features that affect wastewater. Decreasing the input data 
dimensions helps us to simplify the model and obtain better accuracy. 
XGBRegressor, as a feature selection method, is used to select the 
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Fig. 6. RadViz visualization of climate factors impacting energy consumption.
crucial features from the dataset. Fig.  7 shows a feature importance 
analysis of factors affecting wastewater factors (ammonia, BOD, and 
COD). Average Outflow is the most influential feature, significantly 
affecting ammonia, COD, and BOD with F scores of 722, 775, and 
823, respectively. Total Rainfall has the lowest impact on ammonia, 
COD, and BOD, with F scores of 23, 22, and 21, respectively. In our 
study, Average Outflow, Average Inflow, Energy Consumption, Average 
Temperature, Maximum Temperature, Average Humidity, Average Vis-
ibility, Average Wind Speed, and Day are used for applying multitask 
models to predict ammonia, COD, BOD in parallel.

This bubble diagram in Fig.  8 illustrates the relationship and interac-
tion between the average temperature represented on the 𝑥-axis and the 
ammonia levels on the 𝑦-axis. The diagram consists of a set of bubbles 
whose size is proportional to the amount of rainfall, while their color 
gradient indicates the ammonia levels. Dark purple bubbles indicate 
high levels of ammonia, while lighter, greener colors indicate lower 
levels. It is also noticeable from the diagram that there is an inverse 
relationship between average temperatures and ammonia levels. This 
may be because high temperatures enhance the conversion of ammonia 
to nitrate, while low temperatures slow this process, which increases 
the amount of ammonia. The RadViz plot in Fig.  9 analyzes and 
interprets the changes in BOD levels in the wastewater treatment plants 
between full features. The graph shows the direct and influential effect 
of temperature, inflow, and outflow of water and humidity on BOD 
rates due to their impact on the biological and chemical processes in 
the wastewater and hence on the energy consumption rates (Srivastava 
et al., 2020). The least influential factors were the visibility rate and 
the rainfall rate again.

The RadViz plot in Fig.  10 illustrates the relationship between full 
features with COD. The purpose of the plot is to help analyze the 
relationship between COD requirements and the other variables. It is 
clear from the plot that this relationship exists, and it is a direct rela-
tionship between COD and both low temperature and wind and, thus, 
11 
energy consumption. This result can be attributed to the fact that at low 
temperatures, chemical and biological reactions are reduced, which in 
turn leads to the decomposition of organic waste and thus increases 
the levels of COD in the water (Zheng et al., 2013). Conversely, it was 
found that there is an inverse relationship between high temperatures, 
which in turn accelerate the oxidation process of organic compounds, 
leading to a decrease in COD levels (Ma et al., 2021).

4.3. Results of predicting energy consumption

This section presents the results of LSTM, GRU, Bi-LSTM, Bi-GRU, 
RNN, and transformer models to predict energy consumption using 
different evaluation methods: RMSE, MAE, and MAPE with optimized 
and non-optimized data.

4.3.1. Comparison of models’ performance on non-optimized data
Table  2 shows the results of models (LSTM, GRU, Bi-LSTM, Bi-

GRU, RNN, and transformer) for each category hydraulic, climate, 
wastewater using different evaluation methods RMSE, MAE, and MAPE. 
It shows that transformer models achieve the best performance with the 
lowest error for each category. Models in the hydraulic and wastewater 
categories record the best results. In the hydraulic category, Bi-LSTM 
has the weakest performance and largest errors (RMSE = 36.6316 and 
MAPE = 10.7585). Regarding RMSE, LSTM and GRU report roughly 
the same values, at 36.4135 and 33.9426, respectively. The transformer 
operates the best with the fewest mistakes (RMSE = 35.6379 and MAPE 
= 10.6556). In the climate category, Bi-GRU performs the worst with 
the largest errors (RMS = 37.9915 and MAPE = 10.7109). Similar 
findings are recorded by Bi-LSTM and GRU with RMSE values of 
37.2306 and 37.2357, respectively.

