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Abstract— Human Activity Recognition (HAR) stands as
a crucial technology, with applications ranging from health-
care monitoring to sports analytics. However, the tradi-
tional approach to HAR is often time-consuming and sus-
ceptible to human errors due to the high complexities
involved in processing diverse sensor data. Recognizing
the imperative for efficiency and accuracy in HAR systems,
we propose the development of an Automated Decision-
maker (ADM) system. This system serves to automate HAR
pipelines, addressing the challenges posed by the huge
sensor data. By harnessing the power of automation, ADM
significantly streamlines the HAR process, reducing the
time required for hyperparameter tuning and minimizing
the risk of human errors. The results obtained from our
proposed ADM system demonstrate notable improvements
in HAR performance, showcasing achieved accuracy of
96.436% for UCI-HAR & 99.783% for PAMAP2 datasets.
Moreover, ADM can be described as an innovative approach
that contributes to the optimization of HAR systems while
also establishing a foundation for building robust and reli-
able systems in complex environments.

Index Terms— Healthcare, UCI-HAR, PAMAP2, AutoML,
activity recognition, IoT, sensors

I. INTRODUCTION

In the evolving landscape of computation, Human Activity
Recognition (HAR) [1], [2] is emerging as a cornerstone
technology with widespread applications across healthcare [3],
sports [4], industry, and human-computer interaction [5], [6].
By leveraging advancements in the Internet of Things (IoT)
and Artificial Intelligence (AI), HAR systems aim to interpret
human activities through data captured by an array of sensors.
These activities range from routine daily actions to complex
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behaviors in specialized environments, underpinning innova-
tions that promise to transform safety measures, healthcare
monitoring, sports analytics, and interactive technologies.

At the heart of HAR’s progress are sensors—both wearable
and environmental that continuously collect data on human
movements and behaviors. Wearable sensors, including Inertial
Measurement Units (IMUs) [7], [8], [9], offer a portable and
unobtrusive means to gather activity data, while environmental
sensors, such as cameras and millimeter radar sensors, provide
contextual insights into human actions. As the integration of
sensor technologies becomes increasingly prevalent in health-
care applications, there arises a pressing need for an automated
system to streamline the complex pipelines involved in HAR
systems. This paper introduces an innovative solution, Auto-
mated Decision Maker (ADM), aimed at automating solution
pipelines for the HAR system. By aiming to resolve the chal-
lenges with sensor data & human involvement, ADM seeks to
revolutionize HAR methodologies, providing a more efficient,
accurate, and robust approach for real-world applications in
healthcare and beyond. This approach not only promises to
enhance the accuracy of activity recognition but also aims to
build more robust and stable HAR systems capable of adapting
to the dynamic nature of human behaviors [10].

The main contributions of this work are:

• The novel approach introduced eliminates the need for
intricate hyperparameter tuning, streamlining the model
development process. By automating this crucial aspect,
the proposed methodology minimizes the potential for
human errors in the hyperparameter selection phase,
enhancing the reproducibility and reliability of the HAR
system.

• It focuses on the development of a novel model that not
only enhances accuracy but also excels in other metrics
on UCI-HAR and PAMAP2 datasets.

• The elimination of manual hyperparameter tuning rep-
resents a significant advancement, making the proposed
HAR approach more robust, less prone to subjective
biases, and ultimately contributing to the broader goal
of creating reliable and automated HAR systems.

The remaining paper is organized as section 2 presents the
related work and section 3 presents the proposed methodology.
Section 4 shows the results achieved and section 5 concludes
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Fig. 1. Proposed methodology for human activity detection

the work.

II. RELATED WORK

In the realm of HAR, an array of Machine Learning (ML)
models have been employed, each harnessing various sensing
technologies to discern and classify human behaviors [11].
While camera-based HAR has garnered considerable attention,
recent research has pivoted towards embedded sensors, pro-
pelled by the challenges posed by high computational resource
requirements and burgeoning concerns about user privacy [12],
[13].

In the pursuit of understanding human behavior, linear
models, such as logistic regression, have been harnessed for
multinomial classification in HAR, as demonstrated by Fan et
al. [14]. This technique, categorized under linear model classi-
fication, utilizes the LIBLINEAR optimizer to fine-tune model
parameters, showcasing the adaptability of linear models in
capturing and classifying diverse human activities.

