Cluster Computing (2025) 28:464
https://doi.org/10.1007/s10586-025-05433-7

=

Check for
updates

Cloudlock: secure data sharing using a hybrid cryptosystem in multi-
cloud data storage

Nitesh Bharot' - Nakul Mehta' - John G. Breslin' - Priyanka Verma®

Received: 21 February 2025 /Revised: 1 May 2025/ Accepted: 2 May 2025/ Published online: 31 July 2025
© The Author(s) 2025

Abstract

The advent of cloud computing has revolutionized data management, providing scalability and cost-effectiveness. How-
ever, it also presents challenges in ensuring data security and privacy. Thus organizations increasingly adopt multi-cloud
storage strategies to avoid data loss and single points of failure, but a new array of complexities emerges, particularly
related to secure data access and management with a multi-cloud strategy. This paper explores these complexities and
presents an innovative encryption-based solution for secure data storage and easy accessibility in a multi-cloud system. In
this work, we proposed CloudLock framework which uses hybrid ChaCha20-Poly1305 encryption mechanism to store and
access the data in multi-cloud systems. Moreover, the secret key used for encryption and decryption is shared between the
data owner and authentic users using Elliptic Curve Diffie-Hellman (ECDH) mechanism. Our focus is to establish a robust
mechanism that permits only authenticated users to access and manage their data across multi-cloud platforms. Thus with
the proposed model, we aim to balance security, accessibility, and efficiency, thereby offering a potential solution to multi-
cloud storage’s multifaceted challenges. Our rigorous security assessment and performance analysis, which considers a
broad range of parameters including encryption and decryption time, upload and download time, turn-around time, and
memory usage, affirms that our proposed framework is highly efficient. The framework meets the stringent requirements
necessary for secure data sharing, demonstrating robust resilience to various security threats. When compared to existing
methods, our proposed framework showcases superior performance and enhanced security characteristics.

Keywords Multi-cloud - Encryption - Secure data sharing - ChaCha20-Poly1305 - Cloud storage services

1 Introduction

The global cloud computing market size was estimated at
USD 602.31 billion in 2023 and is expected to grow at a
CAGR of 21.2% from 2024 to 2030 [1]. Cloud storage

P< Priyanka Verma
priyanka.verma@universityofgalway.ie
Nitesh Bharot
nitesh.bharot@universityofgalway.ie

Nakul Mehta
n.mehta3 @universityofgalway.ie

John G. Breslin
john.breslin@universityofgalway.ie

Data Science Institute, University of Galway,
Galway H91TK33, Ireland

School of Computer Science, University of Galway,
University Road, Galway H91TK33, Ireland

platforms offer scalability, flexibility, and cost-effective-
ness, which are instrumental for businesses and organiza-
tions to handle the increasing data volume. However,
alongside these benefits, there are also challenges in terms
of data security, integrity, and data privacy [2-5]. More-
over, maintenance of single cloud platforms requires high
costs which are not sustainable by most organizations. To
address these challenges, organizations are increasingly
adopting multi-cloud strategies. The global multi-cloud
management market size was valued at USD 8.03 billion in
2022 and is expected to expand at a compound annual
growth rate (CAGR) of 28.0% from 2023 to 2030 [6].
Multi-cloud services [7] leverage multiple cloud providers,
reducing dependency on a single vendor and enhancing
security by distributing data across various environments.
This approach mitigates the risk of data loss, prevents a
single point of failure, and strengthens compliance with
diverse regulatory frameworks [8, 9].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-025-05433-7&domain=pdf
https://doi.org/10.1007/s10586-025-05433-7

464 Page 2 of 21

Cluster Computing (2025) 28:464

A multi-cloud storage environment has termed the use
of two or more cloud computing platforms from different
cloud vendors. Multi-cloud storage environments are
designed to eliminate the reliance on a single cloud service
provider, offering organizations a greater degree of flexi-
bility and control over their data. One of the key benefits of
a multi-cloud storage environment is risk mitigation. By
spreading data across multiple platforms, organizations can
prevent a single point of failure. This means if one cloud
provider experiences an outage or a security breach, the
organization can still store and operate its data from the
other cloud platforms. Multi-cloud storage environments
also offer performance optimization. Different cloud pro-
viders have various strengths and specialties, and organi-
zations can take advantage of this diversity to optimize
their operations. For instance, they might choose one cloud
provider for Al-related tasks due to its superior machine
learning capabilities and another for its efficient data
storage solutions. Cost efficiency is another advantage of a
multi-cloud storage environment. Different providers have
different pricing structures, and organizations can strate-
gically distribute their workloads to take advantage of the
most cost-effective solutions.

The security of data housed in multi-cloud architectures
is of paramount importance and is typically ensured using
various methods, as detailed by Bohli et al. [10]. Secure
data sharing across different cloud platforms presents
several challenges, including data privacy, interoperability,
and scalability. Sensitive data distributed across multiple
clouds is vulnerable to unauthorized access, data breaches,
and insider threats, making robust security mechanisms
essential. Notably, the study by Khasim Shaik et al. [11]
provides an analytical review of the most crucial security
encryption algorithms designed to safeguard data within
cloud computing. The inherent design of multi-cloud
architectures presents an intrinsic obstacle to potential
attackers, bolstering the security of stored information [12].

This work provides insights into the security paradigms
of multi-cloud storage and contributes to existing research.
It paves the way for the development of more secure,
reliable, and user-friendly multi-cloud storage systems,
fostering a safer and more efficient digital environment for
organizations across the globe.

Several solutions have been proposed to facilitate the
secure sharing of unstructured data in a multi-cloud sce-
nario, as illustrated by studies conducted by many
researchers [13—-18]. However, these studies have not suf-
ficiently addressed the need for a dependable and reliable
architecture. Existing strategies in multi-cloud storage fail
to guarantee protection against issues related to secure key
distribution, key management [19], threats from malicious
insiders and files, and the efficiency of the encryption

@ Springer

algorithm used for secure data storing and accessing in the
multi-cloud environment.

Furthermore, conflicts arising from file merging during
the retrieval process can undermine data integrity, espe-
cially since indexed-based cryptographic data splitting is
not employed in current approaches. The use of AES128-
bit encryption, a common practice in many methodologies,
also presents challenges. Performance response time is
consequently impacted as the file size grows and the
encryption procedure and the memory consumption takes
longer to complete.

In spite of these challenges, as we continue to embrace
digital transformation, multi-cloud storage environments
are becoming increasingly significant. They offer a more
resilient, flexible, and potentially cost-effective solution for
data management in the era of big data and cloud
computing.

Through this approach, we attempt to probe into these
complexities, proposing an advanced solution to secure
data storage and access in multi-cloud environments. Thus
in this work, we proposed a CloudLock framework which
uses hybrid ChaCha20-Poly1305 encryption mechanism
for secure data sharing among authenticated users and
secure data storage in multi-cloud environment. However,
integrating this methodology into a multi-cloud storage
system, while ensuring smooth access to authenticated
users in a secure way through the use of Elliptic Curve
Diffie-hellman (ECDH) within a Key Distribution System
(KDS) constitutes a relatively uncharted field of research.
The main contributions of this work are:

e Proposed CloudLock framework, a secure data sharing
for a multi-cloud storage framework to provide a robust
and reliable structure that can act as a middle ware
between the data owner, authenticated users, and multi-
cloud environment.

e An encryption-decryption mechanism for data storage
leveraging the ChaCha20-Poly1305 algorithm. This
approach takes advantage of the algorithm’s efficient
and high-speed cryptographic capabilities, enabling
secure data management while reducing computational
overhead.

e A key-sharing scheme between the data owner and
authenticated users is facilitated through the application
of an Elliptic Curve Diffie-Hellman (ECDH) mecha-
nism for sharing the secret key used for encryption in
the proposed CloudLock framework.

The rest of the paper is organized as: Section 2 discusses
the related work. Section 3 presents the system model,
assumptions, and security goals. Section 4 describes the
preliminaries followed by Sect. 5 describing the proposed
framework. Section 6 scrutinizes the results and analysis

Cluster Computing (2025) 28:464

Page 3 of 21 464

followed by Sect. 7 which concludes the work ad gives
future direction.

2 Related work

This section presents the state of art work done in the
related field and Table 1 shows the comparison and sum-
mary of these works. The domains of privacy and security
in cloud storage have been extensively researched given
their broad implications. There exist a multitude of vul-
nerabilities associated with file sharing over cloud plat-
forms, which can be exploited for unauthorized access.
Various malevolent intents behind such attacks can tarnish
the reputation of cloud service providers. Karnik et al. [20]
proposes a secure multi-cloud storage technique using data
fragmentation, encryption, and hash-based integrity
checks. It enhances confidentiality, availability, and fault
tolerance while reducing latency and storage overhead,
making it suitable for sensitive data in distributed cloud
environments.

To augment secure data sharing within multi-cloud
storage, an approach featuring the Advanced Encryption
Standard Algorithm (AES) was proposed by Wang et al.
[20]. This approach aimed to foster improved decision-
making concerning cloud storage for users. However, this
model did not address key security concerns, including
insider attacks, colluding attacks, data integrity issues,
potential data intruders, and the threat of malicious files.

Alzain et al. [8] introduced a visionary blueprint for
secure storage and file sharing in cloud environments, hin-
ged on a Symmetric Searchable Encryption (SSE)
scheme [21-23]. This framework enables users of an elec-
tronic healthcare system to securely store their medical data
in an encrypted format and perform searches on the data
without needing to decrypt it first. Despite the scheme fa-
cilitating secure sharing, it lacks efficiency and flexibility
due to its non-reliance on policies. Additionally, while the
authors broached the subject of access revocation, they fell
short of providing a comprehensive and effective answer.
Consequently, the architecture is deemed ineffective for
sharing substantial volumes of data among various users.

Bhatt et al. [24] analyzes architectural patterns, data
governance strategies, and security measures necessary to
ensure data integrity, availability, and confidentiality.
Through literature review, case studies, and experimental
evaluations, the authors propose a novel framework, the
Multi-Cloud Data Ecosystem Architecture (MCDEA),
designed to address these challenges. Their findings
demonstrate that the MCDEA framework can scale to
manage large volumes of data, ensure robust security, and
optimize resource utilization. However, the paper acknowl-
edges limitations, including the need for further exploration

of advanced optimization techniques, the integration of
emerging technologies like serverless computing and Al-
driven automation, and the adaptation of the framework to
handle new multi-cloud complexities as the field evolves.