The transformer has the lowest mistakes and the best performance 
(RMSE = 35.9522 and MAPE = 10.7109). In the wastewater category, 
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Fig. 7. Feature importance.
LSTM performs the worst with the largest mistakes (RMSE = 37.3055 
and MAPE = 10.8828). The same results are recorded by Bi-LSTM 
and Bi-GRU, with RMSE values of 36.4002 and 36.4840, respectively. 
The transformer has the lowest mistakes and the best performance 
(RMSE = 35.1189 and MAPE = 10.0532). The proposed model vot-
ing model based on the voting from each transformer model across 
categories achieves the best performance with a value of 34.3219 for 
RMSE, which is a 1% improvement compared to transformer mod-
els. The results of the paired t-tests indicate statistically significant 
differences between the Voting model and other transformer models. 
Specifically, the p-values for the comparisons were as follows:p = 
0.000431, 0.003296, and 0.003300 for Hydraulic-Transformer,
Wastewater-Transformer, respectively. Since all p-values are below the 
standard significance threshold of 0.05, these results demonstrate that 
the Voting model’s performance differs significantly from each of the 
compared models.

4.3.2. Comparison of models’ performance on optimized data
Table  3 shows the results of models (LSTM, GRU, Bi-LSTM, Bi-

GRU, RNN, and transformer) for each category, hydraulic, climate, 
and wastewater, using different evaluation methods, RMSE, MAE, and 
MAPE.

Transformer models achieve the best performance with the lowest 
error for each category. Models in the hydraulic and wastewater cat-
egories record the best results. According to the hydraulic category, 
Bi-LSTM performs the worst with the highest errors (RMSE = 35.1701 
and MAPE = 10.148). LSTM and GRU record approximately the same 
results, with 33.9705 and 33.9426 RMSE, respectively. The transformer 
performs the best with the lowest errors (RMSE = 33.1359 and MAPE 
= 9.7757). According to the climate category, GRU performs the worst 
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Table 2
Comparison of models’ performance in prediction energy consumption on non-
optimized data.
 Categories Models RMSE MAE MAPE  
 

Hydraulic

LSTM 36.4135 29.8117 10.7300 
 GRU 36.3303 29.7578 10.7367 
 Bi-LSTM 36.6316 30.0186 10.7585 
 Bi-GRU 35.9076 29.3364 10.7101 
 RNN 36.3316 29.1489 10.8706 
 Transformer 35.6379 28.5425 10.6556 
 

Climate

LSTM 37.5717 30.8289 10.9247 
 GRU 37.2357 30.5595 10.8717 
 Bi-LSTM 37.2306 30.5557 10.8709 
 Bi-GRU 37.9915 31.1724 10.9987 
 RNN 36.9790 29.5944 11.1755 
 Transformer 35.9522 29.3904 10.7109 
 

wastewater

LSTM 37.3055 30.6166 10.8828 
 GRU 37.1953 30.5259 10.8653 
 Bi-LSTM 36.4002 29.8209 10.7443 
 Bi-GRU 36.4840 29.8923 10.7531 
 RNN 37.1210 30.4632 10.8532 
 Transformer 35.1189 28.1657 10.3136 
 – Voting model 34.3219 27.5504 10.0532 

with the highest errors (RMS = 35.8630 and MAPE = 10.3181). Bi-
LSTM and RNN record approximately the same results, with 34.0697 
and 34.0278 RMSE, respectively. The transformer performs the best 
with the lowest errors (RMSE = 33.6919 and MAPE = 9.7918). Ac-
cording to the climate category, GRU performs the worst with the 
highest errors (RMS = 34.8288 and MAPE = 10.2256). Bi-LSTM and Bi-
GRU record approximately the same results, with 33.7006 and 33.8133 
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Fig. 10. RadViz visualization of climate factors impacting COD.
RMSE, respectively. The transformer performs the best with the lowest 
errors (RMSE = 33.1569 and MAPE = 9.9301). The proposed voting 
model, based on the voting from each transformer model across cat-
egories, achieves the best performance, with RMSE of 31.6163, 3% 
improvement compared to transformer models.

The results of the paired t-tests indicate statistically significant 
differences between the Voting model and other transformer models. 
Specifically, the p-values for the comparisons were as follows: p = 
0.000373, 0.000102, and 0.002588 for Hydraulic-Transformer, Wast-
ewater-Transformer, respectively. Since all p-values are below the stan-
dard significance threshold of 0.05, these results demonstrate that 
the Voting model’s performance differs significantly from each of the 
compared models.

