
Cloudlock: secure data sharing using a hybrid cryptosystem in multi-
cloud data storage

Nitesh Bharot1 • Nakul Mehta1 • John G. Breslin1 • Priyanka Verma2

Received: 21 February 2025 / Revised: 1 May 2025 / Accepted: 2 May 2025 / Published online: 31 July 2025
� The Author(s) 2025

Abstract
The advent of cloud computing has revolutionized data management, providing scalability and cost-effectiveness. How-

ever, it also presents challenges in ensuring data security and privacy. Thus organizations increasingly adopt multi-cloud

storage strategies to avoid data loss and single points of failure, but a new array of complexities emerges, particularly

related to secure data access and management with a multi-cloud strategy. This paper explores these complexities and

presents an innovative encryption-based solution for secure data storage and easy accessibility in a multi-cloud system. In

this work, we proposed CloudLock framework which uses hybrid ChaCha20-Poly1305 encryption mechanism to store and

access the data in multi-cloud systems. Moreover, the secret key used for encryption and decryption is shared between the

data owner and authentic users using Elliptic Curve Diffie-Hellman (ECDH) mechanism. Our focus is to establish a robust

mechanism that permits only authenticated users to access and manage their data across multi-cloud platforms. Thus with

the proposed model, we aim to balance security, accessibility, and efficiency, thereby offering a potential solution to multi-

cloud storage’s multifaceted challenges. Our rigorous security assessment and performance analysis, which considers a

broad range of parameters including encryption and decryption time, upload and download time, turn-around time, and

memory usage, affirms that our proposed framework is highly efficient. The framework meets the stringent requirements

necessary for secure data sharing, demonstrating robust resilience to various security threats. When compared to existing

methods, our proposed framework showcases superior performance and enhanced security characteristics.

Keywords Multi-cloud � Encryption � Secure data sharing � ChaCha20-Poly1305 � Cloud storage services

1 Introduction

The global cloud computing market size was estimated at

USD 602.31 billion in 2023 and is expected to grow at a

CAGR of 21.2% from 2024 to 2030 [1]. Cloud storage

platforms offer scalability, flexibility, and cost-effective-

ness, which are instrumental for businesses and organiza-

tions to handle the increasing data volume. However,

alongside these benefits, there are also challenges in terms

of data security, integrity, and data privacy [2–5]. More-

over, maintenance of single cloud platforms requires high

costs which are not sustainable by most organizations. To

address these challenges, organizations are increasingly

adopting multi-cloud strategies. The global multi-cloud

management market size was valued at USD 8.03 billion in

2022 and is expected to expand at a compound annual

growth rate (CAGR) of 28.0% from 2023 to 2030 [6].

Multi-cloud services [7] leverage multiple cloud providers,

reducing dependency on a single vendor and enhancing

security by distributing data across various environments.

This approach mitigates the risk of data loss, prevents a

single point of failure, and strengthens compliance with

diverse regulatory frameworks [8, 9].

& Priyanka Verma

priyanka.verma@universityofgalway.ie

Nitesh Bharot

nitesh.bharot@universityofgalway.ie

Nakul Mehta

n.mehta3@universityofgalway.ie

John G. Breslin

john.breslin@universityofgalway.ie

1 Data Science Institute, University of Galway,

Galway H91TK33, Ireland

2 School of Computer Science, University of Galway,

University Road, Galway H91TK33, Ireland

123

Cluster Computing (2025) 28:464
https://doi.org/10.1007/s10586-025-05433-7(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-025-05433-7&domain=pdf
https://doi.org/10.1007/s10586-025-05433-7

A multi-cloud storage environment has termed the use

of two or more cloud computing platforms from different

cloud vendors. Multi-cloud storage environments are

designed to eliminate the reliance on a single cloud service

provider, offering organizations a greater degree of flexi-

bility and control over their data. One of the key benefits of

a multi-cloud storage environment is risk mitigation. By

spreading data across multiple platforms, organizations can

prevent a single point of failure. This means if one cloud

provider experiences an outage or a security breach, the

organization can still store and operate its data from the

other cloud platforms. Multi-cloud storage environments

also offer performance optimization. Different cloud pro-

viders have various strengths and specialties, and organi-

zations can take advantage of this diversity to optimize

their operations. For instance, they might choose one cloud

provider for AI-related tasks due to its superior machine

learning capabilities and another for its efficient data

storage solutions. Cost efficiency is another advantage of a

multi-cloud storage environment. Different providers have

different pricing structures, and organizations can strate-

gically distribute their workloads to take advantage of the

most cost-effective solutions.

The security of data housed in multi-cloud architectures

is of paramount importance and is typically ensured using

various methods, as detailed by Bohli et al. [10]. Secure

data sharing across different cloud platforms presents

several challenges, including data privacy, interoperability,

and scalability. Sensitive data distributed across multiple

clouds is vulnerable to unauthorized access, data breaches,

and insider threats, making robust security mechanisms

essential. Notably, the study by Khasim Shaik et al. [11]

provides an analytical review of the most crucial security

encryption algorithms designed to safeguard data within

cloud computing. The inherent design of multi-cloud

architectures presents an intrinsic obstacle to potential

attackers, bolstering the security of stored information [12].

This work provides insights into the security paradigms

of multi-cloud storage and contributes to existing research.

It paves the way for the development of more secure,

reliable, and user-friendly multi-cloud storage systems,

fostering a safer and more efficient digital environment for

organizations across the globe.

Several solutions have been proposed to facilitate the

secure sharing of unstructured data in a multi-cloud sce-

nario, as illustrated by studies conducted by many

researchers [13–18]. However, these studies have not suf-

ficiently addressed the need for a dependable and reliable

architecture. Existing strategies in multi-cloud storage fail

to guarantee protection against issues related to secure key

distribution, key management [19], threats from malicious

insiders and files, and the efficiency of the encryption

algorithm used for secure data storing and accessing in the

multi-cloud environment.

Furthermore, conflicts arising from file merging during

the retrieval process can undermine data integrity, espe-

cially since indexed-based cryptographic data splitting is

not employed in current approaches. The use of AES128-

bit encryption, a common practice in many methodologies,

also presents challenges. Performance response time is

consequently impacted as the file size grows and the

encryption procedure and the memory consumption takes

longer to complete.

In spite of these challenges, as we continue to embrace

digital transformation, multi-cloud storage environments

are becoming increasingly significant. They offer a more

resilient, flexible, and potentially cost-effective solution for

data management in the era of big data and cloud

computing.

Through this approach, we attempt to probe into these

complexities, proposing an advanced solution to secure

data storage and access in multi-cloud environments. Thus

in this work, we proposed a CloudLock framework which

uses hybrid ChaCha20-Poly1305 encryption mechanism

for secure data sharing among authenticated users and

secure data storage in multi-cloud environment. However,

integrating this methodology into a multi-cloud storage

system, while ensuring smooth access to authenticated

users in a secure way through the use of Elliptic Curve

Diffie-hellman (ECDH) within a Key Distribution System

(KDS) constitutes a relatively uncharted field of research.

The main contributions of this work are:

• Proposed CloudLock framework, a secure data sharing

for a multi-cloud storage framework to provide a robust

and reliable structure that can act as a middle ware

between the data owner, authenticated users, and multi-

cloud environment.

• An encryption-decryption mechanism for data storage

leveraging the ChaCha20-Poly1305 algorithm. This

approach takes advantage of the algorithm’s efficient

and high-speed cryptographic capabilities, enabling

secure data management while reducing computational

overhead.

• A key-sharing scheme between the data owner and

authenticated users is facilitated through the application

of an Elliptic Curve Diffie-Hellman (ECDH) mecha-

nism for sharing the secret key used for encryption in

the proposed CloudLock framework.

The rest of the paper is organized as: Section 2 discusses

the related work. Section 3 presents the system model,

assumptions, and security goals. Section 4 describes the

preliminaries followed by Sect. 5 describing the proposed

framework. Section 6 scrutinizes the results and analysis

464 Page 2 of 21 Cluster Computing (2025) 28:464

123

followed by Sect. 7 which concludes the work ad gives

future direction.

2 Related work

This section presents the state of art work done in the

related field and Table 1 shows the comparison and sum-

mary of these works. The domains of privacy and security

in cloud storage have been extensively researched given

their broad implications. There exist a multitude of vul-

nerabilities associated with file sharing over cloud plat-

forms, which can be exploited for unauthorized access.

Various malevolent intents behind such attacks can tarnish

the reputation of cloud service providers. Karnik et al. [20]

proposes a secure multi-cloud storage technique using data

fragmentation, encryption, and hash-based integrity

checks. It enhances confidentiality, availability, and fault

tolerance while reducing latency and storage overhead,

making it suitable for sensitive data in distributed cloud

environments.

To augment secure data sharing within multi-cloud

storage, an approach featuring the Advanced Encryption

Standard Algorithm (AES) was proposed by Wang et al.

[20]. This approach aimed to foster improved decision-

making concerning cloud storage for users. However, this

model did not address key security concerns, including

insider attacks, colluding attacks, data integrity issues,

potential data intruders, and the threat of malicious files.

Alzain et al. [8] introduced a visionary blueprint for

secure storage and file sharing in cloud environments, hin-

ged on a Symmetric Searchable Encryption (SSE)

scheme [21–23]. This framework enables users of an elec-

tronic healthcare system to securely store their medical data

in an encrypted format and perform searches on the data

without needing to decrypt it first. Despite the scheme fa-

cilitating secure sharing, it lacks efficiency and flexibility

due to its non-reliance on policies. Additionally, while the

authors broached the subject of access revocation, they fell

short of providing a comprehensive and effective answer.