Ensemble classifiers have emerged as a powerful tool in
HAR, capitalizing on the strengths of multiple models. The
ensemble approach combines specialized models, each ex-
celling in discerning specific instances, leading to an overall
improved model. Tan et al. [15] presents an ensemble of gated
recurrent unit (GRU), a convolutional neural network (CNN)
and Deep Neural Network (DNN) for activity recognition from
smartphone sensor data.

Deep Learning (DL) is emerged as a transformative
paradigm in HAR systems, demonstrating its prowess in learn-
ing intricate features directly from raw sensor data and achiev-
ing state-of-the-art performance. Researchers have explored
diverse DL architectures, each contributing to the advancement
of HAR methodologies [16], [17], [18], [19], [20].

Khan et. al. [21] introduced an attention-based multi-head
Convolutional Neural Network (CNN) model tailored for
HAR. This innovative approach selectively focuses on es-
sential information, enhancing recognition performance using

significant elements of the input data. Meanwhile, Cruciani
et. al. [22] delved into the use of pre-trained CNN models for
large-scale HAR datasets, harnessing knowledge gained from
extensive data to capture discriminative features effectively.

Wan et. al. [23] proposed a CNN-based architecture pri-
oritizing extraction of local features. Recognizing importance
of spatial information, this approach adeptly classifies human
activities with accuracy. Furthermore, Mutegeki et. al. [24] and
Deep et. al. [25] embraced CNN-Long Short-Term Memory
(LSTM) architectures, combining spatial and temporal infor-
mation for superior activity prediction. These models excelled
by capturing both short and long-term dependencies in the
input data.

On the other front, the integration of DL algorithms into
ensemble models has garnered attention for enhancing robust-
ness and performance in ML applications, including HAR
[16], [17], [18], [19], [20]. While ensemble models effec-
tively leverage the learning capabilities of multiple learners,
they introduce computational challenges and often adhere to
conventional approaches in learner selection.

While previous studies have explored various ML and DL
models, including logistic regression, CNNs, LSTMs, and
ensemble approaches for HAR using wearable sensors, most
still require manual intervention in hyperparameter tuning,
model selection, and feature engineering. In contrast, our
proposed Automated Decision Maker (ADM) integrates Au-
toML (TPOT) and AutoDL (AutoKeras) to fully automate
the pipeline. This not only improves performance but also
minimises human bias and enhances reproducibility.

III. PROPOSED METHODOLOGY

This section delves into the proposed methodology, de-
scribing data preprocessing, automated decision-maker, and
workflow of the proposed methodology. Here Algorithm 1
describes the proposed methodology and Fig. 1 presents the
flow and diagrammatic overview of proposed approach.
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Algorithm 1 Proposed Methodology
Input: Training data ‘T’ & testing data ‘τ ’
Output: Trained Automated Decision Maker (ADM)

1: Collect data D from sensors
2: Use train test split to divide the data into training &

testing database
T, τ = train test split(D)
TX , Ty = T.iloc[:, : −1], T.iloc[:,−1]

3: Use mean imputation, standard scaling and isolation forest
for outlier detection
TX = Mean imput(TX )
TX = Standard scaler().fit transform(TX )
is = Outlier detection(TX , Ty)
indexes = Outlier indices
TX = TX .drop(indexes, axis = 0)
Ty = Ty.drop(indexes, axis = 0)
T = pd.concat([TX , Ty],axis = 1)
T = T.resample(frac=1)
T.reset index(drop=True,inplace=True)
TX , Ty = T.iloc[:,-1],T.iloc[:,-1]

4: Pass the data to ADM (Λ)
cv = Repeated Stratified K Fold(n splits=10,

n repeats = 3,random state=1)
Φ = TPOTClassifier(generations=10,

population size=100,cv= cv,scoring=accuracy)
ϕ = StructuredDataClassifier(overwrite=True,

max trials=15).fit(TX , Ty ,epochs=10,
validation split=0.15)

τX , τy = τ.iloc[:, : −1], τ.iloc[:,−1]
Λ = best of(Φ, ϕ, τX , τy)

5: return Λ

Initially, the data, ‘D’, collected from the sensor is bifur-
cated to form the training and testing dataset. This training
dataset ‘T’ is then further passed through the preprocessing
phase to provide insights into data and then this preprocessed
data is passed to the ADM for training and validation purposes.
The distinguished feature of this ADM lies in the fact that it
eliminates the need for feature selection, feature preprocessing,
and model selection that was previously done by humans.
This reduces human error and the novel ensemble method of
autoML and AutoKeras ensures that all the ML and DL models
are taken into picture for finalizing the best-suited model.