Ali et al. [25] presented a novel hybrid deep learning
model that integrates homomorphic encryption (HE) with a
consortium blockchain to enhance the security of Elec-
tronic Medical Records (EMRs) in the Industrial Internet of
Medical Things (IIoMT). The proposed model improves
privacy, security, and efficiency while reducing latency
compared to conventional approaches. Additionally, the
integration of HE within the IIoMT system strengthens
resistance against collusion and phishing attacks. Another
work by them introduces a novel Group Theory-Based
Binary Spring Search Algorithm integrated with a Hybrid
Deep Neural Network to enhance security and efficiency in
healthcare systems. Additionally, it presents a secure
patient healthcare data access scheme that leverages
blockchain and trust chain technology, addressing vulner-
abilities in existing frameworks and ensuring secure access
to patient health records [26].

Hybrid and Secure Data Sharing Architecture (HSDSA),
a privacy-preserving framework for secure data storage in
multi-cloud environments combines cryptographic tech-
niques to ensure user control over data generation and
decryption, eliminating reliance on a trusted authority.
Hajlaoui et al. [27] addresses security, privacy, and data
integrity while maintaining reasonable upload and down-
load delays. Experimental evaluations using Cloudera
demonstrate HSDSA'’s efficiency in comparison to existing
systems. However, the framework’s real-world deployment
may face challenges such as data transfer costs, storage
fees, network bandwidth, and compatibility with cloud
providers’ specific security features, which require careful
consideration for optimal performance.

Vaidya et al. [17] unveiled a robust structure aimed at
fostering secure data interchange within a multi-cloud
architecture. This system leans on the use of cryptographic
processes, data segmentation, and encryption protocols for
public cloud data storage, with metadata (including file
partitioning, dissemination information, etc.) conserved on a
private cloud database. However, the technique did not
incorporate file indexing, leading to an inconvenient retrie-
val process that necessitates the recipient to engage all slices
for file decoding and reconstruction. Further, the research
did not sufficiently address key management and distribu-
tion, leaving the private cloud database exposed to potential
internal threats. Also, the lack of task automation within this
structure could potentially decrease its total effectiveness.

A study by [28] proposes Secured multi-cloud informa-
tion storage framework (SMISF), using ECC and BE for
encryption and data chunking. It enhances privacy, prevents
unauthorized access, reduces costs, and improves

@ Springer

464 Page 4 of 21

Cluster Computing (2025) 28:464

Table 1 Comparison of various multi-cloud systems

Author

Summary

Strengths

Limitations

Alzain
et al. [8]

Bessani
et al. [23]

Wang et al.
[20]

Fabian
et al. [29]

Vaidya
et al. [17]

Viswanath
et al. [30]

Bhatt et al.
[24]

Hajloui
et al. [27]

Surveys the shift from single cloud to multi-
cloud (or inter cloud) environments.
Proposes the use of secret sharing
algorithms to enhance data integrity and
protection against intrusion

Introduces DepSky, ai-cloud-of-clouds
storage system designed to enhance the
availability, integrity, and confidentiality
of critical data stored in the cloud.
Mitigates the risks associated with relying
on a single cloud through extensive
experiments involving four cloud providers
and globally distributed clients via
PlanetLab

Introduces a certificateless proxy re-
encryption (CL-PRE) scheme for secure
data sharing in cloud computing
environments. Data owners encrypt their
data before outsourcing, and a semi-trusted
proxy can re-encrypt the data for other
users without learning the content

Architecture designed to enhance secure and
private inter-organizational data sharing in
healthcare using cloud computing.
Leverages attribute-based encryption and
cryptographic secret sharing to safeguard
patient information in semi-trusted cloud
environments

Proposes a middleware-based unification
framework that creates a Virtual Storage
Area Network (VSAN) by integrating
multiple Infrastructure-as-a-Service (IaaS)
cloud layers, utilizing popular storage
services like Dropbox, Box.net, and
OneDrive

Combines AES and the Feistel network to
create a hybrid encryption algorithm aimed
at enhancing the security of big data before
it is stored across multiple cloud services.
Includes processes such as data uploading,
slicing, indexing, encryption, distribution,
decryption, retrieval, and merging to
ensure secure storage and retrieval of data

Introduces the Multi-Cloud Data Ecosystem
Architecture (MCDEA) that addresses the
increasing complexity of managing data in
multi-cloud environments. MCDEA
supports large-scale data handling,
enhances security compliance, optimizes
resource use, and enables privacy-
preserving collaboration

Introduces the Hybrid and Secure Data
Sharing Architecture (HSDSA) to enhance
data security in multi-cloud environments.
Combines cryptographic techniques to give
users full control over data encryption and
decryption, removing the need for a
centralized authority and improving trust in
cloud systems

Improved service availability and resistance
to insider threats

Robust and layered approach to cloud data
protection, and reduced redundancy
without sacrificing reliability

Avoids the need for public key certificates
and simplifying key management

Distribute data securely across multiple
clouds, limits single points of failure

Enhance data confidentiality and resilience
against breaches, simplifies user
interactions with multiple cloud platforms

Robust encryption mechanism and enhanced
security of the data

Scales efficiently across various cloud
platforms while maintaining strong
security and compliance. Facilitates
optimized resource distribution and
enables privacy-preserving data analysis

Empowering users to manage their own
encryption and decryption processes
without relying on third-party authorities.
Also reducing vulnerability to single points
of failure

Lacking empirical validation,
performance overhead, and cost
implications

Increased complexity

Need for robust testing in real-
world applications

Scalability issue in key
management, single point of
failure

The reliance on public storage APIs
could pose limitations due to
varying service restrictions, rate
limits

May slow down the encryption
process and not address all
possible security threats

Interoperability between
heterogeneous cloud services
remains a challenge

Introduces computational
complexity

@ Springer

Cluster Computing (2025) 28:464

Page 5 of 21 464

performance, giving users control while shielding data from
providers and authorities. However, SMISF framework
faces scalability, performance, security vulnerabilities, reg-
ulatory compliance challenges, user control limitations, and
dependence on multiple providers, impacting its effective-
ness and reliability in practical applications.

While numerous strategies have been proposed, none
have effectively implemented a sound architectural
framework or working protocol for secure data sharing
using multi-cloud services. Current methodologies do not
guarantee file slicing, encryption, decryption, or retrieval
processes. They also fail to address important issues
including secure key management while sharing data
across several cloud storage platforms, conflict resolution
during file merging in retrieval, protection from malicious
files, defense against colluding providers and insider
assaults, centralized data, and defense against harmful files.
If encryption occurs before cutting, it becomes difficult to
securely upload very big files, frequently resulting in sig-
nificant delays for users. To address these challenges, this
paper introduces an efficient architectural framework
employing a standardized algorithm to bolster secure data
sharing via index-based cryptographic data slicing. Fur-
thermore, our proposed framework prioritizes data pro-
tection against malicious insiders and files during the
uploading and downloading process.

3 System model, assumptions, and security
goals

3.1 System model

The system model used in this paper is presented in Fig. 1.
The proposed CloudLock framework consists of multi-
cloud data storage, a Key Dissemination System (KDS),
data owners, Authenticated users, and Secure Cloud Stor-
age Enabler (SCSE) unit.

m_

=

K0S unit
\ 0
-l
B B =%
N / _kos
\ Authenticated \
. users 7 b
~ >

Fig. 1 Proposed system framework

e Multi-cloud storage: The multi-cloud storage system
consists of multiple cloud services. It provides space for
data owners to keep the encrypted data that consumers
may access. It is incharge of letting verified users obtain
their data after receiving a request. The multi-cloud
storage system integrates Dropbox, Google Drive, and
Mega. Data owners upload encrypted files via a secure
interface; custom connectors distribute data fragments
across providers. Verified consumers authenticate and
securely retrieve reassembled files, ensuring high
availability, redundancy, and robust security while
minimizing risks through client-side encryption and
distributed storage.

e KDS: It seeks to offer secure data exchange. The major
objective of this unit is to enable secret key sharing
among the SCSE unit and the authenticated user. It
allows sharing the key among the authenticated user
and SCSE unit without actually sharing their private
keys.

e Data owners: They are the individuals or the entities or
the organizations who own the data. They usually have
large amounts of private data which is difficult to store
on their local machines and has to be kept confidential.

e Authenticated users: They are the entities who wish to
access the data and derive some knowledge from it.
These users are authenticated before being given access
to the SCSE Unit.

e SCSE Unit: SCSE unit is the sandwich between the
multi-cloud framework and data owners or authentic
users. It provides the functionalities of data slicing, data
distribution, data encryption, data uploading, data
allocation, and data decryption.

3.2 Assumptions

The assumptions considered in this work are:

1. All users connected to the system are assumed to be
authenticated and trusted, ensuring that they will not

BE
aE

Data Owner

Multicloud
SCSE Unit \\ Environment //

@ Springer

464 Page 6 of 21

Cluster Computing (2025) 28:464

access other users’ data without proper authorization.
This assumption of authenticated and trusted users
serves as a foundational principle for secure systems,
facilitating secure information sharing and fostering
user trust. By assuming user authentication, this work
establishes the following underlying premises:

Robust authentication mechanisms: The system imple-
ments reliable authentication protocols, such as user-
name/password combinations, biometric authentication,
or two-factor authentication, to verify the identities of users.
Authorization controls: The system enforces strict
access control policies, defining user permissions and
granting access only to authorized individuals or
designated user roles.

Trusted user behavior: Users are expected to adhere to
ethical practices and legal requirements, refraining from
unauthorized access or misuse of other users’ data.
Absence of malicious intent: The assumption assumes
that users connected to the system have no intention to
compromise the security of the system or engage in
unauthorized activities.

All data owners connecting with the system are
assumed to be legitimate and do not intend to harm
the system. Furthermore, it is assumed that the data
owners are only connected to specific users, ensuring
that their data will not be accessed or used by
unauthorized individuals. This assumption serves as a
fundamental premise for this work, establishing the
following underlying conditions:

Legitimate data owners: The work assumes that all data
owners connecting to the system are authentic and have
lawful ownership or authorized access to the data they
possess.

Absence of malicious intent: It is assumed that the data
owners have no intention to compromise the system’s
security, manipulate or corrupt data, or engage in
activities that could harm the system or other users.
Controlled data access: The assumption encompasses
the premise that the system implements appropriate
access controls and mechanisms to ensure that each
data owner is only connected to specific users with
authorized access, thereby preventing unauthorized data
sharing or usage.