Consequently, the architecture is deemed ineffective for

sharing substantial volumes of data among various users.

Bhatt et al. [24] analyzes architectural patterns, data

governance strategies, and security measures necessary to

ensure data integrity, availability, and confidentiality.

Through literature review, case studies, and experimental

evaluations, the authors propose a novel framework, the

Multi-Cloud Data Ecosystem Architecture (MCDEA),

designed to address these challenges. Their findings

demonstrate that the MCDEA framework can scale to

manage large volumes of data, ensure robust security, and

optimize resource utilization. However, the paper acknowl-

edges limitations, including the need for further exploration

of advanced optimization techniques, the integration of

emerging technologies like serverless computing and AI-

driven automation, and the adaptation of the framework to

handle new multi-cloud complexities as the field evolves.

Ali et al. [25] presented a novel hybrid deep learning

model that integrates homomorphic encryption (HE) with a

consortium blockchain to enhance the security of Elec-

tronic Medical Records (EMRs) in the Industrial Internet of

Medical Things (IIoMT). The proposed model improves

privacy, security, and efficiency while reducing latency

compared to conventional approaches. Additionally, the

integration of HE within the IIoMT system strengthens

resistance against collusion and phishing attacks. Another

work by them introduces a novel Group Theory-Based

Binary Spring Search Algorithm integrated with a Hybrid

Deep Neural Network to enhance security and efficiency in

healthcare systems. Additionally, it presents a secure

patient healthcare data access scheme that leverages

blockchain and trust chain technology, addressing vulner-

abilities in existing frameworks and ensuring secure access

to patient health records [26].

Hybrid and Secure Data Sharing Architecture (HSDSA),

a privacy-preserving framework for secure data storage in

multi-cloud environments combines cryptographic tech-

niques to ensure user control over data generation and

decryption, eliminating reliance on a trusted authority.

Hajlaoui et al. [27] addresses security, privacy, and data

integrity while maintaining reasonable upload and down-

load delays. Experimental evaluations using Cloudera

demonstrate HSDSA’s efficiency in comparison to existing

systems. However, the framework’s real-world deployment

may face challenges such as data transfer costs, storage

fees, network bandwidth, and compatibility with cloud

providers’ specific security features, which require careful

consideration for optimal performance.

Vaidya et al. [17] unveiled a robust structure aimed at

fostering secure data interchange within a multi-cloud

architecture. This system leans on the use of cryptographic

processes, data segmentation, and encryption protocols for

public cloud data storage, with metadata (including file

partitioning, dissemination information, etc.) conserved on a

private cloud database. However, the technique did not

incorporate file indexing, leading to an inconvenient retrie-

val process that necessitates the recipient to engage all slices

for file decoding and reconstruction. Further, the research

did not sufficiently address key management and distribu-

tion, leaving the private cloud database exposed to potential

internal threats. Also, the lack of task automation within this

structure could potentially decrease its total effectiveness.

A study by [28] proposes Secured multi-cloud informa-

tion storage framework (SMISF), using ECC and BE for

encryption and data chunking. It enhances privacy, prevents

unauthorized access, reduces costs, and improves

Cluster Computing (2025) 28:464 Page 3 of 21 464

123

Table 1 Comparison of various multi-cloud systems

Author Summary Strengths Limitations

Alzain

et al. [8]

Surveys the shift from single cloud to multi-

cloud (or inter cloud) environments.

Proposes the use of secret sharing

algorithms to enhance data integrity and

protection against intrusion

Improved service availability and resistance

to insider threats

Lacking empirical validation,

performance overhead, and cost

implications

Bessani

et al. [23]

Introduces DepSky, ai-cloud-of-clouds

storage system designed to enhance the

availability, integrity, and confidentiality

of critical data stored in the cloud.

Mitigates the risks associated with relying

on a single cloud through extensive

experiments involving four cloud providers

and globally distributed clients via

PlanetLab

Robust and layered approach to cloud data

protection, and reduced redundancy

without sacrificing reliability

Increased complexity

Wang et al.

[20]

Introduces a certificateless proxy re-

encryption (CL-PRE) scheme for secure

data sharing in cloud computing

environments. Data owners encrypt their

data before outsourcing, and a semi-trusted

proxy can re-encrypt the data for other

users without learning the content

Avoids the need for public key certificates

and simplifying key management

Need for robust testing in real-

world applications

Fabian

et al. [29]

Architecture designed to enhance secure and

private inter-organizational data sharing in

healthcare using cloud computing.

Leverages attribute-based encryption and

cryptographic secret sharing to safeguard

patient information in semi-trusted cloud

environments

Distribute data securely across multiple

clouds, limits single points of failure

Scalability issue in key

management, single point of

failure

Vaidya

et al. [17]

Proposes a middleware-based unification

framework that creates a Virtual Storage

Area Network (VSAN) by integrating

multiple Infrastructure-as-a-Service (IaaS)

cloud layers, utilizing popular storage

services like Dropbox, Box.net, and

OneDrive

Enhance data confidentiality and resilience

against breaches, simplifies user

interactions with multiple cloud platforms

The reliance on public storage APIs

could pose limitations due to

varying service restrictions, rate

limits

Viswanath

et al. [30]

Combines AES and the Feistel network to

create a hybrid encryption algorithm aimed

at enhancing the security of big data before

it is stored across multiple cloud services.

Includes processes such as data uploading,

slicing, indexing, encryption, distribution,

decryption, retrieval, and merging to

ensure secure storage and retrieval of data

Robust encryption mechanism and enhanced

security of the data

May slow down the encryption

process and not address all

possible security threats

Bhatt et al.

[24]

Introduces the Multi-Cloud Data Ecosystem

Architecture (MCDEA) that addresses the

increasing complexity of managing data in

multi-cloud environments. MCDEA

supports large-scale data handling,

enhances security compliance, optimizes

resource use, and enables privacy-

preserving collaboration

Scales efficiently across various cloud

platforms while maintaining strong

security and compliance. Facilitates

optimized resource distribution and

enables privacy-preserving data analysis

Interoperability between

heterogeneous cloud services

remains a challenge

Hajloui

et al. [27]

Introduces the Hybrid and Secure Data

Sharing Architecture (HSDSA) to enhance

data security in multi-cloud environments.

Combines cryptographic techniques to give

users full control over data encryption and

decryption, removing the need for a

centralized authority and improving trust in

cloud systems

Empowering users to manage their own

encryption and decryption processes

without relying on third-party authorities.

Also reducing vulnerability to single points

of failure

Introduces computational

complexity

464 Page 4 of 21 Cluster Computing (2025) 28:464

123

performance, giving users control while shielding data from

providers and authorities. However, SMISF framework

faces scalability, performance, security vulnerabilities, reg-

ulatory compliance challenges, user control limitations, and

dependence on multiple providers, impacting its effective-

ness and reliability in practical applications.

While numerous strategies have been proposed, none

have effectively implemented a sound architectural

framework or working protocol for secure data sharing

using multi-cloud services. Current methodologies do not

guarantee file slicing, encryption, decryption, or retrieval

processes. They also fail to address important issues

including secure key management while sharing data

across several cloud storage platforms, conflict resolution

during file merging in retrieval, protection from malicious

files, defense against colluding providers and insider

assaults, centralized data, and defense against harmful files.

If encryption occurs before cutting, it becomes difficult to

securely upload very big files, frequently resulting in sig-

nificant delays for users. To address these challenges, this

paper introduces an efficient architectural framework

employing a standardized algorithm to bolster secure data

sharing via index-based cryptographic data slicing. Fur-

thermore, our proposed framework prioritizes data pro-

tection against malicious insiders and files during the

uploading and downloading process.

3 System model, assumptions, and security
goals

3.1 System model

The system model used in this paper is presented in Fig. 1.

The proposed CloudLock framework consists of multi-

cloud data storage, a Key Dissemination System (KDS),

data owners, Authenticated users, and Secure Cloud Stor-

age Enabler (SCSE) unit.

• Multi-cloud storage: The multi-cloud storage system

consists of multiple cloud services. It provides space for

data owners to keep the encrypted data that consumers

may access. It is incharge of letting verified users obtain

their data after receiving a request. The multi-cloud

storage system integrates Dropbox, Google Drive, and

Mega. Data owners upload encrypted files via a secure

interface; custom connectors distribute data fragments

across providers. Verified consumers authenticate and

securely retrieve reassembled files, ensuring high

availability, redundancy, and robust security while

minimizing risks through client-side encryption and

distributed storage.

• KDS: It seeks to offer secure data exchange. The major

objective of this unit is to enable secret key sharing

among the SCSE unit and the authenticated user. It

allows sharing the key among the authenticated user

and SCSE unit without actually sharing their private

keys.

• Data owners: They are the individuals or the entities or

the organizations who own the data. They usually have

large amounts of private data which is difficult to store

on their local machines and has to be kept confidential.

• Authenticated users: They are the entities who wish to

access the data and derive some knowledge from it.

These users are authenticated before being given access

to the SCSE Unit.

• SCSE Unit: SCSE unit is the sandwich between the

multi-cloud framework and data owners or authentic

users. It provides the functionalities of data slicing, data

distribution, data encryption, data uploading, data

allocation, and data decryption.