A. Data Preprocessing Phase
This phase deals with the employment of a comprehensive

data preprocessing strategy for enhancing the efficacy of the
classification model. This encompasses mean imputation for
handling missing values and standard scaler normalization to
address varying feature scales and the application of isolation
forests for outlier detection:

TXij
=
TXij

− ¯TXi

σTXi

(1)

where TXij is the jth element of the ith column, i is the
column number, j represents the index number, ¯TXi

represents

the mean of values of the ith column, to address varying
feature scales and the application of isolation forests for outlier
detection.

The Isolation Forest (iForest) algorithm efficiently isolates
outliers by leveraging their inherent characteristics: being few
in number and significantly different. It operates in two stages:
first, constructing isolation trees (iTrees) using a subsample of
the training data, and second, testing instances through these
iTrees to compute outlier or anomaly scores. The algorithm’s
efficiency in isolating anomalies makes it highly effective for
outlier detection. Additionally, its linear time complexity and
low memory usage make it ideal for handling large-scale
datasets.

During training, iTrees are built by recursively partitioning
the data based on random features until instances are isolated
or a predefined tree height is reached, creating partial models.

Height limit = ceil(log2(sample size)) (2)

The outlier score of the data point is based on the struc-
ture of the iTrees which resembles the structure of the Bi-
nary Search Trees (BST). Therefore, the estimation of the
anomaly/outlier score is given as:

o(TX , s) = 2−E(a(TX))/ ¯a(TX) (3)

where TX is the instance to be tested, is the average of
a(TX) from a collection of iTrees, E(a(TX)) ¯a(TX) repre-
sents the average of a(TX) given n number of instances, and
a(TX) is the path length of an instance TX . Here

¯a(TX) = 2 ∗Hnumber(n− 1)− (2(n− 1)/n) (4)

Hnumber(x) = loge(x) + ε (5)

Where Euler’s constant, ε = 0.5772156649. General values
of Eq.3 are:

E(a(TX)) → ¯a(TX), o(TX , s) → 0.5 (6)

E(a(TX)) → 0, o(TX , s) → 1 (7)

E(a(TX)) → n− 1, o(TX , s) → 0 (8)

Mean imputation aids in maintaining dataset integrity by
replacing missing values with the mean of observed entries.
Standard scaler normalization ensures uniform feature scal-
ing, promoting algorithm convergence and model stability.
Additionally, the use of isolation forests effectively identifies
and eliminates outliers, contributing to the overall robustness
of the predictive models. By integrating these preprocessing
techniques, our study aims to provide a solid foundation for
accurate and resilient data analysis, ultimately improving the
quality of predictive insights derived from the models.
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B. Automated Decision Maker (ADM)
As described in Fig. 1, the ADM consists of automated

pipelines of ML and DL models that work parallelly, in
ensemble fashion, to define an optimized pipeline for the
dataset. The main idea behind this pipeline is automating
the model selection & hyperparameter tuning which consis-
tently decreases the amount of time & resources spent on
the hyperparameter tuning when done manually. This ADM
works with the parallel collaboration of autoML (TPOT) &
autoDL (AutoKeras) to identify an optimized supreme model
for classification purposes.

Tree-based Pipeline Optimization Tool (TPOT) [26] is open-
source Genetic Programming (GP) based AutoML system, that
is built to optimize feature preprocessors and ML models and
maximize supervised classification tasks. It can be summarized
using,
Φ = ( Π Dc.FPi.FCi.KBest.Modeli).test(τX , τy)

where Π, Dc, FPi, FCi, KBest, Modeli, i represents
a series sequence, data copies, feature preprocessing, feature
combination, selection of Kbest features, models, and the
number of available options in TPOT algorithm. The pro-
cess of TPOT is optimized using the GP, as described in
Algorithm 2. It describes a GP-based (Genetic Programming)
optimization approach for TPOT to find the best classifier.
Initially, 100 random tree-based pipelines are generated and
evaluated for cross-validation accuracy. The top 20 pipelines
are selected using the NSGA-II selection scheme, focusing
on accuracy and pipeline simplicity. These pipelines undergo
genetic operations: 5 copies are made as offsprings, with
5% subjected to one-point crossover and the rest undergoing
mutation with a 1/3 probability. The best solution is updated
iteratively, and the optimal pipeline is returned. This method
balances classification accuracy and pipeline efficiency.