The lowest RMSE value reported by Voting model in Table  3, 
31.6163 kWh/m3, represents a significant improvement compared to 
transformer model and LSTM, GRU, Bi-LSTM, Bi-GRU and RNN models, 
which ranged from 33 to 37 kWh/m3. While the absolute value of 
RMSE depends on plant-specific energy usage patterns, values in the 
low 30 s are considered accurate enough for supporting operational 
energy planning in WWTPs. Notably, this level of accuracy allows 
plant operators to anticipate high-demand periods, optimize aeration 
or pumping schedules, and identify anomalies in energy usage that 
may signal equipment inefficiencies. Therefore, the model’s predictive 
power is not only statistically significant but also practically useful in 
a real-world decision-support context.

Fig.  11 displays fluctuations in energy consumption predictions 
across transformer models of features for wastewater, climate, and 
hydraulic, and the proposed model (voting) with some degree of vari-
ation between them. The real data line appears to have more frequent 
and extreme peaks, while the other models generally track it but with 
differing degrees of accuracy and smoothness. The Voting method (yel-
low) represents a combined model to improve accuracy over individual 
model predictions.
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Table 3
Comparison of models’ performance in prediction energy consumption on 
optimized data.
 Categories Models RMSE MAE MAPE  
 

Hydraulic

LSTM 33.9426 27.6674 9.9319  
 GRU 33.9705 28.0494 9.9834  
 Bi-LSTM 35.1701 28.3291 10.148  
 Bi-GRU 33.7598 27.8797 9.9579  
 RNN 33.6251 27.3770 9.8309  
 Transformer 33.1359 27.0887 9.7757  
 

Climate

LSTM 34.4386 28.4531 10.0624 
 GRU 35.8630 29.5826 10.3181 
 Bi-LSTM 34.0697 28.1344 9.9987  
 Bi-GRU 34.6578 28.6268 10.0978 
 RNN 34.0278 28.0977 10.1573 
 Transformer 33.6919 27.3345 9.7918  
 

Wastewater

LSTM 34.7499 28.6990 10.1131 
 GRU 34.8288 28.4492 10.2256 
 Bi-LSTM 33.7006 27.8302 9.9511  
 Bi-GRU 33.8133 27.9231 9.9640  
 RNN 33.565 26.2028 9.4705  
 Transformer 33.1569 27.3378 9.9301  
 – Voting model 31.6163 24.3304 8.9026  

4.4. Results of single-task models to predict wastewater quality

This section presents the results of baseline models (LSTM, GRU, 
Bi-LSTM, Bi-GRU, and RNN) for predicting BOD, COD, and ammonia 
as individual values. They applied both the full feature set and selected 
features.

Table  4 shows that models with selected features achieved the 
best performance compared to models with full features. Comparing 
Bi-GRU to other models, it records the best performance with the 
fewest errors. Bi-GRUs analyze the data both forward and backward, 
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Fig. 11. Comparison between actual data and predicted data of energy consumption.
efficiently capturing context from the sequence’s previous and subse-
quent phases. Furthermore, this simpler GRU structure helps Bi-GRUs 
learn relationships in sequences more effectively and lowers computing 
effort.

In full features, the LSTM performs the worst and has the high-
est errors, with RMSEs of 8.8120, 51.0455, 108.8735, for ammonia, 
BOD, and COD respectively. The best results are obtained by Bi-GRU, 
which has the lowest RMSE for BOD and COD, respectively, at 7.0700, 
47.5811, 93.6207. In selected features, BI-GRU records the best per-
formance with the lowest error across all targets: ammonia (RMSE =
6.2299 and MAPE = 14.2190), BOD (RMSE = 47.9506 and MAPE =
11.4435) and COD (RMSE = 89.0222 and MAPE = 9.2546). LSTM 
performs the worst results, with the highest error of 6.7138 RMSE for 
ammonia and 55.5588 RMSE for BOD. 

4.5. Results of multitask models to predict wastewater quality

This section presents the results of multitask models (LSTM-
Multitask, GRU-Multitask, BI-LSTM-Multitask, BI-GRU-Multitask, and 
RNN-Multitask) to predict BOD, COD, and ammonia in parallel using 
different evaluation methods: RMSE, MAE, and MAPE. They applied 
both the full feature set and selected features.