3.2 Assumptions

The assumptions considered in this work are:

1. All users connected to the system are assumed to be

authenticated and trusted, ensuring that they will not

Fig. 1 Proposed system framework

Cluster Computing (2025) 28:464 Page 5 of 21 464

123

access other users’ data without proper authorization.

This assumption of authenticated and trusted users

serves as a foundational principle for secure systems,

facilitating secure information sharing and fostering

user trust. By assuming user authentication, this work

establishes the following underlying premises:

• Robust authentication mechanisms: The system imple-

ments reliable authentication protocols, such as user-

name/password combinations, biometric authentication,

or two-factor authentication, to verify the identities of users.

• Authorization controls: The system enforces strict

access control policies, defining user permissions and

granting access only to authorized individuals or

designated user roles.

• Trusted user behavior: Users are expected to adhere to

ethical practices and legal requirements, refraining from

unauthorized access or misuse of other users’ data.

• Absence of malicious intent: The assumption assumes

that users connected to the system have no intention to

compromise the security of the system or engage in

unauthorized activities.

1. All data owners connecting with the system are

assumed to be legitimate and do not intend to harm

the system. Furthermore, it is assumed that the data

owners are only connected to specific users, ensuring

that their data will not be accessed or used by

unauthorized individuals. This assumption serves as a

fundamental premise for this work, establishing the

following underlying conditions:

• Legitimate data owners: The work assumes that all data

owners connecting to the system are authentic and have

lawful ownership or authorized access to the data they

possess.

• Absence of malicious intent: It is assumed that the data

owners have no intention to compromise the system’s

security, manipulate or corrupt data, or engage in

activities that could harm the system or other users.

• Controlled data access: The assumption encompasses

the premise that the system implements appropriate

access controls and mechanisms to ensure that each

data owner is only connected to specific users with

authorized access, thereby preventing unauthorized data

sharing or usage.

• Data privacy and confidentiality: The assumption

implies that the system upholds strict data privacy

measures, safeguarding the data owners’ information

from unauthorized access and ensuring that it remains

confidential and protected from unauthorized usage.

1. The SCSE Unit, as a third-party component, is

designed to be highly secure against known threats,

and it is presumed that no hacker can gain unauthorized

access to its system or compromise its security

measures. This assumption establishes the following

underlying conditions related to the SCSE unit:

• High-security standards: The SCSE unit is assumed to

be developed and maintained with robust security

measures, following industry best practices and encryp-

tion standards to guarantee the integrity and confiden-

tiality of data handled.

• Resilient infrastructure: It is assumed that the SCSE

unit operates within a secure and well-designed infras-

tructure, including firewalls, intrusion detection sys-

tems, and other protective measures, making it highly

resistant to unauthorized access attempts.

• Skilled security professionals: The SCSE unit is

assumed to be staffed by experienced and knowledge-

able security professionals who actively monitor and

respond to potential security threats, ensuring the unit is

ongoing security posture.

• Thorough security testing: Before deployment, the

SCSE unit is put through a thorough security testing

process that includes vulnerability assessments, pene-

tration testing, and code reviews.

3.3 Security goals

• Confidentiality of data: During the uploading and

downloading of the data, the outsourced data must be

protected from eavesdropping threats.

• Verification: Any user’s validity to access the data must

be verified, and any request applied by the authenticated

user for plaintext (textplain) must be verified and

serviced accordingly.

• Resistance to attacks: Proposed framework should be

capable of mitigating possible attacks (cheating, collu-

sion, forgery, and so on) initiated by misbehaving users

and adversaries.

4 Preliminaries

4.1 Abbreviations

Table 2 shows the list of abbreviations used throughout the

paper.

464 Page 6 of 21 Cluster Computing (2025) 28:464

123

4.2 Methodology to share data secretly

Since its inception in 1979 by Shamir [31] and Blakley

[32], secret-sharing systems have been intensively resear-

ched [33, 34] follows. The unlocking of a secret is con-

tingent upon a user’s ability to collaborate with no less than

u–1 additional user, leveraging the information dissemi-

nated by the dealer. In this context, u, subject to the con-

dition u � n, represents a preset parameter, with ‘n’

denoting the complete user count. The secret that the dealer

and the users must disclose is < 2 GFðp1Þ, where p1 [N.

Each user Ai has a secret key ki 2 GFðp1Þ that only Ai and

the dealer know. The dealer works in two stages. It begins

by constructing the polynomial function F(x) of degree u–1

illustrated in:

FðxÞ ¼ < þ
Xu�1

i¼1

mixi;

by randomly selecting each i i.i.d. from GF(p1) with a uni-

form distribution. It should be noted that all (addition and

multiplication) operations in the above equation are modular

arithmetic (defined over GF(p1)) rather than real arithmetic.

Furthermore, F(x) incorporates a constant factor s, which

leads to< equating to F(0). During the subsequent phase, the

dealer disperses a divided secret, <i = F(xi) to each Ai. In this

equation, xi signifies a random number chosen by Ai for dis-

seminating the secret <. This number is relayed to the dealer

via a secure channel safeguarded by the mutually held key ki.

Subsequently, we will illustrate how u or a higher

number of users can collectively recapture < by sharing the

secrets they have obtained from the dealer. Let A1; :::;Au be

the collaborating users without losing generality. These u

users may deduce the secret < = F(0) from <1 = F(x1),...,

<t = F(xt) by doing the following computation:

< ¼ Fð0Þ ¼
Xu

i¼1

ð<i:Pj2j1;nj;j6¼ið0� xJÞ=ðxi � xjÞÞ

It is worth noting that in the above equation, the cumulative

product is effectively the Lagrange coefficient. Based on the

definition of F(x), the accuracy of the above equation may be

easily checked. When recovering the secret < in secret

sharing, a user may cheat. For example, a user Ai may enter

an erroneous <i, causing s recovery to fail. To address this

issue, verifiable secret-sharing techniques [35, 36] have been

suggested, which are mostly based on the RSA cryptosystem,

which has a large computational cost.

4.3 Authenticated encryption with associated
data (AEAD) syntax

The following three algorithms make up a nonce-based

authenticated encryption system with accompanying data:

• The key generation algorithm produces a secret key <
with no input. To express the key space related to the

key generation technique, we overloaded <.

• The encryption method, Encrypt: < * Nc * ASD *

textplain ! Ct takes as inputs a secret key <, a nonce

Nc, associated data ASD, and a message textplain and

outputs a ciphertext Ct. Encryption provides a constant

expansion, which means that the expansion

jEncryptð<;Nc;ASD; textplainÞj � jtextplainj is constant

for every (<;Nc;ASD; textplain).

• The decryption method, Decrypt: < * Nc * ASD * Ct

! textplain, takes a secret key <, a nonce Nc, connected

data ASD, and a ciphertext Ct as inputs, and delivers

either a message textplain or an error as the output.

The relevant set <, Nc, ASD, textplain, and C are respec-

tively referred to as the key space, nonce space, associated

data space, plaintext, and ciphertext. For any (<, Nc, ASD,

Table 2 List of abbreviations

Abbreviation Full form

3DES/triple

DES

Triple data encryption standard

AEAD Authenticated encryption with associated data

AES Advanced encryption standard

ASD Associated data

ChaPoly ChaCha20-Poly1305

CSV Comma-separated values file

Ct Ciphertext

CU Crypter unit

DES Data encryption standard

DOC Document

DSDU Data slicing & Distribution unit

DT Decryption time

ECDH Elliptic Curve Diffie-Hellman

ET Encryption Time

HTML HyperText Markup language

IND-CPA Indistinguishability under Chosen plaintext attack

INT-CTXT Integrity of ciphertexts

KDS Key dissemination system

Nc Nonce

PDF Portable document format

PM Padded message

RTF Rich text format

SC Stream cipher

SCSE Secure cloud storage encryption

TAT Turn around time

Tg Tag

TLS Transport layer security

TXT Plain text file

Cluster Computing (2025) 28:464 Page 7 of 21 464

123

textplain), it must hold that if Ct Encrypt(<, Nc, ASD,

textplain), then textplain Decrypt(<, Nc, ASD, Ct). This is

the accuracy requirement that we place on every nonce-

based AEAD.

4.4 ChaCha20

The Salsa stream cipher has been improved by Bernstein into

the ChaCha20 stream cipher. An arbitrary-length message

textplain (or ciphertext Ct) is encrypted (or decrypted) using a

256-bit secret key < and a 96-bit nonce Nc. It creates a pseu-

dorandom keystream that is XORed to the message, as with

any stream cipher. Through the CC block function of the

ChaCha20 block algorithm, the keystream is produced in

blocks of 512 bits. The 32-bit block counter i and the 96-bit

nonce Nc make up the input to the CC block function, which is

keyed with <. In this approach, it is used as a pseudorandom

function, although in reality, it is a 512-bit permutation set up

in a Davies-Meyer fashion. For creating the input for the

ChaCha20 permutation, the key, counter, and nonce are

specifically fused, preceded by a constant, and subsequently

incorporated once again into the output of the permutation

through a modulo 232 addition, conducted on a word-by-word

basis.

4.5 Poly1305

Bernstein also created the Poly1305 one-time MAC algo-

rithm. It requires a key made up of two strings (=; ð)

totaling 128 bits. Its security is based on Bernstein’s

demonstration that the hash function V is almost D uni-

versal. Theorem 2, which is replicated below for com-

pleteness, states the security of the hash function V and

provides a definition of it.

