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Abstract— SKin lesion classification using deep learning tech-
niques is challenged by insufficient samples and class imbal-
ances in datasets. This study introduces a novel framework,
the class expert Deep Convolutional Generative Adversarial
Network (DCGAN), designed to handle class imbalance and
enhance classification accuracy for under represented classes.
The proposed framework also leverages weight transfer from
the GAN discriminator trained on each class to expert layers,
which are then modified to classify skin lesion images more
accurately using the discriminator’s weights. This transfer
learning strategy enhances the performance of the Convolu-
tional Neural Network (CNN) model in DCGAN by utilizing the
discriminative features learned during GAN training. Experi-
mental evaluations demonstrate that the proposed class expert
DCGAN framework achieves notable improvements in accuracy
and precision, particularly for classes with fewer samples.
Specifically, it achieves a 2-3% increase in classification accu-
racy compared to traditional methods. These results underscore
the effectiveness of leveraging GANs for data augmentation and
discriminative feature extraction in medical image classification.
Thus, the class expert DCGAN framework offers a promising
solution to improve the performance of skin lesion classification
models, facilitating highly reliable diagnostic decisions and
enhancing the interpretation of dermatological images across
diverse clinical scenarios.

I. INTRODUCTION

Skin cancer poses a major global health issue, marked by
high incidence rates and differing survival outcomes based on
the timeliness of detection [1], [2]. Recent annual statistics
shows that 331,722 new cases of skin cancer globally, high-
lighting its widespread impact [1]. Moreover, early detection
is crucial to enhance survival rates, as frequent skin evalu-
ations and prompt medical intervention greatly increase the
chances of successful treatment [3]. The American Cancer
Society emphasize the importance of early detection in re-
ducing premature deaths worldwide [2]. Timely identification
of skin lesions is crucial for enhancing patient survival rates,
showing the need for advanced diagnostic tools [4].

Dermoscopy has emerged as an advanced imaging tech-
nique that significantly improves the visualization of deeper
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skin layers compared to standard photography, thus improv-
ing diagnostic accuracy [5], [6], [7]. However, relying solely
on visual inspection can still be prone to errors, particularly
in the diagnosis of melanoma, which requires specialized
training for dermatologists [5], [8].

Recent advancements in Artificial Neural Networks
(ANNS), have transformed medical image analysis [9], [10],
[11]. These deep learning models [10], [11] excel in tasks
like image segmentation and classification, making them
crucial in clinical applications. Author in [10], [11] present
the use of deep learning models such as DenseNet201 and
ResNet for the classification of skin lesions using data sets
such as ISIC2018 [12], highlighting their potential despite
the challenges associated with the limitations of the data set.
Techniques such as data augmentation through GANs have
shown promise in creating realistic skin lesion images and
enhancing classification accuracy [7], [8].

The major contribution of this work are:

o Providing a novel framework, the class expert DCGAN,
which enhances the performance of Convolutional Neu-
ral Network (CNN) models by utilizing discriminative
features learned during GAN training.

« Demonstrating an improvement in the classification ac-
curacy of skin lesions against conventional classification
models like DenseNet201, ResNet50, and InceptionV3.

« Mitigating class imbalance bias through data augmenta-
tion in skin lesion datasets like HAM 10000, which have
a significant number of over-represented classes.

The remainder of this paper is structured as; Section II
begins by reviewing relevant previous research, providing
context for the proposed work. Following this, Section
IIT outlines the proposed method, detailing the proposed
approach to the problem. Section IV then analyzes and
interprets our findings, offering insights into the results of
our study. Finally, Section V summarizes the key points and
concludes the study, and highlighting the significance of our
work.

II. RELATED WORK

A major hurdle in medical image analysis, particularly
when working with skin lesion datasets like HAM10000
(Human Against Machine with 10000 training images) [13],
is addressing the issue of class imbalance. This dataset,
which provides a large collection of dermatoscopic images
for training purposes, often presents an uneven distribution
of different lesion types, making it challenging for machine



learning models to accurately classify less common skin
conditions.

Rashid et al. [14] applied GANs for data augmentation
and classification of skin lesion images, using the GAN dis-
criminator as the final classifier. This approach led to notable
performance gains in balanced accuracy, with improvements
ranging from 2-5% on the ISIC2018 challenge dataset. A
deeply discriminated GAN (DDGAN) to synthesize realistic
256x256 skin lesion images is proposed by Baur et al. [15].
Their model effectively learned dataset distributions, pro-
ducing high-resolution images. The DDGAN outperformed
state-of-the-art models, achieving higher-quality synthetic
data. However, they didn’t utilised the discriminator’s weight
in any format which are capable of making high distinction
between real and fake images which can be used for classi-
fication.