Data privacy and confidentiality: The assumption
implies that the system upholds strict data privacy
measures, safeguarding the data owners’ information
from unauthorized access and ensuring that it remains
confidential and protected from unauthorized usage.

@ Springer

The SCSE Unit, as a third-party component, is
designed to be highly secure against known threats,
and it is presumed that no hacker can gain unauthorized
access to its system or compromise its security
measures. This assumption establishes the following
underlying conditions related to the SCSE unit:

High-security standards: The SCSE unit is assumed to
be developed and maintained with robust security
measures, following industry best practices and encryp-
tion standards to guarantee the integrity and confiden-
tiality of data handled.

Resilient infrastructure: It is assumed that the SCSE
unit operates within a secure and well-designed infras-
tructure, including firewalls, intrusion detection sys-
tems, and other protective measures, making it highly
resistant to unauthorized access attempts.

Skilled security professionals: The SCSE unit is
assumed to be staffed by experienced and knowledge-
able security professionals who actively monitor and
respond to potential security threats, ensuring the unit is
ongoing security posture.

Thorough security testing: Before deployment, the
SCSE unit is put through a thorough security testing
process that includes vulnerability assessments, pene-
tration testing, and code reviews.

3.3 Security goals

4

Confidentiality of data: During the uploading and
downloading of the data, the outsourced data must be
protected from eavesdropping threats.

Verification: Any user’s validity to access the data must
be verified, and any request applied by the authenticated
user for plaintext (fextpq,) must be verified and
serviced accordingly.

Resistance to attacks: Proposed framework should be
capable of mitigating possible attacks (cheating, collu-
sion, forgery, and so on) initiated by misbehaving users
and adversaries.

Preliminaries

4.1 Abbreviations

Table 2 shows the list of abbreviations used throughout the
paper.

Cluster Computing (2025) 28:464

Page 7 of 21 464

Table 2 List of abbreviations

Abbreviation Full form

3DES/triple Triple data encryption standard
DES

AEAD Authenticated encryption with associated data

AES Advanced encryption standard

ASD Associated data

ChaPoly ChaCha20-Poly1305

CSv Comma-separated values file

Ct Ciphertext

CU Crypter unit

DES Data encryption standard

DOC Document

DSDU Data slicing & Distribution unit

DT Decryption time

ECDH Elliptic Curve Diffie-Hellman

ET Encryption Time

HTML HyperText Markup language

IND-CPA Indistinguishability under Chosen plaintext attack

INT-CTXT Integrity of ciphertexts

KDS Key dissemination system

Nc Nonce

PDF Portable document format

PM Padded message

RTF Rich text format

SC Stream cipher

SCSE Secure cloud storage encryption

TAT Turn around time

Tg Tag

TLS Transport layer security

TXT Plain text file

4.2 Methodology to share data secretly

Since its inception in 1979 by Shamir [31] and Blakley
[32], secret-sharing systems have been intensively resear-
ched [33, 34] follows. The unlocking of a secret is con-
tingent upon a user’s ability to collaborate with no less than
u—1 additional user, leveraging the information dissemi-
nated by the dealer. In this context, u, subject to the con-
dition u < n, represents a preset parameter, with ‘n’
denoting the complete user count. The secret that the dealer
and the users must disclose is ® € GF(p;), where p; > N.
Each user A; has a secret key k; € GF(p) that only A; and
the dealer know. The dealer works in two stages. It begins
by constructing the polynomial function F(x) of degree u—1
illustrated in:

u—1
F(x) =R + ZV,‘X,‘,
i=1

by randomly selecting each i i.i.d. from GF(p,) with a uni-
form distribution. It should be noted that all (addition and
multiplication) operations in the above equation are modular
arithmetic (defined over GF(p)) rather than real arithmetic.
Furthermore, F(x) incorporates a constant factor s, which
leads to & equating to F(0). During the subsequent phase, the
dealer disperses a divided secret, ®; = F(x;) to each A;. In this
equation, x; signifies a random number chosen by A; for dis-
seminating the secret J. This number is relayed to the dealer
via a secure channel safeguarded by the mutually held key ;.

Subsequently, we will illustrate how u or a higher
number of users can collectively recapture f by sharing the
secrets they have obtained from the dealer. Let Ay, ..., A, be
the collaborating users without losing generality. These u
users may deduce the secret ® = F(0) from $; = F(x)),...,
R, = F(x,) by doing the following computation:

R=F(0) =Y (Rl jzi(0 = %)/ (xi = x7))

i=1

It is worth noting that in the above equation, the cumulative
product is effectively the Lagrange coefficient. Based on the
definition of F(x), the accuracy of the above equation may be
easily checked. When recovering the secret R in secret
sharing, a user may cheat. For example, a user A; may enter
an erroneous %;, causing s recovery to fail. To address this
issue, verifiable secret-sharing techniques [35, 36] have been
suggested, which are mostly based on the RSA cryptosystem,
which has a large computational cost.

4.3 Authenticated encryption with associated
data (AEAD) syntax

The following three algorithms make up a nonce-based
authenticated encryption system with accompanying data:

e The key generation algorithm produces a secret key #
with no input. To express the key space related to the
key generation technique, we overloaded .

e The encryption method, Encrypt: ® * Nc * ASD *
texty,in — Ct takes as inputs a secret key R, a nonce
Nc, associated data ASD, and a message text;, and
outputs a ciphertext Ct. Encryption provides a constant
expansion, which means that the expansion
|Encrypt(R, Nc, ASD, textyjqin)| — |textyain| is constant
for every (R, Nc, ASD, textyigin).

e The decryption method, Decrypt: R * Nc * ASD * Ct
— textyin, takes a secret key ¢, a nonce Nc, connected
data ASD, and a ciphertext Ct as inputs, and delivers
either a message text,;,;, or an error as the output.

The relevant set §, Nc, ASD, fext,», and C are respec-
tively referred to as the key space, nonce space, associated
data space, plaintext, and ciphertext. For any (i, Nc, ASD,

@ Springer

464 Page 8 of 21

Cluster Computing (2025) 28:464

textyiqin), it must hold that if Ct <« Encrypt(R, Nc, ASD,
texXtpiain), then textyqi, < Decrypt(Jt, Nc, ASD, Ct). This is
the accuracy requirement that we place on every nonce-
based AEAD.

4.4 ChaCha20

The Salsa stream cipher has been improved by Bernstein into
the ChaCha20 stream cipher. An arbitrary-length message
textyqin (or ciphertext Ct) is encrypted (or decrypted) using a
256-bit secret key R and a 96-bit nonce Nc. It creates a pseu-
dorandom keystream that is XORed to the message, as with
any stream cipher. Through the CC block function of the
ChaCha20 block algorithm, the keystream is produced in
blocks of 512 bits. The 32-bit block counter i and the 96-bit
nonce Nc make up the input to the CC block function, which is
keyed with . In this approach, it is used as a pseudorandom
function, although in reality, it is a 512-bit permutation set up
in a Davies-Meyer fashion. For creating the input for the
ChaCha20 permutation, the key, counter, and nonce are
specifically fused, preceded by a constant, and subsequently
incorporated once again into the output of the permutation
through a modulo 232 addition, conducted on a word-by-word
basis.

4.5 Poly1305

Bernstein also created the Poly1305 one-time MAC algo-
rithm. It requires a key made up of two strings (S, 0)
totaling 128 bits. Its security is based on Bernstein’s
demonstration that the hash function V is almost A uni-
versal. Theorem 2, which is replicated below for com-
pleteness, states the security of the hash function V and
provides a definition of it.

4.6 Theorems

1. A-Universal Hash Functions-Consider V: KS « DM —
{0,1}" to be a set of keyed hash functions with key
space KS, domain DM, and a digest space of {0,1},
for a positive integer t. This study encompasses hash
function families operating over both string sets and
pairs of strings. When DM = {0, 1}", for any given
positive real number c, we claim that V is c-nearly A
universal if, for all separate M, M’ € {0,1}" and V z
€ {0, 1}/, the following condition holds true:

_ — (1)
Pry_sks[V (textpiain) =V, (text),.)+2]
_ emax(estyunl 5yl
< o

(1)

@ Springer

3.

Alternatively, when DM = {0,1}" x {0,1}", for any
distinct (ASD, Ct), (ASD',Ct') € {0,1}" x {0,1}" and
all z € {0, 1}, we require that:

— —)
Pr,<_$KS[V,(ASD, Ct) = ‘/,»(ASD/7 Ct,)+Z]
_ emax(ASD, + |C1|. |AD], + |t
> ot

(2)

The Hash Function V in Poly1305- Let us consider I as
a multiple of 8 that is greater than zero, p as a prime
that is larger than or equal to 2/*', r as a string of 1-bits,
and fext,,, as any sequence of bytes. We can
decompose textpy, as

teXtyigin = teXtyigin, |t€Xplain, ... |1€Xt iain,

where each |text, ;| equals 1 for every i less than or

equal to 1, and 0 is less than or equal to |fext,, | and at
most 1. Hence, we represent V. (textyqin) as the string of
t-bits corresponding to:

I -x'+5L x4 +1;-x' mod p) mod 2, (3)

Here, I; signifies the integer interpretation of the
(I4+-1)-bit string concatenated with text,;, and 1.
Moreover, x represents the integer interpretation of r,
post nullifying 22-bit positions (Clamping).

Vis A A U- Let ¢ = 2%, then for any 1-bit string s and
any pair of distinct byte strings (fextyiain, t€Xtpiain’), it
holds that:

— — @
Prr&${0,1}’[Vr(texrplain) = Vr(texr,/;zam)'i's]

(4)

c.max(|textyiain|;, |text]’,lam)
< 5

The single-use MAC (Polyl305 Mac), utilized in
ChaCha20-Poly1305, expands the original Poly1305
algorithm to authenticate two strings, not just one. This
enhancement is achieved by enriching the hash func-
tion with a suitable encoding that maps the pair of
strings into a single one, marking a clear separation
between the two strings. Crucially, this encoding must
be injective. Definition 3. B outlines the process of

building V from V. In Theorem 3. B, we demonstrate
that if V is e-almost A-universal for individual strings,
then V also retains its e-almost A-universal property
when dealing with pairs of strings, where € (1) equals €
1+ 1.