Table  5 shows the results of the multitask models to forecast 
wastewater values with optimized data and full features and selected 
features. We can see that models with selected features achieved the 
best performance compared to models with full features. Bi-GRU-
Multitask records the best performance with the lowest errors com-
pared to other models. The model with ammonia records the lowest 
RMSE and the highest MAPE. Models with COD record the highest 
RMSE and the lowest MAPE.

In full features, LSTM-Multitask records the worst performance 
with the most significant errors, with RMSE at 8.7950, 51.4978, and 
104.2075 for ammonia, BOD, and COD, respectively. Bi-GRU-Multitask 
achieves the best performance with the lowest RMSE at 6.6578,
46.9277, and 90.6838 for ammonia, BOD, and COD, respectively.

In selected features, BI-GRU-Multitask records the best performance 
with the lowest error across all targets: ammonia (RMSE = 6.1689 
and MAPE = 13.0589), BOD (RMSE = 48.0323 and MAPE = 12.2143) 
and COD (RMSE = 88.2214 and MAPE = 9.0292). LSTM-Multitask 
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Table 4
Comparison of single-task models’ performance in prediction wastewater. 
 Features Models Targets RMSE MAE MAPE  
 

Full features

LSTM
Ammonia 8.8120 7.3847 20.9270 

 BOD 51.0455 41.8896 12.8770 
 COD 108.8735 86.5003 10.3927 
 

GRU
Ammonia 7.3856 5.8361 15.3636 

 BOD 54.0472 44.9566 13.9884 
 COD 105.6655 85.9383 9.7571  
 

Bi-LSTM
Ammonia 7.0303 6.3280 16.4437 

 BOD 52.1656 44.5405 13.3564 
 COD 105.6414 85.8574 9.7697  
 

Bi-GRU
Ammonia 7.0700 5.6184 16.2050 

 BOD 47.5811 39.5620 12.4540 
 COD 93.6207 78.1180 9.2229  
 

RNN
Ammonia 7.9533 6.4196 19.9019 

 BOD 53.3189 44.6520 12.3839 
 COD 99.5006 79.5850 9.4540  
 

Selected features

LSTM
Ammonia 6.7138 5.4788 14.5395 

 BOD 55.5588 45.2308 14.8189 
 COD 102.2044 84.8195 9.6165  
 

GRU
Ammonia 6.3275 4.9330 15.9104 

 BOD 50.0969 40.9679 12.8555 
 COD 107.9807 86.0623 9.7553  
 

Bi-LSTM
Ammonia 6.5463 5.2277 15.8665 

 BOD 53.6910 45.3937 14.1784 
 COD 94.8595 75.8942 9.5583  
 

Bi-GRU
Ammonia 6.2299 5.0258 14.2190 

 BOD 47.9506 40.0708 11.4435 
 COD 89.0222 73.5907 9.2546  
 

RNN
Ammonia 6.3509 5.2929 15.3396 

 BOD 48.8841 39.3360 13.0508 
 COD 98.5006 77.5850 9.8540  

performs the worst results, with the highest error of 6.4416 RMSE for 
ammonia and 97.4463 RMSE for COD. Fig.  12 contains three line plots 
comparing the performance of different multitask models in predicting 
three parameters over time: ammonia, BOD, and COD with the 𝑥-axis 
indicating Time (day) and the 𝑦-axis indicating the parameter value.
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Table 5
Comparison of multitask models’ performance in prediction wastewater.
 Features Models Targets RMSE MAE MAPE  
 