Recent research has explored diverse strategies to address
the class imbalance problem in the HAM10000 dataset. A
comparative analysis by Kassani et al. [16] examined various
deep learning architectures for melanoma detection, shedding
light on how different models perform when faced with
unbalanced data distributions. In a separate study, Jha et al.
[17] introduced an innovative deep convolutional neural net-
work framework designed for medical image segmentation.
Their approach incorporated specific techniques to manage
the challenges posed by imbalanced datasets in this context.

Bissoto et al. [18] proposed a GAN-based method to
generate realistic synthetic skin lesion images, demonstrat-
ing that such augmentation can enhance the performance
of classification models. Similarly, Baur et al.[19] intro-
duced MelanoGANSs, focusing on high-resolution skin lesion
synthesis to improve diagnostic algorithms. These studies
primarily utilized GANs for data augmentation, aiming to
enrich training datasets with diverse samples. However, a
common limitation in these approaches is the underutilization
of the discriminator’s learned features. While the generator’s
output has been widely used for data augmentation, the
discriminator which encapsulates rich feature representations
distinguishing real from synthetic images remains largely
untapped for downstream tasks. Our proposed framework
addresses this gap by repurposing the discriminator’s learned
weights as pretrained class experts. This approach leverages
the discriminator’s capability to capture intricate data dis-
tributions, thereby enhancing the classifier’s performance,
especially in scenarios with limited labeled data which is
specifically seen in the Skin lesion datasets where the sam-
ples related to some particular classes are very limites. By
integrating the discriminator’s insights into the classification
pipeline, our method offers a more holistic utilization of the
GAN architecture, distinguishing it from prior studies that
primarily focus on data generation.

III. PROPOSED METHODOLOGY

A. Dataset Description

The HAMI10000 dataset is an extensive repository of
dermatoscopic images for skin lesion analysis. It includes

10,015 images categorized into seven different types of skin
lesions:

¢ Melanocytic nevi (MN): 7,737

e Melanoma (MEL): 1,305

« Benign keratosis-like lesions (BKL): 1,338
o Basal cell carcinoma (BCC): 622

e Actinic keratoses (AKIEC): 149

e Vascular lesions (VASC): 180

o Dermatofibroma (DF): 160

Each image is annotated with detailed metadata, including
patient age, gender, and location of the lesion, providing es-
sential information for training and testing machine learning
algorithms.

B. Class Imbalance

A significant challenge in the HAM10000 dataset is the
class imbalance, where some classes are vastly overrepre-
sented, while others have relatively few samples. For exam-
ple, MN comprises about 77.37% of the dataset, while DF
accounts for only 1.1%. This imbalance can result in biased
training results, where the model excels in the majority
classes but struggles with minority classes. Mitigating this
imbalance is essential to create reliable and generalizable
skin lesion classification models [20].

C. Proposed class expert DCGAN framework

To mitigate the issue of class imbalance and improve clas-
sification accuracy for underrepresented classes, we propose
a novel framework, class expert DCGAN as shown in figure
1. The framework consists of the following key components:

1) Generating synthetic images: To handle class imbal-
ance, individual GANs are trained for each class in the
HAM10000 dataset to generate high-quality synthetic images
that augment the existing dataset. This targeted approach
ensures that each class, especially the minority classes, has
a sufficient number of representative samples. The GAN
architecture consists of generator and discriminator models.
The architecture details of the generator used in proposed
framework is mentioned in the Table I which is responsible
for generating synthetic images. Whereas, the discriminator
model is responsible for distinguishing between real and
synthetic images. The architecture of the discriminator is
shown in the Table II.

2) Generator and Discriminator Loss: This section de-
scribes the loss functions employed for the generator and
discriminator in our GAN framework. Both the generator
and discriminator losses L and L respectively are defined
using binary cross-entropy.