The Hash Function V in Poly1305_Mac- Consider r to
be a string of t-bits and V as the hash function
employed in Poly1305. Consequently, the hash of any
pair of byte strings represented as (ASD, Ct), can be
deduced as follows:

Cluster Computing (2025) 28:464

Page 9 of 21 464

Registry

ES

Data Owner

Unit

Data Slicing and Distributing

%i SCSE Unit

KDS Unit
Py

KDS Unit
Py

8|

L]

A

|

8|

¢ Authenticated
Users

=/

Fig. 2 Proposed CloudLock framework

V.(ASD, Ct) = V,(ASD||Pad(ASD)||Ct||

Pad(Ct)||len(ASD)||len(Ct)) ®)

In this context, Pad(Y) refers to the minimal quantity

of zero bytes required so that the bit length of the
concatenated YIPad(Y) results in a multiple of t. Sim-
ilarly, len(Y) signifies the representation of the byte
length of Y in t/2-bits.

5 The proposed CloudLock framework

Secure data sharing in a multi-cloud environment is a
crucial aspect of handling data storage problems. A single
cloud could act as a central point of failure in case of attack
which leads the hackers or intruders to get access to
organizations’ data. This also deduces that the data stored
in cloud storage may not be safe. So, in order to handle the
listed problems, we proposed CloudLock, a reliable
framework data storage and sharing schema for a multi-
cloud environment. It omits the idea of a central point of
failure of a single cloud by slicing the data into sub-parts
and storing the sub-parts on multiple clouds. Also, it
resolves the issue of data security by using encryption
schemes. Proposed CloudLock framework consists of
SCSE unit which acts as a middleware between the clouds,

authenticated users, and data owners and consists of vari-
ous units which aid to ease the process of uploading,
encryption, decryption, and downloading the data. Fig-
ure 2, gives an overall idea of the proposed framework.
Formerly, the owner of data stores their files on a multi-
cloud platform by sending a request to the SCSE Unit. Its
sub-unit named Data Slicing & Distribution Unit (DSDU),
first divides the data into multiple parts and sends them to
the registry, where the registry acts as a hashing module
and provides indexing to the file for merging and storing
purposes. Next, these files are transferred to the Crypter
unit for encryption and then they are uploaded to multiple
cloud platforms. The number of cloud platforms varies
from organization to organization depending upon the
amount of data and the cost to buy resources. While
accessing the file, each authenticated user has to send a
request to the SCSE unit for file access. This request turns
on the file access mechanism, described in Algorithm 3
which enables the authenticated user to access the data.
A data owner has a data, say F = {F,F,F3,....., F,},
which is to be uploaded to the cloud storage Cd
{Cd,,Cd,,Cds,,Cd,}. At this stage, the data owner
requests the SCSE unit to upload its file on the multi-cloud
environment. Initially, the SCSE unit instantiates the
DSDU unit to commence the data slicing and distribution
phase. Next, the Registry allocates the data to multiple

@ Springer

464 Page 10 of 21

Cluster Computing (2025) 28:464

[Download]

Both SCSE unit and the KDS
unit generates the key using
ECDH process of KDS unit [€

'

The SCSE unit encrypts the
secret key using the ECDH key
and AES encryption technique

I

Send the encrypted secret key
and the cloud_index_pair
to the authenticated user

|

Authenticated user receives the

encrypted secret key and L— Initiate the KDS Unit

decrypts it using AES decryption
to obtain secret key

[User]

A

Send a request with
ilename to SCSE unit

i KDS begins by
initialization of
ECDH scheme

User downloads the files from
respective cloud platforms and e
decrypts them using secret key secret key to
both the parties
l for encryption
purpose

User merges the files to obtain
the actual data

Fig. 3 Workflow of the proposed CloudLock framework

clouds which are stored in the clouds after passing through
the Crypter unit. Figure 3 describes the workflow of the
proposed framework. The process begins with user
authentication; if the user is not authentic, the process is
terminated. Upon successful authentication, the user can
either upload or download files. In the upload process, the
data owner connects with the SCSE unit and uploads the
file. The system then divides the file into multiple seg-
ments, registers them, and allocates each segment to dif-
ferent cloud platforms. Before storage, the data undergoes
encryption via the ChaCha20-Poly1305 encryption
method, ensuring confidentiality. Each encrypted file seg-
ment is then uploaded to its respective cloud storage plat-
form. In the download process, an authenticated user
requests a file by sending its filename to the SCSE unit. If
the file exists, the KDS is initiated to generate a secret key
using the ECDH scheme. The SCSE unit encrypts the
secret key using AES encryption and transmits it securely
to the user. The user decrypts this secret key and down-
loads the encrypted file segments from the cloud platforms.

@ Springer

Is Owner/User
authentic

Upload / Download

[NO]

[Upload]

[Owner]
Divide the data into

—»| multiple files (f1.12..__fn)
and send them to registry

! |

Allocate files to respective
and initialize the cloud service platform
SCSE unit ((c1,f1),(c2,12).....(cn,fn))

I |

Send the files to
the Crypter unit for
encryption

|

Initiate the encryption process t
generating secret key to encryg
via ChaCha20-Poly01350
method

|

Encrypt the file upload
them to its respective
cloud service platform

Connect with SCSE unit

Upload file F to the
SCSE unit

4

Is uploaded

Initialize the data slicing
and data distribution unit

Using the obtained key, the user decrypts and merges the
file segments to reconstruct the original data. This approach
enhances data security by utilizing encryption techniques
and distributing storage across multiple cloud platforms.

5.1 SCSE Unit

SCSE Unit is the sandwich between the multi-cloud frame-
work and data owners or authentic users. It provides the
functionalities of data slicing, data distribution, data encryp-
tion, data uploading, data allocation, and data decryption.
Data Slicing is the fragmentation of data into subparts which is
followed by data distribution. It consists of distributing data to
cloud services and storing the allocated Cloud_Index_pairs in
Registry. Additionally, it constitutes of Crypter Unit whose
functionality is to encrypt & decrypt the data using ChaCha20-
Poly1305 encryption and decryption respectively. It also
empowers to encrypt the secretkey, ¢, used for file encryption
before sending it to the authenticated user.

Cluster Computing (2025) 28:464

Page 11 of 21 464

Algorithm 1 ChaCha20-Poly1305 AEAD scheme

Input: R € {0,1}%°¢, Nc € {0,1}°6, ASD € {0,1}*, textpiain € {0,1}* where R is
the secret key (32-byte), Nc is nonce (12-byte), and ASD is a variable-length
associate data.
Output: Ct € {0, 1}Itestiainll Tg € {0,1}128
ChaCha20-Stream Cipher (SC)
: for j = 0 to [[textpiain]/512] — 1 do
: /*Initialization state*/
. S[0] « 0x61707865 , St[1] + 0x3320646¢
St[2] « 0x79622d32, St[3] 0x6b206574
where: 0x61707865, 0x3320646e, 0x79622d32,
0x6b206574 are constants
St = Initial State (4 * 4 matrix)
Stle] = element at position e (each Stle] is represented by 32-bit word)
: St[4..11] <~ R { Set key }
. St[12] < j {Set counter}
. St[13..15] +~ Nc {Set nonce}
: St’ < St
. for n < 0to 9 do
/*Column round*/

w o =

SIS

© o

St[0,4,8,12] « Q,(St[0], St[4], St[8], St[12])
St[1,5,9,13] + Q,(St[1], St[5], St[9], St[13])
St[2,6,10,14] + Q,.(St[2], St[6], St[10], St[14])
St[3,7,11,15] « Q,.(St[3], St[7], St[11], St[15])
/*Diagonal Round*/

St[0,5,10,15] + Q. (St[0], St[5], St[10], St[15])
St[1,6,11,12] + Q,(St[1], St[6], St[11], St[12])
St[2,7,8,13] + Q,(St[2], St[7], St[8], St[13])
St[3,4,9,14] + Q,(St[3], St[4], St[9], St[14])

end for
Notey: Q, = Quarter function
It is defined as :
(a,b,c,d) = Q,(p,q,r.s), where:
a=(pHq) B (q @ (rH (s D (p B q) <<<16))<<<12)
=((s @ (p B q)<<<16) P a) <<< 8
c=rH D (pHBq) <<< 16)) Bd
b=(((q¢P(r B (sP(p B q)<<<16))) <<<12)Pc)<<<T
and B = integer addition module
@ = XOR operation
c RYNC St B St
{V0<e<15:Stle] B St'[e]}
10: Ctj < PT; @ kY ¢ {Encrypt}
. end for
. Save Ct € {0, 1}llteztpiainll
13: PM < Pad(ASD) || Pad(Ct) || Le(ASD) || Le(Ct) {Pad Message(PM)}
Notey: L : {0,1}* — {0,1}04
Le returns the length of input as 64-bit little-endian integers
Pad: {0,1}% — {0,1}3(+9) 17
Pad returns the b-byte input padded with 6 = (16-b)mod 16 zero bytes
14: (3,0)¢« ChaCha(R,Nc,0) {Compute one-time key}
Poly-1305
15: (h1, ho,....h;) < Pad1305(H) {Chop H into t chunks}
Notes: H C tewtpiain, where H is a b-byte message
H e {0,1}8
Pad1305 : {0,1}% — {0,1}136
where: t = [1/16] 17-byte chunks (h¢)i1<c<; where each 16-byte block is padded
with byte 0x01 and last block is padded with byte 0x01 & (16-b) mod 16 zero bytes
16: § ¢ Clamp (Q) { Clear bits of S}
Notey: Clamp: {0,1}!28 — {0,1}!28
I =900+ 3+ 3y + 9y,
S € {0,1,2,....,225 — 1},
$1/2%% € {0,4,8, ..., 225 — 4},
$p/204 € {0,4.8, ... 225 — 4} &,
$3/2% € {0,4,8,12,, 2% — 4}
17: v+ 0
18: for j = 0 to (t -1) do { Evaluate Polynomial}
v v+ (hj - 37 mod 2130y _ 5
19: end for
20: Evaluate Tg,
Tg < v + 0 mod 2'% {Generate Tag}
Notes: Tg is overall evaluated by using the equation:
Tg = (Z;:I I mod 2130 - 5) 4+ (3 mod 2!%%)
21: Save Tg
22: return (Ct, Tg)

©

==
N~ o

@ Springer

464 Page 12 of 21

Cluster Computing (2025) 28:464

5.1.1 Data slicing and distribution unit

This unit deals with data division and data distribution. Its
subcomponents are described as follows:

Data Slicing: This is the first and foremost step prior to
data uploading. Here, the data file, say F, is divided into
multiple files

F= {flaf27f37""7fn} (6)

where n varies with the number of clouds chosen for
storing the data. It seeks to improve security for owner data
on many clouds. This action is crucial because:

1. Distributing over multiple clouds helps to store data
easily as compared to the single cloud

It avoids any problems related to data size restrictions
It allows efficient usage of bandwidth

It aids load balancing

It facilitates to encryption and decryption process, by
considerably decreasing the size of the file to be
encrypted or decrypted.

whAwN

Registry: A registry is the most important component of the
SCSE unit as it contains all the metadata and all the
symmetric keys Rs’. It is a directory system which stores
Cloud_ID and File_Index hash pairs, termed as
{(Cdl,]q), (Cdz,fz), (Cd3,f3), , (Cdn,fn)}. It enables
the system to maintain the record of the file F. Also, it
stores the private key used to encrypt the data encrypt
{fi,R}. RN is encrypted after obtaining private key d by
KDS.