4.6 Theorems

1. D-Universal Hash Functions-Consider V: KS � DM !
f0; 1gt to be a set of keyed hash functions with key

space KS, domain DM, and a digest space of f0; 1gt,
for a positive integer t. This study encompasses hash

function families operating over both string sets and

pairs of strings. When DM ¼ f0; 1g�, for any given

positive real number c, we claim that V is c-nearly D
universal if, for all separate M, M’ 2 f0; 1g� and 8 z

2 f0; 1gt, the following condition holds true:

Prr $KS½VrðtextplainÞ ¼ Vrðtext0plainÞþ
ðtÞ
z�

�
c:maxðjtextplainjt; jtext0plainjtÞ

2t

ð1Þ

Alternatively, when DM ¼ f0; 1g� � f0; 1g�, for any

distinct ðASD;CtÞ; ðASD0;Ct0Þ 2 f0; 1g� � f0; 1g� and

all z 2 f0; 1gt, we require that:

Prr $KS½VrðASD;CtÞ ¼ VrðASD0;Ct0Þþ
ðtÞ
z�

� c:maxðjASDjt þ jCtjt; jAD0jt þ jCt0jtÞ
2t

ð2Þ

2. The Hash Function V in Poly1305- Let us consider l as

a multiple of 8 that is greater than zero, p as a prime

that is larger than or equal to 2lþ1, r as a string of l-bits,

and textplain as any sequence of bytes. We can

decompose textplain as

textplain ¼ textplain1
jtextplain2

j:::::jtextplainl
where each jtextplaini j equals l for every i less than or

equal to l, and 0 is less than or equal to jtextplainl j and at

most l. Hence, we represent VrðtextplainÞ as the string of

t-bits corresponding to:

ðI1 � xl þ I2 � xl�1 þ :::::þ Il � x1 mod pÞ mod 2l; ð3Þ

Here, Ii signifies the integer interpretation of the

(l?1)-bit string concatenated with textplaini and 1.

Moreover, x represents the integer interpretation of r,

post nullifying 22-bit positions (Clamping).

3. V is A D U- Let c ¼ 225, then for any l-bit string s and

any pair of distinct byte strings (textplain, textplain’), it

holds that:

Prr $f0;1gl ½VrðtextplainÞ ¼ Vrðtext0plainÞþ
ðlÞ
s�

�
c:maxðjtextplainjl; jtext0plainjlÞ

2l

ð4Þ

The single-use MAC (Poly1305 Mac), utilized in

ChaCha20-Poly1305, expands the original Poly1305

algorithm to authenticate two strings, not just one. This

enhancement is achieved by enriching the hash func-

tion with a suitable encoding that maps the pair of

strings into a single one, marking a clear separation

between the two strings. Crucially, this encoding must

be injective. Definition 3. B outlines the process of

building V from V . In Theorem 3. B, we demonstrate

that if V is �-almost D-universal for individual strings,

then V also retains its �-almost D-universal property

when dealing with pairs of strings, where � (l) equals �

(l ? 1).

4. The Hash Function V in Poly1305_Mac- Consider r to

be a string of t-bits and V as the hash function

employed in Poly1305. Consequently, the hash of any

pair of byte strings represented as (ASD, Ct), can be

deduced as follows:

464 Page 8 of 21 Cluster Computing (2025) 28:464

123

VrðASD;CtÞ ¼ VrðASDkPadðASDÞkCtk
PadðCtÞklenðASDÞklenðCtÞÞ

ð5Þ

In this context, Pad(Y) refers to the minimal quantity

of zero bytes required so that the bit length of the

concatenated Y|Pad(Y) results in a multiple of t. Sim-

ilarly, len(Y) signifies the representation of the byte

length of Y in t/2-bits.

5 The proposed CloudLock framework

Secure data sharing in a multi-cloud environment is a

crucial aspect of handling data storage problems. A single

cloud could act as a central point of failure in case of attack

which leads the hackers or intruders to get access to

organizations’ data. This also deduces that the data stored

in cloud storage may not be safe. So, in order to handle the

listed problems, we proposed CloudLock, a reliable

framework data storage and sharing schema for a multi-

cloud environment. It omits the idea of a central point of

failure of a single cloud by slicing the data into sub-parts

and storing the sub-parts on multiple clouds. Also, it

resolves the issue of data security by using encryption

schemes. Proposed CloudLock framework consists of

SCSE unit which acts as a middleware between the clouds,

authenticated users, and data owners and consists of vari-

ous units which aid to ease the process of uploading,

encryption, decryption, and downloading the data. Fig-

ure 2, gives an overall idea of the proposed framework.

Formerly, the owner of data stores their files on a multi-

cloud platform by sending a request to the SCSE Unit. Its

sub-unit named Data Slicing & Distribution Unit (DSDU),

first divides the data into multiple parts and sends them to

the registry, where the registry acts as a hashing module

and provides indexing to the file for merging and storing

purposes. Next, these files are transferred to the Crypter

unit for encryption and then they are uploaded to multiple

cloud platforms. The number of cloud platforms varies

from organization to organization depending upon the

amount of data and the cost to buy resources. While

accessing the file, each authenticated user has to send a

request to the SCSE unit for file access. This request turns

on the file access mechanism, described in Algorithm 3

which enables the authenticated user to access the data.

A data owner has a data, say F = fF1;F2;F3; :::::;Fng,
which is to be uploaded to the cloud storage Cd =

fCd1;Cd2;Cd3; :::::;Cdng. At this stage, the data owner

requests the SCSE unit to upload its file on the multi-cloud

environment. Initially, the SCSE unit instantiates the

DSDU unit to commence the data slicing and distribution

phase. Next, the Registry allocates the data to multiple

Fig. 2 Proposed CloudLock framework

Cluster Computing (2025) 28:464 Page 9 of 21 464

123

clouds which are stored in the clouds after passing through

the Crypter unit. Figure 3 describes the workflow of the

proposed framework. The process begins with user

authentication; if the user is not authentic, the process is

terminated. Upon successful authentication, the user can

either upload or download files. In the upload process, the

data owner connects with the SCSE unit and uploads the

file. The system then divides the file into multiple seg-

ments, registers them, and allocates each segment to dif-

ferent cloud platforms. Before storage, the data undergoes

encryption via the ChaCha20-Poly1305 encryption

method, ensuring confidentiality. Each encrypted file seg-

ment is then uploaded to its respective cloud storage plat-

form. In the download process, an authenticated user

requests a file by sending its filename to the SCSE unit. If

the file exists, the KDS is initiated to generate a secret key

using the ECDH scheme. The SCSE unit encrypts the

secret key using AES encryption and transmits it securely

to the user. The user decrypts this secret key and down-

loads the encrypted file segments from the cloud platforms.

Using the obtained key, the user decrypts and merges the

file segments to reconstruct the original data. This approach

enhances data security by utilizing encryption techniques

and distributing storage across multiple cloud platforms.

5.1 SCSE Unit

SCSE Unit is the sandwich between the multi-cloud frame-

work and data owners or authentic users. It provides the

functionalities of data slicing, data distribution, data encryp-

tion, data uploading, data allocation, and data decryption.

Data Slicing is the fragmentation of data into subparts which is

followed by data distribution. It consists of distributing data to

cloud services and storing the allocated Cloud_Index_pairs in

Registry. Additionally, it constitutes of Crypter Unit whose

functionality is to encrypt & decrypt the data using ChaCha20-

Poly1305 encryption and decryption respectively. It also

empowers to encrypt the secret key,<, used for file encryption

before sending it to the authenticated user.

Fig. 3 Workflow of the proposed CloudLock framework

464 Page 10 of 21 Cluster Computing (2025) 28:464

123

Algorithm 1 ChaCha20-Poly1305 AEAD scheme

Cluster Computing (2025) 28:464 Page 11 of 21 464

123

5.1.1 Data slicing and distribution unit

This unit deals with data division and data distribution. Its

subcomponents are described as follows:

Data Slicing: This is the first and foremost step prior to

data uploading. Here, the data file, say F, is divided into

multiple files

F ¼ ff1; f2; f3; ::::; fng ð6Þ

where n varies with the number of clouds chosen for

storing the data. It seeks to improve security for owner data

on many clouds. This action is crucial because:

1. Distributing over multiple clouds helps to store data

easily as compared to the single cloud

2. It avoids any problems related to data size restrictions

3. It allows efficient usage of bandwidth

4. It aids load balancing

5. It facilitates to encryption and decryption process, by

considerably decreasing the size of the file to be

encrypted or decrypted.

Registry: A registry is the most important component of the

SCSE unit as it contains all the metadata and all the

symmetric keys <s’. It is a directory system which stores

Cloud_ID and File_Index hash pairs, termed as

fðCd1; f1Þ; ðCd2; f2Þ; ðCd3; f3Þ; ::::::; ðCdn; fnÞg. It enables

the system to maintain the record of the file F. Also, it

stores the private key used to encrypt the data encrypt

ffi;<g. < is encrypted after obtaining private key

F

by

KDS.

@ ¼ encryptð<; FÞ ð7Þ

This < is sent to the authentic user upon request through

Key Dissemination System (KDS), send(@).