AutoKeras simplifies the intricate task of constructing and
training deep neural networks, providing an accessible in-
terface for novice users. Built on Keras and TensorFlow, it
facilitates solving standard ML problems with just a few
lines of code. AutoKeras-designed models are seamlessly
exportable and deployable using the TensorFlow ecosystem
tooling, making it ideal for practical applications. AutoKeras
is based on the following problem statement: Say a neural
structure search domain N, with TXtrain & TXval

be the
training and validation data, with cost function ψ, it is aimed
to find the optimal neural network η∗ ∈N with the lowest cost.
The definition is equivalent to finding η∗ satisfying:

η∗ = argminψ(η(p
∗), TXval

) (9)

p∗ = argminηL(η(p), TXtrain
) (10)

where p∗ is the learned parameter of η. This search domain
N is covering all neural structures. AutoKeras uses a search
algorithm that is defined in Algorithm 3.

The hyperparameters are grouped into sub-modules and they
are assigned probabilities P̂ defined as,

P̂ = (
1

hp1 + 1
,

1

hp2 + 1
, ....,

1

hpk + 1
) ∈ RK (11)

Algorithm 2 GP-based TPOT optimization algorithm
Input: Training data T & testing data τ
Output: Best TPOT Classifier

1: Generate 100 random tree-based pipelines say Rt.
2: Evaluate their cross-validation accuracy on the dataset.
3: for i in Rt:
4: t20=top 20 pipelines according to NSGA-II selection

scheme [27]
5: Produce 5 copies(t20) [called offsprings]
6: Crossover 5% of offsprings (using one-point crossover)
7: Mutate rest copies (chances of mutation are 1

3 )
8: Best soln = max(best pipeline)
9: return Best soln

Note: The pipelines are selected for maximizing classification
accuracy and minimizing number of operators in the pipeline.

Algorithm 3 AutoKeras search algorithm
1: for i in e:
2: if i ≤ c
3: evaluate(ith pre-defined hyperparameter)
4: else
5: evaluate(mutate(find best hyperparameter()))

where: e is total number of evaluations, c is number of
predefined configurations

where hpi is the hyperparameter of ith submodule, K is
number of submodules. To normalize P̂ , it is passed through
logit and softmax function thus giving P as,

P = Softmax(logit(P̂ )) = Softmax(−ln hp) (12)

logit(a) =
a

1− a
(13)

and hp = (hp1, hp2, ....., hpK ∈ RK)

IV. RESULTS & EVALUATION

This section details experimental results on UCI-HAR and
PAMAP2 datasets, covering data characteristics, performance
metrics, and obtained results.

A. Experimental Setup
The proposed framework was developed in Python using

AutoKeras, and TPOT libraries where both the datasets had a
70:30 train-test ratio and training set was stratified using 10
splits and 3 repeats. The implementation and evaluations of the
proposed framework were conducted using Python 3.10.11 on
Asus Vivobook, with 16 GB RAM, 512 SSD, and a 1650-
Nvidia dedicated graphics card.

B. Dataset Description
The proposed methodology is tested upon the UCI-HAR and

PAMAP2 datasets. The UCI-HAR dataset [28] is widely used
in HAR research, capturing activity data from 30 volunteers
equipped with waist smartphones containing accelerometers,
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magnetometers, and gyroscopes. It consists of 7352 training
samples and 2947 test samples, providing a comprehensive re-
source for activity recognition studies with Table I representing
the labels given to the activities.

TABLE I
LABELS FOR UCI-HAR DATASET

Activity Label

Walking 1
Walking upstairs 2

Walking downstairs 3
Sitting 4

Standing 5
Laying 6

The PAMAP2 [29] dataset serves as a valuable resource for
monitoring physical activities, involving 9 subjects equipped
with three IMUs and heart rate monitors. This dataset is
instrumental for researchers interested in strength estimation
and activity recognition. The activities and labels opted for it
are described in Table II.