The generator loss evaluates the generator’s ability to
deceive the discriminator. It specifically calculates the cross-
entropy loss between the predicted labels of the generated
images and the labels indicating real images. The generator
loss is mathematically defined as

Lo =Eznp.(z) [-log D(G(2))] (D
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where, z represents the random noise vector drawn from
the noise distribution p,(z), G(z) denotes the generated im-
ages, and D(G(z)) is the discriminator’s probability estimate

The discriminator loss aggregates the cross-entropy losses
for both real and fake images. It computes the loss between
real images and their actual labels (ones), as well as the loss
between generated images and their fake labels (zeros). The
objective of the discriminator is to maximize the following

Here, x denotes the real images sampled from the data dis-
tribution pyatq (), and G(z) represents the images generated
as before. D(x) is the discriminator’s probability estimate
that the real images are authentic, while D(G(z)) is the
probability estimate that the generated images are real.

These loss functions are based on the initial research

3) Weight Transfer in CLASS EXPERT DCGAN: The
core innovation of our framework lies in the transfer of
learned weights from the discriminator to the class expert
CNNs. Specifically, after training a separate DCGAN for
each lesion class, we extract the weights from the first five
convolutional layers of the discriminator network. These
layers are responsible for capturing low- to mid-level features
such as edges, textures, and patterns that are crucial for

To enable transfer, the architecture of each class expert
CNN is designed to mirror the structure of the discriminator
up to the fifth convolutional layer. This architectural con-
sistency allows for a direct one-to-one mapping of convolu-
tional kernels and batch normalization parameters from the
discriminator to the corresponding layers in the expert CNN.
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Fig. 1. Proposed framework
TABLE I
GENERATOR ARCHITECTURE
Layer Input Shape Output Description
Shape that the generated images are real.
Dense (100,) (8, 8, 512) Fully connected
layer, no bias
Batch Nor- (8, 8, 512) (8, 8, 512) Batch
malization normalization
LeakyReLU (8, 8, 512) (8, 8, 512) Leaky ReLU
activation
Reshape (8, 8, 512) (8, 8, 512) Reshape to
8x8x512 function:
Conv2D 8, 8, 512 16, 16, 256 Transposed _
Transpose ( ) ( ) convolutli)on, 5x5 Lp = Emwp"'"'t“'(m) [_ log D(x)] + EZNPZ(Z)
kernel, stride 2 [_ IOg(l - D(G(z)))]
Batch Nor- (16, 16, 256) (16, 16, 256) Batch
malization normalization
LeakyReLU (16, 16, 256) (16, 16, 256) Leaky ReLU
activation
Conv2D (16, 16, 256) (32, 32, 128) Transposed
Transpose convolution, 5x5
kernel, stride 2
Batch Nor- (32, 32, 128) (32, 32, 128) Batch
malization normalization proposed by Goodfellow et al. [21].
LeakyReLU (32, 32, 128) (32, 32, 128) Leaky ReLU
activation
Conv2D (32, 32, 128) (64, 64, 64) Transposed
Transpose convolution, 5x5
kernel, stride 2
Batch Nor- (64, 64, 64) (64, 64, 64) Batch
malization normalization
LeakyReLU (64, 64, 64) (64, 64, 64) Leaky ReLU
activation
Conv2D (64, 64, 64) (128, 128, 32) Transposed
Transpose Cl((’;‘;("sllu [lb(t);:deSXZS differentiating real from generated images.
Batch Nor- (128, 128, 32) (128, 128, 32) Batch
malization normalization
LeakyReLU | (128, 128, 32) (128, 128, 32) Leaky ReLU
activation
Conv2D (128, 128, 32) (128, 128, 3) Transposed
Transpose convolution, 5x5
kernel, stride 1
Activation (128, 128, 3) (128, 128, 3) Tanh activation
(tanh)

Following this transfer, the expert CNN is further extended
with dense layers and dropout for classification.

During the weight transfer, the copied layers are initialized
with the pre-trained discriminator weights. This reuse of