Full features

LSTM-Multitask
Ammonia 8.7950 7.1638 20.7605 

 BOD 51.4978 42.2318 13.3483 
 COD 104.2075 84.6781 9.6434  
 

GRU-Multitask
Ammonia 6.8893 5.5797 14.9091 

 BOD 52.6701 43.0118 13.7473 
 COD 104.6424 83.2028 9.6252  
 

Bi-LSTM-Multitask
Ammonia 6.9120 5.7069 15.3801 

 BOD 51.4063 41.8812 13.1628 
 COD 103.3811 83.9029 9.5614  
 

Bi-GRU-Multitask
Ammonia 6.6578 5.5123 15.0829 

 BOD 46.9277 37.4812 12.0856 
 COD 90.6838 74.7268 8.7368  
 

RNN-Multitask
Ammonia 7.8755 6.3774 18.2660 

 BOD 51.4036 40.4983 11.9897 
 COD 97.9017 78.0267 9.2862  
 

Selected features

LSTM-Multitask
Ammonia 6.4416 5.1371 16.1310 

 BOD 54.3157 44.4416 14.5893 
 COD 97.4463 76.9276 9.7217  
 

GRU-Multitask
Ammonia 6.1996 4.8373 15.8807 

 BOD 49.4814 39.6500 12.7779 
 COD 104.2822 82.8013 9.7936  
 

Bi-LSTM-Multitask
Ammonia 6.3161 5.0355 15.7557 

 BOD 51.5169 42.1989 13.8947 
 COD 92.9662 73.8588 9.4497  
 

Bi-GRU-Multitask
Ammonia 6.1689 4.8518 13.0589 

 BOD 48.0323 39.5788 12.2143 
 COD 88.2214 70.5225 9.0292  
 

RNN-Multitask
Ammonia 6.2517 4.9733 14.8637 

 BOD 47.3206 38.9054 12.8414 
 COD 96.1963 75.4696 9.5437  

Note that the COD predictions consistently show the highest RMSE 
but also the lowest MAPE across all models. This discrepancy is primar-
ily due to the scale and distribution of COD values in the dataset, which 
tend to be substantially higher than those of ammonia and BOD. RMSE 
captures absolute error in the same units as the target variable, and 
therefore, naturally increases with the magnitude of the values being 
predicted. In contrast, MAPE measures relative error and becomes 
smaller when predictions deviate by a modest percentage—even if the 
absolute deviation is large. This highlights a known issue in regression 
evaluation where RMSE and MAPE may diverge in interpretability 
depending on the scale of the target variable. As a result, the reported 
metrics should be interpreted jointly rather than in isolation to assess 
model effectiveness across different targets.

In summary, the Bi-GRU-Multi-task model performed best across 
quality indicators, supporting the hypothesis that temporal and statis-
tical dependencies exist among Ammonia, BOD, and COD. This reflects 
biological and chemical linkages in treatment processes, such as how 
ammonia oxidation affects COD removal under varying aeration and 
sludge retention times.

4.6. Comparison with literature studies

Table  6 compares previous studies and our work based on the 
number of features, types of models, and pre-preprocessing techniques. 
In our work, we proposed a novel ensemble voting model combining 
predictions from multiple transformer models to enhance the accuracy 
and robustness of energy consumption prediction. We applied special 
pre-processing techniques to optimize the dataset.

The authors (Bagherzadeh et al., 2021b) applied GBM, RF, ANN, 
RNN, and KNN at RMER 33.9, 34.8, 39.8, 37.3, and 37.33, respec-
tively. The models used included nine selected features: Months, Total 
Nitrogen, Ammonia, BOD, Maximum Temperature, Average Humidity, 
Total Rainfall, and Average Inflow. The authors in Alali et al. (2023) 
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applied XGBoost, LightGBM, GPRRQ, and GSVR with features selected 
by XGboost and lag column of energy consumption that recorded 37.33, 
37.14, 37.38, 37.45, and 37.7. Harrou et al. (2023) applied different DL 
models RNN, LSTM, GRU, BiLSTM, and BiGRU with selected features 
by XGBoost algorithms, including the month, daily inflow rate (Q), 
average humidity, TN, BOD, and ammonia, and recorded RMSE at 
38.655, 38.683, 37.759, 39.064, and 39.114, respectively.

We can see that the transformer of each category records the best 
results compared to other studies, and the voting ensemble model gets 
the best results compared to the transformer with 31.6163 RMSE. The 
optimized data with transformer models improve the performance of 
models for energy consumption, and the voting ensemble model using 
full features improved the performance of models.

5. Study limitations and future work

This study presents a significant advancement for both the prac-
tical and technical aspects of WWTP management. From a business 
and operational perspective, the proposed framework addresses urgent 
challenges in energy optimization and wastewater quality monitoring—
two critical domains for sustainable urban infrastructure. By providing 
accurate, real-time predictions for energy consumption and key wa-
ter quality indicators (ammonia, BOD, and COD), the study enables 
WWTP operators to make informed decisions that enhance operational 
efficiency and reduce environmental impact. From a deep learning 
standpoint, the study introduces a novel ensemble model based on 
transformer architectures, which aggregates predictions across het-
erogeneous feature categories (hydraulic, climatic, and wastewater). 
Additionally, a multi-task Bi-GRU model is proposed for the simulta-
neous prediction of multiple wastewater quality parameters, enabling 
better generalization and reduced computational burden.