TABLE II
LABELS FOR PAMAP2 DATASET

Activity Label

Lying 1
Sitting 2

Standing 3
Walking 4
Running 5
Cycling 6

Nordic walking 7
Ascending stairs 12
Descending stairs 13
Vacuum cleaning 16

Ironing 17
Rope jumping 24

C. Performance Metrics
When evaluating HAR, essential metrics include accuracy,

F-score, precision, and Mean Absolute Error (MAE). Accuracy
assesses the overall correctness. Precision quantifies the ratio
of accurately classified values to the total samples identified
as positive whereas F-score computes the harmonic mean of
precision and recall.

Accuracy =
pt + nt

pt + nt + pf + nf
(14)

Precision =
pt

pt + pf
(15)

F − score = 2 ∗ Precision ∗Recall
Precision+Recall

(16)

MAE =
1

N

N∑
i=1

|y − ŷ| (17)

Where pt is true positive, nt is true negative, pf is false
positive, and nf is false negative respectively.

D. Results Analysis
This section analyses the results obtained on the UCI-HAR

and PAMAP2 datasets using the ADM methodology.
Table III provides a comprehensive state-of-the-art ML &

DL approaches comparison with the proposed methodology
on the UCI-HAR dataset. The evaluated classifiers include
Random Forest (RF), k-nearest Neighbors (KNN), Decision
Tree (DT), Multi-Layer Perceptron (MLP), Stochastic Gradi-
ent Descent (SGD), and Perceptron.

TABLE III
STATE-OF-ART ML & DL APPROACHES COMPARISON WITH THE

PROPOSED METHODOLOGY ON UCI-HAR DATASET

Classifier Recall Precision F-score MAE

RF 92.498 92.655 92.481 0.0849
KNN 89.07 89.353 88.983 0.131
DT 85.743 85.792 85.691 0.155

MLP 94.841 95.028 94.934 0.055
SGD 94.942 95.260 94.925 0.056

Perceptron 94.671 95.025 94.663 0.058
Proposed 96.436 96.502 96.427 0.0418

Fig. 2. Accuracy comparison on UCI-HAR dataset

TABLE IV
STATE-OF-ART ML & DL APPROACHES COMPARISON WITH THE

PROPOSED METHODOLOGY ON PAMAP2 DATASET

Classifier Recall Precision F-score MAE

RF 99.640 99.640 99.639 0.028
KNN 99.51 99.511 99.509 0.012
DT 98.284 98.308 98.286 0.132

MLP 97.090 97.157 97.084 0.146
SVC 50.384 70.297 47.666 4.370
SGD 49.729 77.446 49.246 3.743

Perceptron 60.859 68.285 57.066 2.419
Proposed 99.783 99.784 99.782 0.007

The proposed methodology stands out with superior results
across all metrics, giving a recall of 96.436%, precision
of 96.502%, F-score of 96.427%, and MAE of 0.0418. In
comparison to the SGD (second highest recall), ADM achieves
approximately 2% increase value highlighting its ability to
correctly identify the correct positives out of all positive
instances.

Moerover, Fig. 2 displays accuracy values for various
classifiers. The proposed methodology achieves an accu-
racy of 96.436%, outperforming other classifiers such as
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Fig. 3. Accuracy state-of-art comparison on PAMAP2 dataset

SGD (94.942%) which is the second highest, and Perceptron
(94.671%) which is the third highest. These comparisons
offer a detailed insight into the effectiveness of the proposed
methodology in comparison to other well-known classifiers on
the UCI-HAR dataset.

Another comparison of the proposed methodology on the
PAMAP2 dataset against various classifiers is given in Table
IV. The proposed methodology stands out with exceptional
results, achieving recall of 99.783%, precision of 99.784%, F-
score of 99.782%, and MAE of 0.007 with Fig. 3 representing
accuracy values for different classifiers. In comparison to the
RF with second highest metrics values, ADM achieves 75%
better results in terms of MAE value. This signifies that the
model prediction of the RG are slightly more off in comparison
to the ADM methodology, highlightly its accuracy in detecting
the activities near to the correct instances in comparison to the
RF.