TABLE I
DISCRIMINATOR ARCHITECTURE

Layer Input Shape | Output Description
Shape

Conv2D (128, 128, 3) | (64, 64, 64) Conv, 5x5 kernel,
stride 2

LeakyReLU (64, 64, 64) (64, 64, 64) LReLU

Dropout (64, 64, 64) (64, 64, 64) Dropout, rate 0.3

Conv2D (64, 64, 64) (32, 32, 128) | Conv, 5x5 kernel,
stride 2

BatchNormalization | (32, 32, 128) (32, 32, 128) | BN

LeakyReLU (32, 32, 128) | (32, 32, 128) | LReLU

Dropout (32, 32, 128) (32, 32, 128) | Dropout, rate 0.3

Conv2D (32, 32, 128) (16, 16, 256) | Conv, 5x5 kernel,
stride 2

BatchNormalization | (16, 16, 256) | (16, 16, 256) | BN

LeakyReLU (16, 16, 256) | (16, 16, 256) | LReLU

Dropout (16, 16, 256) (16, 16, 256) | Dropout, rate 0.3

Conv2D (16, 16, 256) | (8, 8, 512) Conv, 5x5 kernel,
stride 2

BatchNormalization | (8, 8, 512) (8, 8, 512) BN

LeakyReLU (8, 8, 512) (8, 8, 512) LReLU

Dropout (8, 8, 512) (8, 8, 512) Dropout, rate 0.3

Conv2D (8, 8, 512) 4, 4, 1024) Conv, 5x5 kernel,
stride 2

BatchNormalization | (4, 4, 1024) 4, 4, 1024) BN

LeakyReLU 4, 4, 1024) 4, 4, 1024) LReLU

Dropout 4, 4, 1024) 4, 4, 1024) Dropout, rate 0.3

Flatten (4, 4, 1024) (16384,) Flatten

Dense (16384,) (1,) Dense

discriminative features ensures that the expert CNN benefits
from the adversarial training signal, particularly for minority
classes with limited real samples. Figure 2 illustrates the full
transfer pipeline.

4) Classification using class expert DCGAN architecture:
The class expert DCGAN model is designed to improve the
precision of skin lesion image classification by combining the
capabilities of CNNs and GANSs. At its core, the architecture
uses a foundational CNN as the primary mechanism for
extracting features from input images. This base CNN is
composed of five convolutional layers, with increasing filter
sizes of 64, 128, 256, 512, and 1024. Each of these layers
utilizes 5x5 kernels, maintains a stride of 2, and employs
same’ padding to preserve spatial dimensions. To ensure
training stability, batch normalization is applied after the
second, third, fourth, and fifth convolutional layers, and
Leaky ReLU activation is used for non-linearity. Dropout
layers with a dropout rate of 0.3 follow each convolutional
layer to prevent overfitting. These convolutional layers cap-
ture essential features such as edges, textures, and patterns,
forming a robust foundation for subsequent processing by
specialized class expert models.

Each class of skin lesions is represented by a specialized
expert model, pre-trained on GAN-generated data from the
previous stage. The previously saved discriminator weights
are transferred to the corresponding layers in the class expert
DCGAN model, leveraging the learned features from the
DCGAN to enhance classification performance. The process
of weight transfer in class expert DCGAN is shown in figure
2. The final classification output is obtained by integrating
the outputs from all class-specific layers.

The class expert models share an architecture similar to the
base CNN, ensuring consistency in feature learning. These
models are fine-tuned to excel in classifying specific types of
lesions, bringing specialized knowledge into the ensemble.
The outputs of these class expert models are concatenated,
creating a unified feature representation that encapsulates the
detailed insights of each expert. This unified representation
is then processed through fully connected dense layers. The
initial dense layers consist of 512 neurons and employ
the ReLU activation function. To prevent overfitting, this
layer incorporates a dropout mechanism with a rate of 0.5,
randomly deactivating half of the neurons during training.
The second dense layer is smaller, containing 128 neurons,
and also uses ReLU activation. Like the previous layer,
it applies a dropout rate of 0.5 to enhance the model’s
generalization capabilities. In the final classification stage,
the dense layers include neurons activated by ReLU and
additional dropout layers to further reduce overfitting. The
culmination of this process is a softmax layer that provides
the probability distribution over the lesion classes, delivering
the final classification output.

The class expert DCGAN model employs a sophisticated
training regimen that incorporates several advanced tech-
niques. Data augmentation is used to create variations in the
training images, which helps the model learn more robust
features and improves its ability to generalize to new data.
This technique is particularly valuable in medical imaging,
where obtaining large, diverse datasets can be challenging.
Learning rate scheduling is implemented to dynamically
adjust the learning rate throughout the training process. This
ensures steady convergence and helps the model navigate the
complex loss landscape more effectively. By fine-tuning the
learning rate, the model can achieve better performance and
stability during training.

Early stopping is utilized as a regularization technique to
prevent overfitting. The training process is halted when the
model’s performance on the validation set ceases to improve,
ensuring the model retains its generalization capabilities.
This is crucial in developing models that perform well not
just on training data, but also on new, unseen examples.
This comprehensive approach combines GAN-generated syn-
thetic data, specialized expert models for different lesion
classes, and these advanced training techniques. The result
is a model that achieves higher accuracy in skin lesion
classification while reducing biases that can arise from
imbalanced datasets. Consequently, the class expert DCGAN
model represents a significant advancement in medical image
analysis, particularly in the field of dermatology, offering
potential improvements in the early detection and diagnosis
of skin conditions.