5.1.2 Crypter Unit (CU)

This unit deals with the encryption schema. It allows the

files to be encrypted using the ChaCha20-Poly1305

encryption. When a file is passed from the Registry then it

gets passed on to the Crypter Unit to get encrypted where

after its encryption it is uploaded to the cloud service

platforms. The basic concept behind the ChaCha20-

Poly1305 is described as follows:

• The ChaCha20 is a stream cipher and the Poly1305

authenticator could be combined together to build the

ChaCha20-Poly1350 AEAD scheme [37]. Random

oracle model proves the IND-CPA & INT-CTXT

security of this scheme on the assumption that Poly1350

is a D-universal hash function [38].

• The AHED schema requires the input of a 32-byte

secret key <, a 12-byte Nonce Nc, a variable length

textplain, & a variable length associate data (ASD) &

returning Ct and a 16-byte authentication tag Tg. CU:

f0; 1g256 � f0; 1g96 � f0; 1g� ! f0; 1g� � f0; 1g128
such

that (<,Nc,textplain,ASD) ! (Ct,Tg).

Here the encryption is performed using Algorithm 1 while

taking (block counter) c� 1 as c = 0 is used to generate the

one-time key (=; ð) & so it cannot be reused to encrypt. It

begins by encrypting the plaintext using the ChaCha20

stream cipher: a 256-bit secret key, a 96-bit nonce, and a

counter are used to initialize a 4�4 state matrix alongside

fixed constant values. The state undergoes 20 rounds of

transformation-alternating between column and diagonal

rounds via the quarter round function ðQrÞ to produce a

keystream block. Each plaintext block is then XORed with

its corresponding keystream block to yield the ciphertext.

Once encryption is complete, the algorithm constructs a

padded message by concatenating the padded associated

data, the padded ciphertext, and their respective lengths in

little-endian format. A one-time key for the Poly1305

MAC is derived from a separate ChaCha20 invocation

(with counter zero) and is ‘‘clamped’’ (i.e., certain bits are

cleared) to meet specific security requirements. The padded

message is then divided into fixed-size chunks, each pro-

cessed as part of a polynomial evaluation modulo 2130.

After evaluating the polynomial-with a final adjustment by

adding the clamped one-time key-the algorithm computes a

128-bit authentication tag. The final output consists of the

ciphertext and the tag, which together provide authenti-

cated encryption.

In order to decrypt the functionality of the textplain, & Ct

is reversed and the generated tag must be bitwise compared

with the received tag in order to verify the authenticity of

data. A concept to be noted is that the authenticator of the

proposed framework takes Ct as its input to encrypt as well

as to decrypt (Algorithms 1 & 2). The groundwork for

ChaCha20-Poly1305 is laid as:

464 Page 12 of 21 Cluster Computing (2025) 28:464

123

Algorithm 2 ChaCha20-Poly1305 decryption algorithm

The AHED composition: the encryption and decryption

algorithms consist of subparts, ChaCha20, one-time

Poly1305, and Poly1305_key_gen which are based on the

D-universal hash function family V over string pairs. Here

one-time key (=; ð) is derived again for every encryption

process by running the ChaCha20 block function in

Poly1305_Key_Gen on <, Nc, and the counter value zero

(saved specifically for this thing). On the contrary, the

decryption algorithm works vice versa by computing the

one-time key first, then recomputing the MAC tag and

checking if the tag is identical to Ct used with ChaCha20 &

returns the deciphered text, else returning an error.

These mechanisms could handle various security

attacks, including man-in-the-middle (MITM) attacks, key

interception, and unauthorized access. By utilizing ECDH

for key exchange and AES encryption for securing the

secret key, the system ensures that only authenticated users

can access and decrypt the stored files, enhancing data

confidentiality and integrity in cloud environments.

5.2 Key dissemination system

Data Accessing is one of the major aspects dealt with in this

paper. Utilizing the KDS, it seeks to offer secure data

exchange. The major objective of this unit is to enable secret

key sharing among the SCSE unit and the authenticated user

as shown in Fig. 4. The process begins when a user requests

file access (Step 1). To establish a secure key exchange, both

the user and the file owner generate their respective keys

using the Elliptic-Curve Diffie-Hellman (ECDH) mecha-

nism (Steps 2–3). The Secure Cloud Storage Encryption

(SCSE) unit then encrypts the secret key, which was origi-

nally used for file encryption, using the generated ECDH

key (Step 4). Next, the SCSE unit transmits the encrypted

Algorithm 3 File access algorithm

Cluster Computing (2025) 28:464 Page 13 of 21 464

123

key along with the cloud index pair to the Key Distribution

System (KDS) (Step 5). Upon receiving the encrypted key,

the KDS performs decryption to retrieve the original secret

key (Step 6). Finally, the authenticated user receives the

decrypted secret key, which is essential for file decryption

and reconstruction (Step 7). This process ensures a secure

exchange of encryption keys, allowing only authenticated

users to access and decrypt the requested files.

It allows sharing the key among the authenticated user

and SCSE unit without actually sharing their private key

through the Elliptic Curve Diffie Hellman (ECDH) mech-

anism. The final key obtained,

F

after the ECDH process is

used as a symmetric key for encryption of the true secret

key, < using the AES mechanism. This encrypted key is

then sent to the user along with the Cloud_Index_pairs to

obtain the original file. Algorithm 3 describes the process

to access files from the multi-cloud storage.

5.2.1 Elliptic Curve Diffie Hellman (ECDH) mechanism

The ECDH algorithm is a key exchange protocol that pro-

vides a reliable method for two users to share a secret over

an unsecured network. It is devised through the mathemat-

ical properties of elliptic curves (EC) & is widely used in

modern cryptographic systems. It is a modification of the

original Diffie-Hellman (DH) algorithm, which operates in

the group of integers moduled with a prime. Instead of using

integer arithmetic, ECDH employs operations on points of

an EC defined over a finite field. This makes the algorithm

more efficient and provides a larger level of security for the

same key size. Its security relies on the Elliptic Curve

Discrete Logarithm Problem (ECDLP), stating that it is

computationally infeasible to determine the private key from

the public key. The EC’s mathematical structure makes

solving the ECDLP significantly more challenging com-

pared to the classical discrete logarithm problem used in

traditional Diffie-Hellman algorithm. Moreover, ECDH

provides several advantages over other key exchange algo-

rithms. Because it provides robust security with compara-

tively tiny key sizes, it is computationally effective and ideal

for devices with limited resources. In addition, ECDH is

immune to quantum computer attacks, which are a danger to

several conventional encryption techniques.

The ECDLP states that given a point a1 on an elliptic

curve, it is computationally infeasible to determine the

integer n such that n . a1= a2, where a2 is another point on

the curve. In other words, it is arduous to identify the

private key from the public key.

The security of ECDH is influenced by two main

factors:

• The size of the finite field and the choice of EC

parameters

• Increasing the size of the finite field increases the

difficulty of solving the ECDLP.

Algorithm 4 Key dissemination process

464 Page 14 of 21 Cluster Computing (2025) 28:464

123

6 Results and analysis

6.1 Experimental setup

To evaluate the proposed CloudLock framework, we con-

sidered the scenario in which the encrypted data is stored in

multi-cloud storage services such as Dropbox, Google

Drive, and Mega. Python 3.10 was used to create the

encryption and decryption system. The performance of the

proposed framework is compared with cutting-edge

approaches like Advanced Encryption Standard (AES),

DES, Triple DES, and ChaCha20. Turn Around Time

(TAT), encryption time, decryption time, and memory

usage are the factors used for assessment. To test the

suggested technique, the time duration for uploading and

downloading from the indicated storage platforms is also

determined. All simulation trials are carried out with dif-

ferent files such as Text, PDFs, RTFs, DOCs, HTML, and

CSV with varying sizes ranging from 1 to 300 MB. Fur-

thermore, to better comprehend the difference, .CSV and

.TXT files with 1GB of data were also used to compare

with state-of-the-art methodologies.

6.2 Performance analysis

The performance analysis of the proposed framework is

presented in this section based on the encryption time (ET)

and decryption time (DT) using Chacha-Poly1305

(ChaPoly)for different file sizes and types. The results are

summarized in Table 3. The table provides a comparison of

encryption and decryption times for various file sizes and

formats.

The results indicate that as the file size increases, the

encryption and decryption times tend to increase as well.

Moreover, certain file formats, such as HTML, exhibit

higher encryption and decryption times compared to others.

These findings provide insights into the performance

characteristics of the proposed framework for file encryp-

tion and decryption, which can be valuable for evaluating

its practicality and efficiency in real-world scenarios.

For the TXT files, ET varies between 0.309 s for a 1 MB

file and 0.706 s for a 300 MB file. The corresponding DT

range from 0.318 to 0.635 s. Whereas for CSV files, the

encryption times range from 0.169 to 0.577 s, while the

decryption times vary between 0.156 and 0.492 s. The

encryption and decryption times for PDF files vary from

0.166 to 0.738 s, and 0.163 to 0.743 s respectively. The

encryption and decryption times for PDF files generally

increase as the file size increases. The RTF files show

encryption times between 0.160 and 0.894 s, and decryp-

tion times between 0.162 and 0.661 s.

For XLS files, the encryption times range from 0.180 to

0.732 s, and decryption times vary between 0.184 and

0.640 s. The encryption and decryption times for XLS files

exhibit a similar increasing trend with increasing file size.