Fig. 4 summarizes cross-validation (CV) scores achieved us-
ing ADM methodology on the UCI-HAR dataset. Across gen-
erations, the CV score improved slightly, starting at 98.5263
for Generation 2 and increasing incrementally to 98.55 by
Generation 10. This indicates a steady refinement of the
model‘s performance through iterative optimisation.

Fig. 4. Cross-validation score on UCI-HAR dataset with each genera-
tion

Likewise, Fig. 5 showcases cross-validation (CV) results on
the PAMAP2 dataset. The CV score demonstrates consistent
improvement, increasing from 99.099 at Generation 2 to
99.702 at Generation 8, where it stabilises through Generation
10. This trend resembles the pattern observed the UCI-HAR

dataset, indicating the ability of the ADM methodology to
remain unaffected with respect to the dataset. This could allow
this approach to be extended and to be used other classification
tasks such as anomaly detection or prediction.

Fig. 5. Cross-validation score on PAMAP2 dataset with each generation

Fig. 6 describes the confusion metrics obtained through
the ADM pipeline with Fig. 7 describing the classification
report for the proposed methodology. It describes that the
proposed methodology performs well in multi-class classi-
fication, getting higher support values for all classes. Like-
wise, Fig. 8 & Fig. 9 describe the classification report and
confusion metrics of the proposed approach on the PAMAP2
dataset, showcasing the supremacy of the automated pipeline
in correctly identifying all the classes. A careful observation
of these classification reports indicates that, irrespective of the
class (activity), ADM methodology successfully identifies the
specific type of activity based on its determining features.

A comprehensive comparison of the ADM methodology
with existing research works on the UCI-HAR dataset is
provided in Table V. ADM consistently outperforms these
works across multiple metrics, highlighting its effectiveness

Fig. 6. Confusion metrics of the proposed approach for UCI-HAR
dataset
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Fig. 7. Classification report of the proposed approach on UCI-HAR
dataset

Fig. 8. The proposed methodology‘s classification report on PAMAP2
dataset

in comparison to existing approaches.

TABLE V
COMPARING THE PROPOSED METHODOLOGY WITH EXISTING

RESEARCH WORKS ON UCI-HAR DATASET

Approach Accuracy Precision Recall F-score

[23] 92.710 92.930 92.860 92.620
[30] 93.400 92.200 93.550 93.480
[31] 95.380 95.460 95.410 95.360
[32] 95.750 -
[33] 95.180 - - -
[34] 96.770 - - -
[35] 93.4 - - 93.5
[36] 96.0 - - -

Proposed 96.436 96.502 96.436 96.427

Comparisons are made with notable works, including [23]
with an accuracy of 92.71 and an F-score of 92.62, [30] with
an accuracy of 93.4 and an F-score of 93.48, [31] with an
accuracy of 95.38 and an F-score of 95.36, [32] with an
accuracy of 95.75, [33] with an accuracy of 95.18, and [34]
with an accuracy of 96.77.

Similarly, Table VI presents a comparison of the proposed
methodology with existing research works. It demonstrates
superior performance across all metrics, highlighting its effec-
tiveness in comparison to existing approaches on the PAMAP2
dataset. As previously mentioned, ADM utilizes an automated
pipeline, effectively eliminating the human errors commonly
found in traditional and state-of-the-art approaches. The results
obtained highlight and support this advantage.

Fig. 9. The proposed methodology‘s confusion metrics on PAMAP2
dataset

TABLE VI
COMPARING THE PROPOSED METHODOLOGY WITH EXISTING

RESEARCH WORKS ON PAMAP2 DATASET

Model Accuracy Precision Recall F-score

[37] 92.970 - - 93.030
[32] 93.500 - - -
[38] 93.700 - - -
[39] 86.000 - - -
[40] 89.960 - - -
[34] 91.460 - - -
[41] 98.58 - - -
[42] 99.27 96.150 96.361 96.540

Proposed 99.783 99.784 99.783 99.782

V. DISCUSSION

In this section, we delve deeper into the implications of
the experimental results obtained from the implementation of
the ADM system in HAR. The experiments conducted and
observed in the above section establish the efficacy of the pro-
posed approach over existing state-of-the-art methodologies.
The notable performance metrics observed on the UCI-HAR
and PAMAP2 datasets, achieving accuracies of 96.436% and
99.783%, respectively highlight ADM’s effectiveness in au-
tomating the HAR pipeline. These results signify a substantial
improvement over traditional, manually designed approaches.
This performance gain stems from ADM’s ability to automat-
ically perform parameter tuning and model selection, ensur-
ing optimal classifier performance. In contrast, conventional
methods depend heavily on manual configuration, which often
limits their efficiency, scalability, and consistency.