The study also employs a dual-method data preprocessing strategy 
— using z-score and IQR/KNN — to improve data quality based on the 
statistical characteristics of different variables. Importantly, the hyper-
parameter tuning process is guided by Bayesian optimization, which 
offers an efficient and principled approach to enhancing model perfor-
mance without exhaustive grid searching. Despite these strengths, the 
study has several limitations that warrant future investigation.

First, while the proposed models demonstrate high accuracy, their 
interpretability remains limited. Deep learning architectures, particu-
larly transformer ensembles and recurrent networks, are often viewed 
as black boxes. For WWTP operators to trust and adopt such systems 
in practice, it is essential to provide explanations for model outputs. 
Future work will therefore focus on enhancing model interpretability 
using explainable AI (XAI) techniques such as SHAP (SHapley Additive 
exPlanations), attention visualization, and local surrogate models like 
LIME. These tools will help uncover feature importance and provide 
transparent insights into how predictions are generated.

Second, the current study is trained and evaluated on data from a 
single wastewater treatment facility in Melbourne, which may limit its 
generalizability. Operational dynamics and environmental conditions 
vary significantly across regions and plant configurations. To improve 
robustness and external validity, future research should incorporate 
data from multiple WWTPs and investigate transfer learning strategies 
to adapt the model with minimal retraining. This would ensure that the 
framework can be deployed more broadly across varying contexts.

Third, while the model incorporates a comprehensive set of hy-
draulic, climate, and wastewater quality variables, it does not include 
additional operational or real-time control parameters such as chemical 
dosing, aeration levels, or sensor health indicators. These factors can 
provide valuable contextual information, particularly under abnormal 
or stress conditions (e.g., stormwater surges or system faults). Fu-
ture studies should explore the integration of such features to further 
improve the accuracy and responsiveness of the model.

Fourth, the current framework optimizes for prediction accuracy but 
does not explicitly incorporate economic factors such as cost savings, 
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Fig. 12. Comparison between actual data and predicted data of models for wastewater quality with optimized data.
energy pricing dynamics, or chemical usage efficiency. For practical 
deployment in business-critical infrastructure, it is important to align 
predictions with actionable outcomes that reflect financial constraints. 
Future work will consider incorporating cost-aware optimization ob-
jectives or reinforcement learning approaches that allow WWTPs to 
minimize operational costs while maintaining quality standards.

Another limitation of the current study is that the proposed frame-
work has been developed and validated using data from a single WWTP 
located in Melbourne, Australia. While the dataset is rich and diverse in 
terms of temporal coverage and multivariate inputs, it does not capture 
the operational heterogeneity, infrastructural differences, or climatic 
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variability found in WWTPs across different geographical regions. This 
may limit the generalizability of the model to other sites with different 
treatment technologies, influent compositions, or weather profiles. Al-
though cross-site validation was beyond the scope of this study due to 
data access constraints, we recognize its critical importance for broader 
applicability.

Future work will therefore focus on evaluating the transferability 
of the model using datasets from multiple WWTPs, and incorporating 
transfer learning or domain adaptation techniques to enable effective 
generalization with minimal retraining. In addition, we plan to perform 
sensitivity analyses to systematically assess how variations in input 
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Table 6
Comparison with literature studies in predicting energy consumption.
 Papers Methods Transformer 

models
RMSE MAE MAPE  

 

Bagherzadeh et al. (2021b)

GBM No 33.9 26.9 –  
 RF No 34.8 27.7 –  
 ANN No 39.8 32.1 –  
 RNN No 37.3 29.3 –  
 KNN No 37.33 28.23 10.65  
 
Alali et al. (2023)

XGBoost No 37.14 28.5 10.81  
 LightGBM No 37.38 28.63 10.96  
 GPRRQ No 37.45 28.65 10.04  
 GSVR No 37.7 28.88 10.12  
 

Harrou et al. (2023)