Further, for HTML files, the encryption times range from

0.311 to 1.512 s, while the decryption times vary between

0.291 and 2.122 s. The encryption and decryption times for

HTML files display the highest values among all the file

types, and they also increase significantly with larger file

sizes. It could be noted that generally, the encryption time

doubles when the size of the file is doubled regardless of

the file type.

Table 4 compares the ET and DT for TXT and CSV files

with varying sizes using different encryption algorithms,

including ChaPoly used in proposed approach, AES,1 DES,

ChaCha20, and Triple DES.

For .TXT files, the encryption and decryption times vary

depending on the file size and encryption technique. For a 1

MB .TXT file, the ChaPoly encryption technique has an

encryption time of 0.309 s and a decryption time of

0.318 s. In contrast, AES, DES, ChaCha20, and Triple

Fig. 4 Key dissemination system ((1) User request for file access,

(2–3) User and owner generate their keys using ECDH mechanism,

(4) SCSE unit encrypts the secret key used for actual file encryption

using ECDH key, (5) SCSE unit send the encrypted key to KDS with

cloud index pair, (6) Decryption of received key, (7) Authenticated

user received the Secret key used for File decryption)

1 To avoid any confusion, here AES is used for Encryption and

Decryption of the files not the key.

Cluster Computing (2025) 28:464 Page 15 of 21 464

123

DES have significantly lower encryption and decryption

times, ranging from 0.008 to 0.029 s for encryption and

from 0.002 to 0.025 s for decryption. As the file size

increases, all encryption and decryption times for .TXT

files also increase, but the relative performance between

the techniques remains consistent.

Similarly, for .CSV files, the encryption and decryption

times vary with file size and encryption technique. For a 1

MB .CSV file, the encryption times range from 0.169 s

(ChaPoly) to 0.005 s (AES), while the decryption times

range from 0.156 s (ChaPoly) to 0.002 s (AES). As the file

size increases, the encryption and decryption times for

.CSV files also increase for all encryption techniques, but

the relative performance among the techniques remains

consistent.

Overall, the results show that hybrid ChaPoly used in

proposed CloudLock framework generally has a bit higher

encryption and decryption times compared to other

encryption techniques across both .TXT and .CSV file

types and different file sizes. AES consistently

demonstrates the lowest encryption and decryption times

among the evaluated techniques for both file types. DES

and ChaCha20 exhibit intermediate performance, while

Triple DES generally has the highest encryption and

decryption times. The higher value for encryption and

decryption time of ChaCha20-Poly1305 could be given to

the fact that this technique not only provides encryption-

decryption schema but also uses the Poly1305 authentica-

tor, which is unique to the fact that none of the other

existing techniques possess. Moreover, this authenticator

adds more security to the ChaCha20-Poly1305 scheme as

compared with other encryption techniques. Additionally,

the memory comparison between ChaCha20-Poly1305

with other encryption techniques as shown in Figs. 5 and 6

indicates that our proposed framework uses lesser memory

than AES which helps us to implement it in case of

applications or systems where more priority is given to the

memory as compared to the time.

Unlike conventional encryption methods that rely on a

single cryptographic technique, the hybrid system

Table 3 Different file encryption and decryption time comparison of proposed framework

File size (MB) TXT file CSV file PDF file RTF file XLS file HTML file

ET DT ET DT ET DT ET DT ET DT ET DT

1 0.309 0.318 0.169 0.156 0.166 0.163 0.160 0.162 0.180 0.184 0.311 0.291

10 0.340 0.376 0.184 0.182 0.197 0.174 0.179 0.179 0.184 0.185 0.353 0.346

50 0.361 0.465 0.251 0.251 0.243 0.242 0.257 0.243 0.258 0.243 0.462 0.510

100 0.339 0.326 0.338 0.322 0.356 0.314 0.355 0.341 0.365 0.334 0.699 0.640

200 0.532 0.474 0.551 0.474 0.520 0.503 0.553 0.503 0.585 0.541 1.008 1.638

300 0.706 0.635 0.577 0.492 0.738 0.743 0.894 0.661 0.732 0.640 1.512 2.122

Table 4 Different techniques

encryption and decryption time

comparison

File type File size ChaPoly AES DES ChaCha20 Triple DES

ET DT ET DT ET DT ET DT ET DT

.TXT 1 MB 0.309 0.318 0.008 0.002 0.014 0.012 0.003 0.002 0.029 0.025

10 MB 0.340 0.376 0.021 0.020 0.093 0.086 0.012 0.019 0.240 0.246

50 MB 0.361 0.465 0.069 0.077 0.424 0.434 0.052 0.058 1.178 1.166

100 MB 0.339 0.326 0.135 0.136 0.817 0.816 0.102 0.101 2.275 2.278

200 MB 0.532 0.474 0.236 0.251 1.653 1.639 0.192 0.192 4.507 4.481

300 MB 0.706 0.635 0.338 0.333 2.479 2.541 0.288 0.309 6.757 6.679

1GB 2.363 2.094 1.540 1.205 8.422 8.547 1.089 1.046 22.965 23.091

.CSV 1 MB 0.169 0.156 0.005 0.002 0.012 0.015 0.004 0.002 0.029 0.027

10 MB 0.184 0.182 0.022 0.019 0.092 0.088 0.011 0.011 0.236 0.253

50 MB 0.251 0.251 0.070 0.071 0.421 0.442 0.056 0.060 1.162 1.165

100 MB 0.338 0.322 0.130 0.130 0.824 0.837 0.099 0.107 2.299 2.302

200 MB 0.551 0.474 0.245 0.240 1.657 1.631 0.184 0.195 4.525 4.524

300 MB 0.577 0.492 0.340 0.346 2.463 2.447 0.283 0.299 6.777 6.735

1GB 2.447 2.351 1.550 1.482 8.329 9.495 1.104 1.017 22.574 22.636

464 Page 16 of 21 Cluster Computing (2025) 28:464

123

dynamically adapts to different cloud security frameworks,

ensuring compatibility across multiple providers. Further-

more, by using asymmetric cryptography solely for key

exchange and symmetric encryption for data protection, the

system optimizes performance, reducing computational

overhead and making it well-suited for large-scale data

sharing. This approach effectively prevents unauthorized

access by ensuring that even if an attacker gains access to

cloud storage, they cannot decrypt the data without the

private key, which is securely distributed through the Key

Dissemination System (KDS).

This schema could be implemented in resource-re-

strained scenarios where we could only use a limited

number of resources. It is worth noting that the encryption

and decryption times increase as the file size increases for

all encryption techniques and file types. This is expected as

larger files require more computational resources for

encryption and decryption processes. So, ChaCha20-

Poly1305 would work in a more efficient way than other

existing techniques as these multi-cloud systems have to

generally deal with large data files.

Figure 7 indicates the memory consumption of different

data types with the CloudLock in MBs. A general

increasing trend could be observed from the figure indi-

cating that memory consumption increases with an increase

in the size of the file. Additionally, it could also be

observed that there is a slight variation between multiple

files indicating that memory consumption does not vary

with file type but is influenced by file size.

Figures 8, 9, and 10 depicts the upload and download

time for multiple service platforms like Dropbox, Google

Drive, and Mega. It is seen that the upload time is similar

to the download time up to 10MB and then a significant

gap emerges between them with an increase in the file size.

In the case of Dropbox, the upload time varies from

1.05133 to 19.4898 s whereas the download time ranges

from 0.663 to 9.379 s for file sizes 1MB to 300MB.

In the case of Google Drive, the upload time ranges

from 1.256 to 17.808 s whereas the download time changes

from 0.936 to 9.311 s for file sizes 1MB to 300MB.

In the case of Mega, the upload time and download time

for 1MB file is similar but a large difference is observed

between them when the file size is increased to 300 with

values ranging from 0.916 to 53.141 s to upload and 0.476

to 8.690 s for download.

Fig. 5 Memory consumption of different encryption techniques for

TXT data

Fig. 6 Memory consumption of different encryption techniques for

CSV data

Fig. 7 Memory consumption of different data types with proposed

CloudLock framework

Fig. 8 Upload and download time for Dropbox with proposed

framework on CSV data

Cluster Computing (2025) 28:464 Page 17 of 21 464

123

Figure 11 describes the Turn Around Time (TAT) for

the proposed framework with other techniques. The TAT is

composed of encryption time, decryption time, KDS time

(ECDH mechanism, AES encryption, and decryption time),

and Upload and Download time. The tabular values in

Fig. 11 indicate that CloudLock takes similar time with the

AES and ChaCha20 indicating that it is comparable in

overall time consumption with the two. Therefore, our

suggested approach presents a compelling proposition by

matching the processing speed of current leading-edge

methods while consuming less memory and providing

heightened security. Furthermore, it introduces the distinct

attribute of authentication, marking a novel contribution in

this domain.

6.3 Security analysis for single-user

In a specific illustration, the security of ChaCha20-

Poly1305 for a single user can be inferred from its theorem

on multi-user security (Theorem 6.3.1). There is an existing

security proof by Procter in the single-user scenario [26].

However, Procter’s validation, while in the standard model,

assumes different ChaCha20 security measures than our

multi-user security display we have endeavored to establish

a similar security boundary using identical assumptions in

Theorem 6.3.1.