This improvement is achieved because the ADM employs
an automated process to tune parameters, ensuring the best-
performing classifier. In contrast, other classifiers rely on
manual tuning or user-provided parameters, which makes it
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challenging for them to achieve comparable performance lev-
els due to the limitations of manual fine-tuning. These results
highlight the transformative potential of ADM in enhancing
the accuracy and efficiency of HAR systems, particularly
in healthcare monitoring and sports analytics applications.
Moreover, the results on two different datasets underscore the
robustness of the proposed approach in controlled experimen-
tal conditions.

However, it is essential to address the real-world applica-
bility of the ADM system. While the experimental results
are promising, deploying ADM in real-time scenarios poses
challenges that require further exploration. One such challenge
is ensuring system performance with real-time data, where
variability in sensor quality, environmental conditions, and
human behavior can significantly affect outcomes. In addition,
computational requirements for processing large-scale real-
time data streams must be considered to ensure the scalability
and efficiency of the system in practical applications.

Despite these challenges, ADM offers transformative po-
tential by streamlining data processing and minimizing the
need for human intervention. Its scalable architecture enables
seamless integration into existing IoT ecosystems, paving the
way for real-time HAR systems across diverse domains. In
healthcare, ADM can facilitate continuous remote monitoring
and timely alerts, enhancing patient safety and responsiveness.
In sports, it enables detailed motion analysis to improve per-
formance and prevent injuries. Industrial settings can benefit
from ADM’s ability to detect unsafe behaviors and preempt
accidents, while smart home environments can leverage ac-
tivity recognition for personalized automation and comfort.
Furthermore, security systems can utilize ADM to enhance
anomaly detection and threat identification.

Possible use cases for the proposed approach span several
sectors. In healthcare, ADM supports remote monitoring and
emergency alerts, providing timely interventions for patients.
For sports, it refines training through detailed movement
analysis, optimizing performance and reducing injury risks.
Industrial applications emphasize safety by identifying hazards
and preventing accidents. Smart homes benefit from tailored
environmental controls for comfort and efficiency. Security
systems leverage improved anomaly detection to bolster safety
in various settings. These multifaceted applications highlight
ADM’s potential, but practical implementation requires ad-
dressing the identified challenges to ensure consistent perfor-
mance and user trust.

VI. CONCLUSION & FUTURE WORK

This research introduces a pioneering methodology to HAR,
representing a significant leap forward in the field. The pro-
posed approach demonstrated the exceptional performance on
widely used UCI-HAR and PAMAP2 datasets, and outperform
state-of-the-art models. The proposed ADM model showed
outstanding results on the UCI-HAR dataset, with an accuracy
of 96.436%, precision of 96.502%, recall of 96.436%, and
a notable F-score of 96.427%. On PAMAP2 dataset, our
approach excelled with impressive accuracy, precision, recall,
and F-score, and with a minimal MAE of 0.007. Notably,

proposed approach brings about automation by eliminating the
need for hyperparameter tuning, mitigating human errors, and
streamlining the model development process. The removal of
manual intervention in hyperparameter tuning enhances the
reproducibility and reliability of the model, making it a robust
and user-friendly solution. The novel contributions presented
in this paper pave the way for continued exploration and
innovation in the field, fostering a deeper understanding of
human activity patterns and enhancing the practical applica-
tions of activity recognition technologies. However, despite
the promising results and potential benefits and use cases of
ADM, several challenges and limitations must be addressed
in the future. Future work should focus on addressing these
limitations to enhance the practical viability of ADM. Key
areas include optimizing computational efficiency, developing
adaptive algorithms to handle sensor variability, and ensuring
robust performance in dynamic and less controlled environ-
ments. By tackling these challenges, ADM can fully realize
its potential as an indispensable tool across healthcare, sports,
industry, smart homes, and security.
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[13] C. P. Burgos, L. Gärtner, M. A. G. Ballester, J. Noailly, F. Stöcker,
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