N = encrypt(R, d) (7

This R is sent to the authentic user upon request through
Key Dissemination System (KDS), send(R).

5.1.2 Crypter Unit (CU)

This unit deals with the encryption schema. It allows the
files to be encrypted using the ChaCha20-Polyl305
encryption. When a file is passed from the Registry then it
gets passed on to the Crypter Unit to get encrypted where
after its encryption it is uploaded to the cloud service
platforms. The basic concept behind the ChaCha20-
Poly1305 is described as follows:

@ Springer

e The ChaCha20 is a stream cipher and the Poly1305
authenticator could be combined together to build the
ChaCha20-Poly1350 AEAD scheme [37]. Random
oracle model proves the IND-CPA & INT-CTXT
security of this scheme on the assumption that Poly1350
is a A-universal hash function [38].

e The AHED schema requires the input of a 32-byte
secret key R, a 12-byte Nonce Nc, a variable length
textyain, & a variable length associate data (ASD) &
returning Ct and a 16-byte authentication tag Tg. CU:
{0,132° % {0,1}*° % {0,1}" — {0, 1}* % {0, 1}"** such
that (J¢,Nc,text, i, ASD) — (Ct,Tg).

Here the encryption is performed using Algorithm 1 while
taking (block counter) y > 1 as y = 0 is used to generate the
one-time key ($J,d) & so it cannot be reused to encrypt. It
begins by encrypting the plaintext using the ChaCha20
stream cipher: a 256-bit secret key, a 96-bit nonce, and a
counter are used to initialize a 4x4 state matrix alongside
fixed constant values. The state undergoes 20 rounds of
transformation-alternating between column and diagonal
rounds via the quarter round function (Q,) to produce a
keystream block. Each plaintext block is then XORed with
its corresponding keystream block to yield the ciphertext.
Once encryption is complete, the algorithm constructs a
padded message by concatenating the padded associated
data, the padded ciphertext, and their respective lengths in
little-endian format. A one-time key for the Poly1305
MAC is derived from a separate ChaCha20 invocation
(with counter zero) and is “clamped” (i.e., certain bits are
cleared) to meet specific security requirements. The padded
message is then divided into fixed-size chunks, each pro-
cessed as part of a polynomial evaluation modulo 2'3°.
After evaluating the polynomial-with a final adjustment by
adding the clamped one-time key-the algorithm computes a
128-bit authentication tag. The final output consists of the
ciphertext and the tag, which together provide authenti-
cated encryption.

In order to decrypt the functionality of the textyin, & Ct
is reversed and the generated tag must be bitwise compared
with the received tag in order to verify the authenticity of
data. A concept to be noted is that the authenticator of the
proposed framework takes Ct as its input to encrypt as well
as to decrypt (Algorithms 1 & 2). The groundwork for
ChaCha20-Poly1305 is laid as:

Cluster Computing (2025) 28:464

Page 13 of 21 464

Algorithm 2 ChaCha20-Poly1305 decryption algorithm

Input: R € {0,1}2% Nc € {0,1}%, ASD € {0,1}*, Ct € {0,1}*, Tg € {0,1}128

Output: Plain Text textyiqin

: Q|0 < Poly1305_Key_-Gen(R,Nc), step 14 in algorithm 1
: Tg’ + Poly1305_-MAC(($Y,d),ASD,Ct), steps{15..21} in algorithm 1

1
2
3: If Tg’ # Tg then return error
4

: return ChaCha20(R,N¢,Ct), steps{1..12} in algorithm 1

The AHED composition: the encryption and decryption
algorithms consist of subparts, ChaCha20, one-time
Poly1305, and Poly1305_key_gen which are based on the
A-universal hash function family V over string pairs. Here
one-time key (3, 0) is derived again for every encryption
process by running the ChaCha20 block function in
Poly1305_Key_Gen on R, Nc, and the counter value zero
(saved specifically for this thing). On the contrary, the
decryption algorithm works vice versa by computing the
one-time key first, then recomputing the MAC tag and
checking if the tag is identical to Ct used with ChaCha20 &
returns the deciphered text, else returning an error.

Algorithm 3 File access algorithm

can access and decrypt the stored files, enhancing data
confidentiality and integrity in cloud environments.

5.2 Key dissemination system

Data Accessing is one of the major aspects dealt with in this
paper. Utilizing the KDS, it seeks to offer secure data
exchange. The major objective of this unit is to enable secret
key sharing among the SCSE unit and the authenticated user
as shown in Fig. 4. The process begins when a user requests
file access (Step 1). To establish a secure key exchange, both
the user and the file owner generate their respective keys

Input: Initialization request for ECDH
Output: Symmetric Key 4
// Set-up phase
1: Select elliptic curve F,
E.: y2 = + px + q (mod p;)

where, p, = prime number, p & q = coefficients of

specific curve

2: Pick a base point on F,, say © with order m, i.e.,

O™ =¢e
where e = identity element
// Key generation phase

3: Both Cd, & A, randomly chooses their private key say (i & & respectively
4: Both Cd, & A, generates their public key p & p respectively :

© = Q-0
p = &k-O
// Key exchange & formation

5. A, sends p to Cd,, through KDU. Cd,, performs (i.p i.e.,

3= (p-&i-0

6: Cd, sends p to A, through KDU. A, performs &.p i.e.,

4= &G0

Note: This 4 acts as the symmetric key for encrypting & decrypting secret key R

These mechanisms could handle various security
attacks, including man-in-the-middle (MITM) attacks, key
interception, and unauthorized access. By utilizing ECDH
for key exchange and AES encryption for securing the
secret key, the system ensures that only authenticated users

using the Elliptic-Curve Diffie-Hellman (ECDH) mecha-
nism (Steps 2-3). The Secure Cloud Storage Encryption
(SCSE) unit then encrypts the secret key, which was origi-
nally used for file encryption, using the generated ECDH
key (Step 4). Next, the SCSE unit transmits the encrypted

@ Springer

464 Page 14 of 21

Cluster Computing (2025) 28:464

key along with the cloud index pair to the Key Distribution
System (KDS) (Step 5). Upon receiving the encrypted key,
the KDS performs decryption to retrieve the original secret
key (Step 6). Finally, the authenticated user receives the
decrypted secret key, which is essential for file decryption
and reconstruction (Step 7). This process ensures a secure
exchange of encryption keys, allowing only authenticated
users to access and decrypt the requested files.

It allows sharing the key among the authenticated user
and SCSE unit without actually sharing their private key
through the Elliptic Curve Diffie Hellman (ECDH) mech-
anism. The final key obtained, A after the ECDH process is
used as a symmetric key for encryption of the true secret
key, R using the AES mechanism. This encrypted key is
then sent to the user along with the Cloud_Index_pairs to
obtain the original file. Algorithm 3 describes the process
to access files from the multi-cloud storage.

5.2.1 Elliptic Curve Diffie Hellman (ECDH) mechanism

The ECDH algorithm is a key exchange protocol that pro-
vides a reliable method for two users to share a secret over
an unsecured network. It is devised through the mathemat-
ical properties of elliptic curves (EC) & is widely used in
modern cryptographic systems. It is a modification of the
original Diffie-Hellman (DH) algorithm, which operates in
the group of integers moduled with a prime. Instead of using

Algorithm 4 Key dissemination process

integer arithmetic, ECDH employs operations on points of
an EC defined over a finite field. This makes the algorithm
more efficient and provides a larger level of security for the
same key size. Its security relies on the Elliptic Curve
Discrete Logarithm Problem (ECDLP), stating that it is
computationally infeasible to determine the private key from
the public key. The EC’s mathematical structure makes
solving the ECDLP significantly more challenging com-
pared to the classical discrete logarithm problem used in
traditional Diffie-Hellman algorithm. Moreover, ECDH
provides several advantages over other key exchange algo-
rithms. Because it provides robust security with compara-
tively tiny key sizes, it is computationally effective and ideal
for devices with limited resources. In addition, ECDH is
immune to quantum computer attacks, which are a danger to
several conventional encryption techniques.

The ECDLP states that given a point a; on an elliptic
curve, it is computationally infeasible to determine the
integer n such that n . a;= a,, where a, is another point on
the curve. In other words, it is arduous to identify the
private key from the public key.

The security of ECDH is influenced by two main
factors:

e The size of the finite field and the choice of EC
parameters

e Increasing the size of the finite field increases the
difficulty of solving the ECDLP.

Theory: Say authenticated user A, wants the access of data F present in a
multi-cloud storage system Cdg, d € {1..n} where 1 to n are the multiple clouds used
by the Data owners. Thus, to get the encrypted data present in multi-cloud, a secret
key R is required to decrypt it. So, before accessing the data stored in multiple
clouds, it uses Key Dissemination System (KDS) to obtain the encrypted key R.

Input: File request R(F), where F is file to be accessed
Output: Encrypted secret key X & Cloud_index_pair (Cd;q, fiq)

1: A, sends R(F) to KDS

2: KDS uses F to notify the SCSE unit Cd,, for file F.
3: Cd,, sends acknowledgment & KDS responds it by initiating the key dissemination

process, mentioned algorithm 4.

4. Cd, uses ECDH generated key 4 to encrypt the R;

N =encrypt (R, 4)

5. Cd, sends ’'f” which contains the encrypted secret key X and the cloud-index_pair

to KDS:
f = send (N, [Cdiq, fin])

where C'd;q = Cloud_ID, f;, = File_index

6: KDS sends the f to the A,;
A, = Receive (f)

7: Ay uses its key 4 to decrypt N
R = decrypt (R,)

8: Ay uses R, Cd;q, fin to merge & obtain required file.