6.3.1 Theorem

Given the parameters n, k, t, c for the ChaCha20-Poly1305

AEAD scheme, consider A as legitimate nonce-abiding

adversary conducting a maximum of qv decryption inqui-

ries. If Cp is the cap on the total size (in t-bit blocks) of

each query it makes, then a PRF adversary Aprf can be

found against the ChaCha20 block function CC_block as

per the following conditions:

Fig. 11 TAT comparison with

Google drive for various

schemes

Fig. 9 Upload and download time for Google drive with proposed

framework on CSV data

Fig. 10 Upload and download time for Mega with proposed

framework on CSV data

464 Page 18 of 21 Cluster Computing (2025) 28:464

123

AdvAEChaCha20�Poly1305ðAÞ�AdvPRFCCblock
ðAprf Þ þ ðqv:c:Cp=2t

ð8Þ

In a scenario where Aprf submits queries equal to the total

block queries made by A, It is important to acknowledge

that for minor Cp values, this boundary is precise, as elu-

cidated further in Proposition 6.3.2.

6.3.2 Proposition

Given t as the tag size for Poly1305_Mac and H as its

corresponding c-almost D - universal hash function, sup-

pose Cp� 5 is the uppermost quantity of t-bit input blocks

in a query for encrypting or verifying through the Cha-

Cha20-Poly1305 AEAD mechanism. We posit the exis-

tence of an adversary A that submits a single encryption

query and qv verification queries, such that:

AdvmuAEChaCha20�Poly1305½P�ðAÞ� ðqv:c:ðCp � 5ÞÞ=2tþ4 ð9Þ

6.4 Security analysis for multi-user

The forthcoming theorem delineates the multi-user security

bounds of ChaCha20-Poly1305 within the ideal permuta-

tion model, implying that the ChaCha20 permutation is

treated as random. This perspective permits us to encap-

sulate the computational efforts of the adversary as the

number of offline invocations to the ChaCha20

permutation.

6.4.1 Theorem

Consider the AEAD scheme ChaCha20-Poly1305[P] as

illustrated in Algorithm 1, characterized by parameters n,

k, t, c, where its fundamental permutations P are simulated

as a random permutation. Suppose A is d-repeating

adversary, executing a maximum of pI ideal permutation

queries and qv validation queries. Also, Let us denote lm as

the upper limit on the size in b-bit blocks (inclusive asso-

ciated data) that it can probe its encryption and validation

oracles. Under these conditions, we can state:

AdvmuAEChaCha20�Poly1305½P�ðAÞ� ðqvðclm þ 3ÞÞ=2b

þ ðdðpI þ qeÞÞ=2k þ ð2pI :ðn� kÞÞ=2k

þ ð2qv:ðn� k � 4bÞÞ=2k þ ðre þ qeÞ2=2nþ1

þ 1=22b�2 þ 1=2n�k�2

ð10Þ

In the above, we further require that: n - k

� 2k�2; re�ðn� kÞ=6:2n�k; qv� 2n�2;

pI �minðð2b� 1Þ=6:ð22bÞ; ðn� k � 1Þ=6:2n�kÞ;
and d�ð2bÞ=3:22b

7 Conclusion

CloudLock acts as a third-party security provider enabling

authentication, downloading, uploading, encryption,

decryption, data sharing, data slicing, and data indexing

functionalities. It is observed to be a more secure and more

reliable technique. Whereas it may take more encryption

time than AES and more memory than ChaCha20, the TAT

of CloudLock (87.974 s for 1GB file) indicates that it takes

a similar time as compared with AES (88.209 s for 1 GB

file) and ChaCha20 (87.298 s for 1GB file). Additionally, it

uses authentication functionality which is an extension of

ChaCha20 so the difference in memory consumption

between ChaCha20 (322.302 MB for 1GB TXT file) and

CloudLock (367.0938 MB for 1GB TXT file) could be

neglected owing to that CloudLock is more invulnerable to

attacks than ChaCha20. In all, the proposed framework is

considered to be more efficient as it could provide better

security in memory-constrained environments. However,

onr of the limitation of sir work is the assumption of

security aspect of SCSE unit. As no system can be con-

sidered completely immune to breaches, especially in the

face of evolving threat vectors. Thus in the future, our

research aims will concentrate on two primary aspects.

First, we aim to bolster the security measures in the SCSE

unit further, investigating potential vulnerabilities in the

SCSE unit and enhancing its resistance to various forms of

cyber-attacks. This will involve reinforcing the unit is

capabilities to accurately detect and promptly respond to

security threats utilizing AI based anomaly detection,

thereby further strengthening its robustness. Secondly, we

plan to devise methods for accurately identifying users

exhibiting malicious behavior toward the data. This

requires developing sophisticated detection mechanisms

capable of discerning harmful intent.

Acknowledgements This work was supported in part by Taighde

Éireann - Research Ireland under grants 12/RC/2289 P2 (Insight),

21/FFP-A/9174 (SustAIn) and European Union’s Horizon Europe

research and innovation programme under Grant Agreement No.

101100680 (GN5-1). For the purpose of Open Access, the author has

applied a CC BY public copyright licence to any Author Accepted

Manuscript version arising from this submission.

Author contributions All authors have contributed equally. All

authors have read and approved the final version of the manuscript.

Cluster Computing (2025) 28:464 Page 19 of 21 464

123

Funding Open Access funding provided by the IReL Consortium.

This work was supported in part by Taighde Éireann - Research

Ireland under grants 12/RC/2289_P2 (Insight), 21/FFP-A/9174 (Sus-

tAIn) and European Union’s Horizon Europe research and innovation

programme under Grant Agreement No. 101100680 (GN5-1).

Data availability No new data were created or analyzed in this study.

Data sharing is not applicable to this article.

Declarations

Conflict of interest No conflict of interest to disclose.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Grand View Research: Cloud Computing Industry. https://www.

grandviewresearch.com/industry-analysis/cloud-computing-indus

try. Accessed: Mar 15, 2025

2. Hashem, I., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A.,

Khan, S.U.: The rise of ‘‘big data’’ on cloud computing: review

and open research issues. Inf. Syst. 47, 98–115 (2015)

3. Verma, P., Tapaswi, S., Godfrey, W.W.: A request aware module

using cs-idr to reduce vm level collateral damages caused by ddos

attack in cloud environment. Cluster Comput. 24, 1917–1933

(2021)

4. Almaiah, M.A., Ali, A., Hajjej, F., Pasha, M.F., Alohali, M.A.: A

lightweight hybrid deep learning privacy preserving model for fc-

based industrial internet of medical things. Sensors 22(6), 2112

(2022)

5. Almaiah, M.A., Hajjej, F., Ali, A., Pasha, M.F., Almomani, O.: A

novel hybrid trustworthy decentralized authentication and data

preservation model for digital healthcare IoT based cps. Sensors

22(4), 1448 (2022)

6. Grand View Research: Multi-Cloud Management Market Report.

https://www.grandviewresearch.com/industry-analysis/multi-

cloud-management-market-report. Accessed: Mar 15, 2025

7. Seth, D., Nerella, H., Najana, M., Tabbassum, A.: Navigating the

multi-cloud maze: benefits, challenges, and future trends. Int.

J. Global Innov. Solut. (IJGIS) (2024). https://doi.org/10.21428/

e90189c8.8c704fe4

8. AlZain, M.A., Pardede, E., Soh, B., Thom, J.A.: Cloud computing

security: from single to multi-clouds. In: 2012 45th Hawaii

International Conference on System Sciences, pp. 5490–5499

(2012). IEEE

9. Verma, P., Tapaswi, S., Godfrey, W.W.: An impact analysis and

detection of http flooding attack in cloud using bio-inspired

clustering approach. Int. J. Swarm Intell. Res. (IJSIR) 12(1),

29–49 (2021)

10. Bohli, J.-M., Gruschka, N., Jensen, M., Iacono, L.L., Marnau, N.:

Security and privacy-enhancing multicloud architectures. IEEE

Trans. Dependable Secure Comput. 10(4), 212–224 (2013)

11. Shaik, K., Narayana Rao, T.V., et al.: Implementation of

encryption algorithm for data security in cloud computing. Int.

J. Adv. Res. Compute. Sci. 8(3), 579, (2017)

12. Madanan, M., Patel, P., Agrawal, P., Mudholkar, P., Mudholkar,

M., Jaganraja, V.: Security challenges in multi-cloud environ-

ments: Solutions and best practices. In: 2024 7th International

Conference on Contemporary Computing and Informatics (IC3I),

vol. 7, pp. 1608–1614 (2024). IEEE

13. Razaque, A., Nadimpalli, S.S.V., Vommina, S., Atukuri, D.K.,

Reddy, D.N., Anne, P., Vegi, D., Malllapu, V.S.: Secure data

sharing in multi-clouds. In: 2016 International Conference on

Electrical, Electronics, and Optimization Techniques (ICEEOT),

pp. 1909–1913 (2016). IEEE

14. Verma, P., Tapaswi, S., Godfrey, W.W.: An adaptive threshold-

based attribute selection to classify requests under ddos attack in

cloud-based systems. Arab. J. Sci. Eng. 45, 2813–2834 (2020)

15. Ali, M., Dhamotharan, R., Khan, E., Khan, S.U., Vasilakos, A.V.,

Li, K., Zomaya, A.Y.: Sedasc: secure data sharing in clouds.