RNN No 38.655 29.446 11.196 
 GRU No 38.683 29.771 10.88  
 LSTM No 37.759 28.698 10.738 
 BiGRU No 39.064 30.087 11  
 BiLSTM No 39.114 30.055 11.001 
 
Our work

Transformer-hydraulic Yes 33.1359 27.0887 9.7757 
 Transformer-climate Yes 33.6919 27.3345 9.7918 
 Transformer-wastewater Yes 33.1569 27.3378 9.9301 
 The voting ensemble model Yes 31.6163 24.3304 8.9026 
features — such as temperature, rainfall, or inflow volume — affect the 
model’s performance, further enhancing its robustness under diverse 
operational conditions. In addition, we will consider applying hyperpa-
rameter optimization techniques — such as grid search, random search, 
and Bayesian optimization — to select the best model architecture.

In addition, the study does not include a real-time deployment 
or scalability demonstration. Practical implementation in operational 
WWTPs requires integration with real-time data streams, compatibility 
with existing SCADA systems, and efficient model inference under 
limited computational resources. These engineering and systems-level 
considerations are critical for bridging the gap between research and 
industrial adoption. As part of future work, we aim to develop a 
lightweight, scalable deployment pipeline using tools such as Tensor-
Flow Lite or ONNX to support real-time inference. Addressing system 
integration, fault tolerance, and latency issues will be central to en-
suring that the proposed models can be reliably adopted in production 
environments.

Finally, the model has been developed and evaluated in an offline 
setting. However, deployment in live operational environments will 
require real-time integration with SCADA systems, sensor streams, and 
decision-support interfaces. Future extensions will involve building a 
complete predictive analytics pipeline capable of ingesting streaming 
data, executing lightweight inference (e.g., using ONNX or TensorFlow 
Lite), and offering user-friendly feedback to WWTP operators. A real-
world implementation will also allow for the assessment of model 
usability, reliability, and user acceptance.

6. Conclusion

This paper has introduced a novel and unique prediction framework 
to optimize energy consumption and wastewater quality in WWTPs. 
The proposed framework incorporated predictions from hydraulic, 
wastewater, and meteorological data by incorporating a voting ensem-
ble of transformer models. The findings showed performance improve-
ment, with a 3% drop in RMSE to 31.62. Using Bi-GRU models with 
optimized data, the creative use of a multi-task DL model improves op-
erational efficiency by concurrently predicting three important wastew-
ater quality parameters, i.e., ammonia, BOD, and COD, with RMSE 
values of 6.1689, 48.0323, and 88.2214, respectively. Additionally, the 
proposed novel multi-task deep learning models effectively predicted 
wastewater quality indicators (ammonia, BOD, and COD) with superior 
performance metrics.

Improved model performance and strong predictions were the out-
come of a thorough data-cleaning procedure that included z-score and 
KNN imputation techniques to guarantee the dataset’s quality and 
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dependability. The results demonstrated how flexible and resilient the 
proposed predictive framework has handled the dynamic and nonlinear 
interactions that are a part of WWTP operations. An important out-
come of this study is the realization that although energy consumption 
forecasting and effluent quality prediction represent distinct objectives, 
they benefit from being addressed within a unified framework. The 
separate modeling of each task — using transformer ensembles for 
energy and multi-task Bi-GRU for water quality — allowed us to tailor 
architectures to the specific characteristics of each domain. At the same 
time, their integration supports coordinated operational insight, high-
lighting how predictive learning across multiple, interdependent plant 
functions can collectively enhance the sustainability and efficiency of 
WWTP management.

In summary, this study demonstrates that intelligently combining 
deep learning architectures — specifically transformer ensembles and 
multi-task recurrent networks — can address multiple interdependent 
objectives in wastewater treatment operations. The integration of these 
methods is not simply technical but serves a clear operational goal: to 
provide WWTP operators with a data-driven decision support system 
that optimizes energy consumption while ensuring effluent quality. 
The resulting framework improves predictive performance and reduces 
model complexity through shared representations, robust feature se-
lection, and targeted preprocessing. This work moves beyond isolated 
prediction tasks to offer a scalable, interpretable, and sustainable so-
lution for real-world WWTP management. Future work could explore 
expanding the predictive framework’s applicability to other critical 
parameters, further improving its scalability and impact on sustainable 
urban development.
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