F = Merge (R, [Cd;a, fin])

@ Springer

Cluster Computing (2025) 28:464

Page 15 of 21 464

6 Results and analysis
6.1 Experimental setup

To evaluate the proposed CloudLock framework, we con-
sidered the scenario in which the encrypted data is stored in
multi-cloud storage services such as Dropbox, Google
Drive, and Mega. Python 3.10 was used to create the
encryption and decryption system. The performance of the
proposed framework is compared with cutting-edge
approaches like Advanced Encryption Standard (AES),
DES, Triple DES, and ChaCha20. Turn Around Time
(TAT), encryption time, decryption time, and memory
usage are the factors used for assessment. To test the
suggested technique, the time duration for uploading and
downloading from the indicated storage platforms is also
determined. All simulation trials are carried out with dif-
ferent files such as Text, PDFs, RTFs, DOCs, HTML, and
CSV with varying sizes ranging from 1 to 300 MB. Fur-
thermore, to better comprehend the difference, .CSV and
TXT files with 1GB of data were also used to compare
with state-of-the-art methodologies.

6.2 Performance analysis

The performance analysis of the proposed framework is
presented in this section based on the encryption time (ET)
and decryption time (DT) using Chacha-Polyl305
(ChaPoly)for different file sizes and types. The results are
summarized in Table 3. The table provides a comparison of
encryption and decryption times for various file sizes and
formats.

The results indicate that as the file size increases, the
encryption and decryption times tend to increase as well.
Moreover, certain file formats, such as HTML, exhibit
higher encryption and decryption times compared to others.
These findings provide insights into the performance
characteristics of the proposed framework for file encryp-
tion and decryption, which can be valuable for evaluating
its practicality and efficiency in real-world scenarios.

For the TXT files, ET varies between 0.309 s fora 1 MB
file and 0.706 s for a 300 MB file. The corresponding DT
range from 0.318 to 0.635 s. Whereas for CSV files, the
encryption times range from 0.169 to 0.577 s, while the
decryption times vary between 0.156 and 0.492 s. The
encryption and decryption times for PDF files vary from
0.166 to 0.738 s, and 0.163 to 0.743 s respectively. The
encryption and decryption times for PDF files generally
increase as the file size increases. The RTF files show
encryption times between 0.160 and 0.894 s, and decryp-
tion times between 0.162 and 0.661 s.

n
nun Alodeyd
Jo Ao)| Ja100g

I
Key
: Dissemination

System
[

°
-

2.

Control Center

WUN SA
JLEOREIELS

@ Authenticated
&% Users

Fig. 4 Key dissemination system ((1) User request for file access,
(2-3) User and owner generate their keys using ECDH mechanism,
(4) SCSE unit encrypts the secret key used for actual file encryption
using ECDH key, (5) SCSE unit send the encrypted key to KDS with
cloud index pair, (6) Decryption of received key, (7) Authenticated
user received the Secret key used for File decryption)

For XLS files, the encryption times range from 0.180 to
0.732 s, and decryption times vary between 0.184 and
0.640 s. The encryption and decryption times for XLS files
exhibit a similar increasing trend with increasing file size.
Further, for HTML files, the encryption times range from
0.311 to 1.512 s, while the decryption times vary between
0.291 and 2.122 s. The encryption and decryption times for
HTML files display the highest values among all the file
types, and they also increase significantly with larger file
sizes. It could be noted that generally, the encryption time
doubles when the size of the file is doubled regardless of
the file type.

Table 4 compares the ET and DT for TXT and CSV files
with varying sizes using different encryption algorithms,
including ChaPoly used in proposed approach, AES,' DES,
ChaCha20, and Triple DES.

For .TXT files, the encryption and decryption times vary
depending on the file size and encryption technique. For a 1
MB .TXT file, the ChaPoly encryption technique has an
encryption time of 0.309 s and a decryption time of
0.318 s. In contrast, AES, DES, ChaCha20, and Triple

' To avoid any confusion, here AES is used for Encryption and
Decryption of the files not the key.

@ Springer

464 Page 16 of 21

Cluster Computing (2025) 28:464

Table 3 Different file encryption and decryption time comparison of proposed framework

File size (MB) TXT file CSV file PDF file RTF file XLS file HTML file
ET DT ET DT ET DT ET DT ET DT ET DT

1 0309 0318 0169 0156 0.166 0163 0.160 0162 0.180 0184 0311 0.291

10 0340 0376 0.184 0182 0.197 0174 0.179 0179 0.184 0185 0353 0.346

50 0361 0465 0251 0251 0243 0242 0257 0243 0258 0243 0462 0510

100 0339 0326 0338 0322 035 0314 0355 0341 0365 0334 0.699 0.640

200 0532 0474 0551 0474 0520 0503 0553 0503 0585 0541 1008 1.638

300 0706 0.635 0577 0492 0738 0743 0894 0661 0732 0640 1512 2122
Zflz’r";p‘:iOglzféegésf;;?;?lugzle File type File size ChaPoly AES DES ChaCha20 Triple DES
comparison ET DIf ET DT ET DT ET DT ET DT
TXT IMB 0309 0318 0008 0002 0014 0012 0003 0002 0.029 0.025

10MB 0340 0376 0.021 0.020 0093 008 0012 0019 0240 0.246

50 MB 0361 0465 0.069 0077 0424 0434 0052 0058 1.178 1.166

100 MB 0339 0326 0.135 0.136 0817 0816 0.102 0.101 2275 2278

200 MB 0.532 0474 0236 0251 1.653 1.639 0.192 0.192 4507 4.481

300 MB 0706 0.635 0338 0333 2479 2541 0288 0309 6757 6679

1GB 2363 2.094 1540 1205 8.422 8.547 1.089 1.046 22.965 23.091

CSV IMB 0.169 0.156 0.005 0.002 0012 0015 0004 0002 0.029 0.027

10MB 0.184 0.182 0.022 0019 0092 0.088 0011 0011 0236 0253

50MB 0251 0251 0.070 0071 0421 0442 0056 0.060 1.162 1.165

100 MB 0338 0322 0.130 0.130 0.824 0.837 0.099 0.107 2299 2302

200 MB 0551 0474 0245 0240 1.657 1.631 0.184 0.195 4525 4.524

300 MB 0.577 0492 0340 0346 2463 2447 0283 0299 6777 6.735

1GB 2447 2351 1550 1482 8329 9495 1.104 1017 22.574 22.636

DES have significantly lower encryption and decryption
times, ranging from 0.008 to 0.029 s for encryption and
from 0.002 to 0.025 s for decryption. As the file size
increases, all encryption and decryption times for .TXT
files also increase, but the relative performance between
the techniques remains consistent.

Similarly, for .CSV files, the encryption and decryption
times vary with file size and encryption technique. For a 1
MB .CSV file, the encryption times range from 0.169 s
(ChaPoly) to 0.005 s (AES), while the decryption times
range from 0.156 s (ChaPoly) to 0.002 s (AES). As the file
size increases, the encryption and decryption times for
.CSV files also increase for all encryption techniques, but
the relative performance among the techniques remains
consistent.

Overall, the results show that hybrid ChaPoly used in
proposed CloudLock framework generally has a bit higher
encryption and decryption times compared to other
encryption techniques across both .TXT and .CSV file
types and different file sizes. AES consistently

@ Springer

demonstrates the lowest encryption and decryption times
among the evaluated techniques for both file types. DES
and ChaCha20 exhibit intermediate performance, while
Triple DES generally has the highest encryption and
decryption times. The higher value for encryption and
decryption time of ChaCha20-Poly1305 could be given to
the fact that this technique not only provides encryption-
decryption schema but also uses the Poly1305 authentica-
tor, which is unique to the fact that none of the other
existing techniques possess. Moreover, this authenticator
adds more security to the ChaCha20-Poly1305 scheme as
compared with other encryption techniques. Additionally,
the memory comparison between ChaCha20-Poly1305
with other encryption techniques as shown in Figs. 5 and 6
indicates that our proposed framework uses lesser memory
than AES which helps us to implement it in case of
applications or systems where more priority is given to the
memory as compared to the time.

Unlike conventional encryption methods that rely on a
single cryptographic technique, the hybrid system

Cluster Computing (2025) 28:464

Page 17 of 21 464

mProposed mAES DES ChaCha20 m Triple DES

450
400
350
300
250
200
150

° ||||'
0
U_.....lllllllll

1MB 10 MB 50 MB 100 MB 200 MB 300 MB 1G
TXT file size

Memory consumption in MB

1

u o

Fig. 5 Memory consumption of different encryption techniques for
TXT data

M Proposed mAES DES ChaCha20 m Triple DES

Memory consumption in MB
N
G
o

50
o mmmmm mmmen HE llllllllll

1MB 10 MB 50 MB 100 VB 200 MB 300 MB 1GB
CSV file size

Fig. 6 Memory consumption of different encryption techniques for
CSV data

dynamically adapts to different cloud security frameworks,
ensuring compatibility across multiple providers. Further-
more, by using asymmetric cryptography solely for key
exchange and symmetric encryption for data protection, the
system optimizes performance, reducing computational
overhead and making it well-suited for large-scale data
sharing. This approach effectively prevents unauthorized
access by ensuring that even if an attacker gains access to
cloud storage, they cannot decrypt the data without the
private key, which is securely distributed through the Key
Dissemination System (KDS).

This schema could be implemented in resource-re-
strained scenarios where we could only use a limited
number of resources. It is worth noting that the encryption
and decryption times increase as the file size increases for
all encryption techniques and file types. This is expected as
larger files require more computational resources for
encryption and decryption processes. So, ChaCha20-
Poly1305 would work in a more efficient way than other
existing techniques as these multi-cloud systems have to
generally deal with large data files.

Figure 7 indicates the memory consumption of different

data types with the CloudLock in MBs. A general

Memory Consumption

140
120

o|I| “ | ‘ | |

HTML

® O
o o

IS
o

Memory consumption in MB
N [*2)
o o

File type

m1MB m10MB 50 MB 100MB w200 MB m300MB

Fig. 7 Memory consumption of different data types with proposed
CloudLock framework

DropBox
25

20

15

Time (s)

10

1 10 50 100 200 300
File Size (MB)

—e—Upload Time =#=Download Time

Fig. 8 Upload and download time for Dropbox with proposed
framework on CSV data

increasing trend could be observed from the figure indi-
cating that memory consumption increases with an increase
in the size of the file. Additionally, it could also be
observed that there is a slight variation between multiple
files indicating that memory consumption does not vary
with file type but is influenced by file size.

Figures 8, 9, and 10 depicts the upload and download
time for multiple service platforms like Dropbox, Google
Drive, and Mega. It is seen that the upload time is similar
to the download time up to 10MB and then a significant
gap emerges between them with an increase in the file size.