IEEE Syst. J. 11(2), 395–404 (2015)

16. Balasaraswathi, V., Manikandan, S.: Enhanced security for multi-

cloud storage using cryptographic data splitting with dynamic

approach. In: 2014 IEEE International Conference on Advanced

Communications, Control and Computing Technologies,

pp. 1190–1194 (2014). IEEE

17. Vaidya, M., Nehe, S.: Data security using data slicing over

storage clouds. In: 2015 International Conference on Information

Processing (ICIP), pp. 322–325 (2015). IEEE

18. Verma, P., Tapaswi, S., Godfrey, W.W.: Avdr: a framework for

migration policy to handle ddos attacked vm in cloud. Wireless

Pers. Commun. 115(2), 1335–1361 (2020)

19. Akinade, A.O., Adepoju, P.A., Ige, A.B., Afolabi, A.I.: Cloud

security challenges and solutions: a review of current best prac-

tices. Int. J. Multidiscip. Res. Growth Eval. 6(1), 26–35 (2025)

20. Karnik, N., Kumar, A., Mahajan, P. et al. An efficient technique

for securing a multi-cloud storage environment. Int J Syst Assur

Eng Manag (2025). https://doi.org/10.1007/s13198-025-02751-2

21. Wang, L.-L., Ke-fei, C., Xian-ping, M., Yong-tao, W.: Efficient

and provably-secure certificateless proxy re-encryption

scheme for secure cloud data sharing. J. Shanghai Jiaotong Univ.

(Chin. Ed.) 19, 398–405 (2014)

22. Gong, C., Liu, J., Zhang, Q., Chen, H., Gong, Z.: The charac-

teristics of cloud computing. In: 2010 39th International Con-

ference on Parallel Processing Workshops, pp. 275–279 (2010).

IEEE

23. Cachin, C., Haas, R., Vukolic, M.: Dependable storage in the

intercloud. IBM Res. 3783, 1–6 (2010)

24. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.:

Depsky: dependable and secure storage in a cloud-of-clouds.

Acm Trans. Storage (tos) 9(4), 1–33 (2013)

25. Bhatt, S., Shivarudra, A., Kavuri, S., Mehra, A., Paulraj, B.:

Building scalable and secure data ecosystems for multi-cloud

architectures. Lett. High Energy Phys. 2024, 11 (2025)

26. Ali, A., Pasha, M.F., Guerrieri, A., Guzzo, A., Sun, X., Saeed, A.,

Hussain, A., Fortino, G.: A novel homomorphic encryption and

consortium blockchain-based hybrid deep learning model for

industrial internet of medical things. IEEE Trans. Netw. Sci. Eng.

10(5), 2402–2418 (2023)

27. Ali, A., Almaiah, M.A., Hajjej, F., Pasha, M.F., Fang, O.H.,

Khan, R., Teo, J., Zakarya, M.: An industrial IoT-based block-

chain-enabled secure searchable encryption approach for health-

care systems using neural network. Sensors 22(2), 572 (2022)

464 Page 20 of 21 Cluster Computing (2025) 28:464

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry
https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry
https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry
https://www.grandviewresearch.com/industry-analysis/multi-cloud-management-market-report
https://www.grandviewresearch.com/industry-analysis/multi-cloud-management-market-report
https://doi.org/10.21428/e90189c8.8c704fe4
https://doi.org/10.21428/e90189c8.8c704fe4
https://doi.org/10.1007/s13198-025-02751-2

28. Hajlaoui, N., Bejaoui, C., Ismail, T., Ghanmi, H., Touati, H.: A

hybrid architecture for secure data sharing in multi-clouds sys-

tem. Comput. J. 68(1), 58–73 (2025)

29. Vaishnav, J., Aulakh, D., Wadhwa, B., Ganesh, D., Singh, J.,

Sinha, S.K.: Multi-cloud storage augmentation: a novel secured

framework for information sharing. Int. J. Syst. Assur. Eng.

Manage. 1–10 (2025). https://doi.org/10.1007/s13198-025-

02731-6

30. Fabian, B., Ermakova, T., Junghanns, P.: Collaborative and

secure sharing of healthcare data in multi-clouds. Inf. Syst. 48,

132–150 (2015)

31. Viswanath, G., Krishna, P.V.: Hybrid encryption framework for

securing big data storage in multi-cloud environment. Evol. Intel.

14(2), 691–698 (2021)

32. Shamir, A.: How to share a secret. Commun. ACM 22(11),

612–613 (1979)

33. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing

Requirements Knowledge, International Workshop On,

pp. 313–313 (1979). IEEE Computer Society

34. Dehkordi, M.H., Mashhadi, S.: An efficient threshold verifiable

multi-secret sharing. Comput. Stand. Interfaces 30(3), 187–190

(2008)

35. Hu, C., Liao, X., Cheng, X.: Verifiable multi-secret sharing based

on lfsr sequences. Theoret. Comput. Sci. 445, 52–62 (2012)

36. Eslami, Z., Ahmadabadi, J.Z.: A verifiable multi-secret sharing

scheme based on cellular automata. Inf. Sci. 180(15), 2889–2894

(2010)

37. Dehkordi, M.H., Mashhadi, S.: New efficient and practical veri-

fiable multi-secret sharing schemes. Inf. Sci. 178(9), 2262–2274

(2008)

38. Nir, Y., Langley, A.: Request for comments 7539: Chacha20 and

poly1305 for ietf protocols. Internet Research Task Force (IRTF).

(2015)

39. Procter, G.: A security analysis of the composition of chacha20

and poly1305. Cryptology ePrint Archive (2014)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Nitesh Bharot (Senior Member,

IEEE) is the Research Lead and

a Senior Postdoctoral

Researcher at the Insight SFI

Research Centre for Data Ana-

lytics, University of Galway. He

earned his Ph.D. in Cloud

Security from Rabindranath

Tagore University (RNTU),

India (an NIRF-ranked Univer-

sity). Dr Bharot has secured

numerous grants from promi-

nent funding agencies, including

the EU, GEANT, SFI, Insight,

MHRD, and MPCST. Addi-

tionally, he has contributed as a Technical Program Committee

Member, Speaker, and Reviewer for various IEEE conferences and

journals. His research interests encompass Cyber Security, AI/ML,

Healthcare, and Industry.

Nakul Mehta is a Research Ire-

land funded Ph.D. Researcher

with the Centre’s for Research

Training in Artificial Intelli-

gence. He has completed Bach-

elors in Information Technology

from DR BR Ambedkar

National Institute of Technol-

ogy Jalandhar (NITJ). Nakul,

has experience as a Data Sci-

entist at Aramex and also com-

pleted a research internship at

University of Galway, Ireland in

the past.

John Breslin (M’94–SM’16) is a

Professor in Electronic Engi-

neering at the University of

Galway, where he is Director of

the TechInnovate and AgInno-

vate entrepreneurship programs.

Associated with two SFI

Research Centres, he is a Co-

Principal Investigator at Insight

(Data Analytics) and a Funded

Investigator at VistaMilk

(AgTech). He received a Bach-

elor of Electronic Engineering

in 1994 and a Ph.D. in Elec-

tronic Engineering in 2002, both

from the University of Galway. He has co-authored around 300

publications, including the books ‘‘The Social Semantic Web’’,

‘‘Social Semantic Web Mining’’, and the ‘‘Old Ireland in Colour’’

trilogy. He co-created the SIOC framework, implemented in hundreds

of applications (by Yahoo, Boeing, Vodafone, etc.) on at least 65,000

websites with 35 million data instances. He is co-founder of the

PorterShed, boards.ie and adverts.ie. John’s homepage: https://john

breslin.com/.

Priyanka Verma (Senior Mem-

ber, IEEE) received her Ph.D.

from the Atal Bihari Vajpayee

Indian Institute of Information

Technology and Management,

India. She completed the Lead-

ership and Innovation Program

at the Massachusetts Institute of

Technology, USA. She was

formerly an Assistant Professor

at the Maulana Azad National

Institute of Technology Bhopal.

She held a Marie Skłodowska-

Curie Action Fellowship. Cur-

rently, she works as a Assistant

Professor at School of Computer Science, University of Galway,

Ireland. She has also been a Visiting Research Scholar at Anglia

Ruskin University, Chelmsford, U.K. She has co-authored numerous

publications in leading journals and conferences. Her research inter-

ests include cybersecurity, IIoT, smart manufacturing, AI/ML, cloud,

and edge computing. She has received many awards at both national

and international levels. She is a conference speaker and has delivered

expert lectures in many countries and reviewer of many reputed

Journal.

Cluster Computing (2025) 28:464 Page 21 of 21 464

123

https://doi.org/10.1007/s13198-025-02731-6
https://doi.org/10.1007/s13198-025-02731-6
johnbreslin.com
johnbreslin.com

	Cloudlock: secure data sharing using a hybrid cryptosystem in multi-cloud data storage
	Abstract
	Introduction
	Related work
	System model, assumptions, and security goals
	System model
	Assumptions
	Security goals

	Preliminaries
	Abbreviations
	Methodology to share data secretly
	Authenticated encryption with associated data (AEAD) syntax
	ChaCha20
	Poly1305
	Theorems

	The proposed CloudLock framework
	SCSE Unit
	Data slicing and distribution unit
	Crypter Unit (CU)

	Key dissemination system
	Elliptic Curve Diffie Hellman (ECDH) mechanism

	Results and analysis
	Experimental setup
	Performance analysis
	Security analysis for single-user
	Theorem
	Proposition

	Security analysis for multi-user
	Theorem

	Conclusion
	Acknowledgements
	Author contributions
	Data availability
	References