In the case of Dropbox, the upload time varies from
1.05133 to 19.4898 s whereas the download time ranges
from 0.663 to 9.379 s for file sizes IMB to 300MB.

In the case of Google Drive, the upload time ranges
from 1.256 to 17.808 s whereas the download time changes
from 0.936 to 9.311 s for file sizes IMB to 300MB.

In the case of Mega, the upload time and download time
for 1MB file is similar but a large difference is observed
between them when the file size is increased to 300 with
values ranging from 0.916 to 53.141 s to upload and 0.476
to 8.690 s for download.

@ Springer

464 Page 18 of 21

Cluster Computing (2025) 28:464

Figure 11 describes the Turn Around Time (TAT) for
the proposed framework with other techniques. The TAT is
composed of encryption time, decryption time, KDS time

Google Drive
25

20

15

Time (s)

10

[
[y
o

50 100 200 300
File Size (MB)

—e—Upload Time =#=Download Time

Fig. 9 Upload and download time for Google drive with proposed
framework on CSV data

Mega
60
50
— 40
=
[
E 30
= 20
10 /
0 Qe
1 10 50 100 200 300
File Size {MB)

—e—Upload Time =e#=Download Time

Fig. 10 Upload and download time for Mega with proposed
framework on CSV data

Fig. 11 TAT comparison with

Google drive for various 120
schemes
100
80
60
40
20
0 (== " -

W Proposed 2.658

m AES 2.340

DES 2.360

ChaCha 2.339

m 3DES 2.389

@ Springer

_-llIII|“IIII“|
0 100 200 300

(ECDH mechanism, AES encryption, and decryption time),
and Upload and Download time. The tabular values in
Fig. 11 indicate that CloudLock takes similar time with the
AES and ChaCha20 indicating that it is comparable in
overall time consumption with the two. Therefore, our
suggested approach presents a compelling proposition by
matching the processing speed of current leading-edge
methods while consuming less memory and providing
heightened security. Furthermore, it introduces the distinct
attribute of authentication, marking a novel contribution in
this domain.

6.3 Security analysis for single-user

In a specific illustration, the security of ChaCha20-
Poly1305 for a single user can be inferred from its theorem
on multi-user security (Theorem 6.3.1). There is an existing
security proof by Procter in the single-user scenario [26].
However, Procter’s validation, while in the standard model,
assumes different ChaCha20 security measures than our
multi-user security display we have endeavored to establish
a similar security boundary using identical assumptions in
Theorem 6.3.1.

6.3.1 Theorem

Given the parameters n, k, t, ¢ for the ChaCha20-Poly1305
AEAD scheme, consider A as legitimate nonce-abiding
adversary conducting a maximum of ¢, decryption inqui-
ries. If C? is the cap on the total size (in t-bit blocks) of
each query it makes, then a PRF adversary A,7f can be
found against the ChaCha20 block function CC_block as
per the following conditions:

10 5 1GB
.CSV
3.042 9.836 12.790 21.075 28.192 87.974
2.717 9.475 12.391 20.535 27.809 88.209
2.857 10.196 13.792 23.337 32.034 103.001
2.698 9.449 12.336 20.429 27.706 87.298
3.165 11.661 16.732 29.099 40.635 130.387

Cluster Computing (2025) 28:464

Page 19 of 21 464

Advé‘faCth()—PalylS()S (A) §Ad"1c)1gzock (Aprf)+ (gv.c.C"/ 2!
(8)

In a scenario where A, submits queries equal to the total
block queries made by A, It is important to acknowledge
that for minor C? values, this boundary is precise, as elu-
cidated further in Proposition 6.3.2.

6.3.2 Proposition

Given t as the tag size for Poly1305_Mac and H as its
corresponding c-almost A - universal hash function, sup-
pose CP <5 is the uppermost quantity of t-bit input blocks
in a query for encrypting or verifying through the Cha-
Cha20-Poly1305 AEAD mechanism. We posit the exis-
tence of an adversary A that submits a single encryption
query and g, verification queries, such that:

Ad"rgzsghazo—mlyl305[1'[] (A) < (gy.c.(CP —5))/2""* 9)

6.4 Security analysis for multi-user

The forthcoming theorem delineates the multi-user security
bounds of ChaCha20-Poly1305 within the ideal permuta-
tion model, implying that the ChaCha20 permutation is
treated as random. This perspective permits us to encap-
sulate the computational efforts of the adversary as the
number of offline invocations to the ChaCha20
permutation.

6.4.1 Theorem

Consider the AEAD scheme ChaCha20-Poly1305[I1] as
illustrated in Algorithm 1, characterized by parameters n,
k, t, c, where its fundamental permutations IT are simulated
as a random permutation. Suppose A is d-repeating
adversary, executing a maximum of p; ideal permutation
queries and g, validation queries. Also, Let us denote /,, as
the upper limit on the size in b-bit blocks (inclusive asso-
ciated data) that it can probe its encryption and validation
oracles. Under these conditions, we can state:

AdvrgZ£gha207Pulyl305[H] (A) <(qu(cln +3))/2"
+ (d(pr+ q0)) /2" + (2pr.(n = k)) /2¢
+ (2qy.(n — k — 4b))/2* + (0, + q.)* /2"
4122072 4 1)k

(10)

In the above, we further require that: n - k
<226, <(n—k)/6.2"F g, <22,
pr<min((2b —1)/6.(2%"),(n —k — 1)/6.2"7%),
and d < (2b)/3.2%

7 Conclusion

CloudLock acts as a third-party security provider enabling
authentication, downloading, uploading, encryption,
decryption, data sharing, data slicing, and data indexing
functionalities. It is observed to be a more secure and more
reliable technique. Whereas it may take more encryption
time than AES and more memory than ChaCha20, the TAT
of CloudLock (87.974 s for 1GB file) indicates that it takes
a similar time as compared with AES (88.209 s for 1 GB
file) and ChaCha20 (87.298 s for 1GB file). Additionally, it
uses authentication functionality which is an extension of
ChaCha20 so the difference in memory consumption
between ChaCha20 (322.302 MB for 1GB TXT file) and
CloudLock (367.0938 MB for 1GB TXT file) could be
neglected owing to that CloudLock is more invulnerable to
attacks than ChaCha20. In all, the proposed framework is
considered to be more efficient as it could provide better
security in memory-constrained environments. However,
onr of the limitation of sir work is the assumption of
security aspect of SCSE unit. As no system can be con-
sidered completely immune to breaches, especially in the
face of evolving threat vectors. Thus in the future, our
research aims will concentrate on two primary aspects.
First, we aim to bolster the security measures in the SCSE
unit further, investigating potential vulnerabilities in the
SCSE unit and enhancing its resistance to various forms of
cyber-attacks. This will involve reinforcing the unit is
capabilities to accurately detect and promptly respond to
security threats utilizing AI based anomaly detection,
thereby further strengthening its robustness. Secondly, we
plan to devise methods for accurately identifying users
exhibiting malicious behavior toward the data. This
requires developing sophisticated detection mechanisms
capable of discerning harmful intent.

Acknowledgements This work was supported in part by Taighde
Eireann - Research Ireland under grants 12/RC/2289 P2 (Insight),
21/FFP-A/9174 (SustAln) and European Union’s Horizon Europe
research and innovation programme under Grant Agreement No.
101100680 (GN5-1). For the purpose of Open Access, the author has
applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission.

Author contributions All authors have contributed equally. All
authors have read and approved the final version of the manuscript.

@ Springer

464 Page 20 of 21

Cluster Computing (2025) 28:464

Funding Open Access funding provided by the IReL Consortium.
This work was supported in part by Taighde Eireann - Research
Ireland under grants 12/RC/2289_P2 (Insight), 21/FFP-A/9174 (Sus-
tAln) and European Union’s Horizon Europe research and innovation
programme under Grant Agreement No. 101100680 (GN5-1).

Data availability No new data were created or analyzed in this study.
Data sharing is not applicable to this article.

Declarations

Conflict of interest No conflict of interest to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Grand View Research: Cloud Computing Industry. https://www.
grandviewresearch.com/industry-analysis/cloud-computing-indus
try. Accessed: Mar 15, 2025

2. Hashem, I., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A.,
Khan, S.U.: The rise of “big data’’ on cloud computing: review
and open research issues. Inf. Syst. 47, 98-115 (2015)

3. Verma, P., Tapaswi, S., Godfrey, W.W.: A request aware module
using cs-idr to reduce vm level collateral damages caused by ddos
attack in cloud environment. Cluster Comput. 24, 1917-1933
(2021)

4. Almaiah, M.A., Ali, A., Hajjej, F., Pasha, M.F., Alohali, M.A.: A
lightweight hybrid deep learning privacy preserving model for fc-
based industrial internet of medical things. Sensors 22(6), 2112
(2022)

5. Almaiah, M.A., Hajjej, F., Ali, A., Pasha, M.F., Almomani, O.: A
novel hybrid trustworthy decentralized authentication and data
preservation model for digital healthcare IoT based cps. Sensors
22(4), 1448 (2022)

6. Grand View Research: Multi-Cloud Management Market Report.
https://www.grandviewresearch.com/industry-analysis/multi-
cloud-management-market-report. Accessed: Mar 15, 2025

7. Seth, D., Nerella, H., Najana, M., Tabbassum, A.: Navigating the
multi-cloud maze: benefits, challenges, and future trends. Int.
J. Global Innov. Solut. (IJGIS) (2024). https://doi.org/10.21428/
€90189c8.8c704fe4

8. AlZain, M.A., Pardede, E., Soh, B., Thom, J.A.: Cloud computing
security: from single to multi-clouds. In: 2012 45th Hawaii
International Conference on System Sciences, pp. 5490-5499
(2012). IEEE

9. Verma, P., Tapaswi, S., Godfrey, W.W.: An impact analysis and
detection of http flooding attack in cloud using bio-inspired
clustering approach. Int. J. Swarm Intell. Res. (IJSIR) 12(1),
29-49 (2021)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Bohli, J.-M., Gruschka, N., Jensen, M., Iacono, L.L., Marnau, N.:
Security and privacy-enhancing multicloud architectures. IEEE
Trans. Dependable Secure Comput. 10(4), 212-224 (2013)
Shaik, K., Narayana Rao, T.V., et al.. Implementation of
encryption algorithm for data security in cloud computing. Int.
J. Adv. Res. Compute. Sci. 8(3), 579, (2017)

Madanan, M., Patel, P., Agrawal, P., Mudholkar, P., Mudholkar,
M., Jaganraja, V.: Security challenges in multi-cloud environ-
ments: Solutions and best practices. In: 2024 7th International
Conference on Contemporary Computing and Informatics (IC3I),
vol. 7, pp. 1608-1614 (2024). IEEE

Razaque, A., Nadimpalli, S.S.V., Vommina, S., Atukuri, D.K.,
Reddy, D.N., Anne, P., Vegi, D., Malllapu, V.S.: Secure data
sharing in multi-clouds. In: 2016 International Conference on
Electrical, Electronics, and Optimization Techniques (ICEEOT),
pp. 1909-1913 (2016). IEEE

Verma, P., Tapaswi, S., Godfrey, W.W.: An adaptive threshold-
based attribute selection to classify requests under ddos attack in
cloud-based systems. Arab. J. Sci. Eng. 45, 2813-2834 (2020)
Ali, M., Dhamotharan, R., Khan, E., Khan, S.U., Vasilakos, A.V.,
Li, K., Zomaya, A.Y.: Sedasc: secure data sharing in clouds.
IEEE Syst. J. 11(2), 395404 (2015)

Balasaraswathi, V., Manikandan, S.: Enhanced security for multi-
cloud storage using cryptographic data splitting with dynamic
approach. In: 2014 IEEE International Conference on Advanced
Communications, Control and Computing Technologies,
pp- 1190-1194 (2014). IEEE

Vaidya, M., Nehe, S.: Data security using data slicing over
storage clouds. In: 2015 International Conference on Information
Processing (ICIP), pp. 322-325 (2015). IEEE

Verma, P., Tapaswi, S., Godfrey, W.W.: Avdr: a framework for
migration policy to handle ddos attacked vm in cloud. Wireless
Pers. Commun. 115(2), 1335-1361 (2020)

Akinade, A.O., Adepoju, P.A., Ige, A.B., Afolabi, A.L.: Cloud
security challenges and solutions: a review of current best prac-
tices. Int. J. Multidiscip. Res. Growth Eval. 6(1), 26-35 (2025)
Karnik, N., Kumar, A., Mahajan, P. et al. An efficient technique
for securing a multi-cloud storage environment. Int J Syst Assur
Eng Manag (2025). https://doi.org/10.1007/s13198-025-02751-2
Wang, L.-L., Ke-fei, C., Xian-ping, M., Yong-tao, W.: Efficient
and provably-secure certificateless proxy re-encryption
scheme for secure cloud data sharing. J. Shanghai Jiaotong Univ.
(Chin. Ed.) 19, 398-405 (2014)

Gong, C., Liu, J., Zhang, Q., Chen, H., Gong, Z.: The charac-
teristics of cloud computing. In: 2010 39th International Con-
ference on Parallel Processing Workshops, pp. 275-279 (2010).
IEEE

Cachin, C., Haas, R., Vukolic, M.: Dependable storage in the
intercloud. IBM Res. 3783, 1-6 (2010)

Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.:
Depsky: dependable and secure storage in a cloud-of-clouds.
Acm Trans. Storage (tos) 9(4), 1-33 (2013)

Bhatt, S., Shivarudra, A., Kavuri, S., Mehra, A., Paulraj, B.:
Building scalable and secure data ecosystems for multi-cloud
architectures. Lett. High Energy Phys. 2024, 11 (2025)

Ali, A., Pasha, M.F., Guerrieri, A., Guzzo, A., Sun, X., Saced, A.,
Hussain, A., Fortino, G.: A novel homomorphic encryption and
consortium blockchain-based hybrid deep learning model for
industrial internet of medical things. IEEE Trans. Netw. Sci. Eng.
10(5), 24022418 (2023)

Ali, A., Almaiah, M.A., Hajjej, F., Pasha, M.F., Fang, O.H.,
Khan, R., Teo, J., Zakarya, M.: An industrial IoT-based block-
chain-enabled secure searchable encryption approach for health-
care systems using neural network. Sensors 22(2), 572 (2022)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry
https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry
https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry
https://www.grandviewresearch.com/industry-analysis/multi-cloud-management-market-report
https://www.grandviewresearch.com/industry-analysis/multi-cloud-management-market-report
https://doi.org/10.21428/e90189c8.8c704fe4
https://doi.org/10.21428/e90189c8.8c704fe4
https://doi.org/10.1007/s13198-025-02751-2

Cluster Computing (2025) 28:464

Page 21 of 21 464

28. Hajlaoui, N., Bejaoui, C., Ismail, T., Ghanmi, H., Touati, H.: A
hybrid architecture for secure data sharing in multi-clouds sys-
tem. Comput. J. 68(1), 58-73 (2025)

29. Vaishnav, J., Aulakh, D., Wadhwa, B., Ganesh, D., Singh, J.,
Sinha, S.K.: Multi-cloud storage augmentation: a novel secured
framework for information sharing. Int. J. Syst. Assur. Eng.
Manage. 1-10 (2025). https://doi.org/10.1007/s13198-025-
02731-6

30. Fabian, B., Ermakova, T., Junghanns, P.: Collaborative and
secure sharing of healthcare data in multi-clouds. Inf. Syst. 48,
132-150 (2015)

31. Viswanath, G., Krishna, P.V.: Hybrid encryption framework for
securing big data storage in multi-cloud environment. Evol. Intel.
14(2), 691-698 (2021)

32. Shamir, A.: How to share a secret. Commun. ACM 22(11),
612-613 (1979)

33. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing
Requirements Knowledge, International ~Workshop On,
pp. 313-313 (1979). IEEE Computer Society

34. Dehkordi, M.H., Mashhadi, S.: An efficient threshold verifiable
multi-secret sharing. Comput. Stand. Interfaces 30(3), 187-190
(2008)

35. Hu, C., Liao, X., Cheng, X.: Verifiable multi-secret sharing based
on Ifsr sequences. Theoret. Comput. Sci. 445, 52-62 (2012)

36. Eslami, Z., Ahmadabadi, J.Z.: A verifiable multi-secret sharing
scheme based on cellular automata. Inf. Sci. 180(15), 2889-2894
(2010)

37. Dehkordi, M.H., Mashhadi, S.: New efficient and practical veri-
fiable multi-secret sharing schemes. Inf. Sci. 178(9), 2262-2274
(2008)

38. Nir, Y., Langley, A.: Request for comments 7539: Chacha20 and
poly 1305 for ietf protocols. Internet Research Task Force (IRTF).
(2015)

39. Procter, G.: A security analysis of the composition of chacha20
and poly1305. Cryptology ePrint Archive (2014)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Nitesh Bharot (Senior Member,
IEEE) is the Research Lead and
a Senior Postdoctoral
Researcher at the Insight SFI
Research Centre for Data Ana-
lytics, University of Galway. He
earned his Ph.D. in Cloud
Security from Rabindranath
Tagore University (RNTU),
India (an NIRF-ranked Univer-
sity). Dr Bharot has secured
numerous grants from promi-
nent funding agencies, including
the EU, GEANT, SFI, Insight,
MHRD, and MPCST. Addi-
tionally, he has contributed as a Technical Program Committee
Member, Speaker, and Reviewer for various IEEE conferences and
journals. His research interests encompass Cyber Security, AI/ML,
Healthcare, and Industry.

Nakul Mehta is a Research Ire-
land funded Ph.D. Researcher
with the Centre’s for Research
Training in Artificial Intelli-
gence. He has completed Bach-
elors in Information Technology
from DR BR Ambedkar
National Institute of Technol-
ogy Jalandhar (NITJ). Nakul,
has experience as a Data Sci-
entist at Aramex and also com-
pleted a research internship at
University of Galway, Ireland in
the past.

John Breslin (M’94-SM’16) is a
Professor in Electronic Engi-
neering at the University of
Galway, where he is Director of
the Techlnnovate and Aglnno-
vate entrepreneurship programs.
Associated with two SFI
Research Centres, he is a Co-
Principal Investigator at Insight
(Data Analytics) and a Funded
Investigator ~ at VistaMilk
(AgTech). He received a Bach-
elor of Electronic Engineering
in 1994 and a Ph.D. in Elec-
tronic Engineering in 2002, both
from the University of Galway. He has co-authored around 300
publications, including the books “The Social Semantic Web’’,
“Social Semantic Web Mining’’, and the “Old Ireland in Colour”
trilogy. He co-created the SIOC framework, implemented in hundreds
of applications (by Yahoo, Boeing, Vodafone, etc.) on at least 65,000
websites with 35 million data instances. He is co-founder of the
PorterShed, boards.ie and adverts.ie. John’s homepage: https://john
breslin.com/.

Priyanka Verma (Senior Mem-
ber, IEEE) received her Ph.D.
from the Atal Bihari Vajpayee
Indian Institute of Information
Technology and Management,
India. She completed the Lead-
ership and Innovation Program
at the Massachusetts Institute of
Technology, USA. She was
formerly an Assistant Professor
at the Maulana Azad National
Institute of Technology Bhopal.
She held a Marie Sktodowska-
Curie Action Fellowship. Cur-
rently, she works as a Assistant
Professor at School of Computer Science, University of Galway,
Ireland. She has also been a Visiting Research Scholar at Anglia
Ruskin University, Chelmsford, U.K. She has co-authored numerous
publications in leading journals and conferences. Her research inter-
ests include cybersecurity, IIoT, smart manufacturing, AI/ML, cloud,
and edge computing. She has received many awards at both national
and international levels. She is a conference speaker and has delivered
expert lectures in many countries and reviewer of many reputed
Journal.

@ Springer

https://doi.org/10.1007/s13198-025-02731-6
https://doi.org/10.1007/s13198-025-02731-6
johnbreslin.com
johnbreslin.com

	Cloudlock: secure data sharing using a hybrid cryptosystem in multi-cloud data storage
	Abstract
	Introduction
	Related work
	System model, assumptions, and security goals
	System model
	Assumptions
	Security goals

	Preliminaries
	Abbreviations
	Methodology to share data secretly
	Authenticated encryption with associated data (AEAD) syntax
	ChaCha20
	Poly1305
	Theorems

	The proposed CloudLock framework
	SCSE Unit
	Data slicing and distribution unit
	Crypter Unit (CU)

	Key dissemination system
	Elliptic Curve Diffie Hellman (ECDH) mechanism

	Results and analysis
	Experimental setup
	Performance analysis
	Security analysis for single-user
	Theorem
	Proposition

	Security analysis for multi-user
	Theorem

	Conclusion
	Acknowledgements
	Author contributions
	Data availability
	References