During training, the model achieved a significant reduc-
tion in validation loss and an improvement in validation
accuracy, highlighting the effectiveness of integrating class
expert models. For example, in cross-validation, the model
demonstrated an improvement in validation accuracy from an
initial 92% to a final 96%, with the validation loss decreasing
correspondingly. This quantitative evidence underscores the
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Fig. 2.  Weight transfer in class expert DCGAN

robustness and ability of the model to handle the complex
task of skin lesion classification with high precision and
reliability. The final classification layer, a softmax layer with
neurons equal to the number of lesion classes, ensures that
the model produces a probability distribution, thus improving
its interpretability and effectiveness in clinical decision-
making.

IV. EXPERIMENTAL RESULTS AND EVALUATION

This section presents a detailed evaluation of the proposed
DCGAN for synthetic image generation and class expert
DCGAN for image classification.

A. Evaluating DCGAN for the synthetic image generation

To evaluate our DCGAN for each class in the HAM 10000
dataset, we trained the model for 100 epochs and generated
classification reports. The process involved three key metrics

[22]: Inception Score (IS), Frechet Inception Distance (FID),
and Mean Squared Error (MSE). These metrics provides
a comprehensive assessment of the quality, diversity, and
fidelity of the images generated.

Fig. 3. Generated images for the class melanoma

Figure 3 illustrates the generated images for the melanoma
class, showcasing the capability of our model to produce
high-quality synthetic images. The results of these evalua-
tions are also summarized in Table III.

The proposed DCGAN achieved high IS values across
all types of lesions, with scores ranging from 8.6 to 9.3,
indicating that the generated images were of high quality
and variety. Additionally, the FID scores for the proposed
DCGAN were notably low for underrepresented classes such
as DF and VASC, as 4.2 and 3.8, respectively. This low
FID for underrepresented classes demonstrates the GAN’s
ability to generate high-fidelity images even for less common
lesion types. The proposed model also shows low MSE
values across all classes, ranging from 0.027 to 0.034, further
confirming the high quality of the generated images.

TABLE III
DCGAN MODEL METRICS

Class 1S FID MSE
MN 89 52 0.029
MEL 9.1 49 0.031
BKL 87 48 0.030
BCC 88 45 0.027
AK 9.0 43 0.032
SCC 8.6 4.7 0.033
VASC 92 38 0.028
DF 9.3 42 0.034

B. Evaluating class expert DCGAN model for classification

To assess the performance of our class expert DCGAN
model for skin lesion classification, we trained the model for
100 epochs and generated classification reports to compare
its performance with pretarined DenseNet201, ResNet50, and
InceptionV3. Our evaluation centers on key performance
metrics such as accuracy, precision, recall, and F1-score [23]
for each skin lesion class in the HAM10000 dataset.

Table IV provides a comparative analysis of proposed
class expert DCGAN against ResNet50, InceptionV3, and



TABLE IV
COMPARISON RESULTS OF DIFFERENT METHODS

Metric Method MEL MN BCC AKIEC BKL DF VASC  Macro Average
ResNet50 91.50 88.25 96.48  96.65 9142 9892 99.78 94.71
Accurac InceptionV3 92.80 89.05 97.05 97.28 91.98 99.02 99.88 95.31
Y DenseNet201 9330 8995 9740 97.50 92.60 99.18 99.93 94.21
Class Expert DCGAN 94.61 95.06 98.10 98.20 95.55 99.75 99.95 96.61
ResNet50 6390 89.60 6690 47.85 61.30 55.50 9290 68.27
Precision InceptionV3 65.05 90.55 6845 49.10 62.45 5695 93.05 69.34
DenseNet201 66.05 9095 6895 50.10 6295 58.05 93.45 69.99
Class Expert DCGAN 6570 75.32 84.75 51.35 69.38 67.48 78.54 70.22
ResNet50 5840 9143 6495 4850 60.88 31.23 92.85 64.03
Fl-score InceptionV3 60.05 9198 6595 49.98 62.05 3198 9298 64.99
DenseNet201 61.05 9248 6698 51.03 63.05 33.05 93.48 65.99
Class Expert DCGAN 5554 65.07 75.00 61.40 68.80 67.35 78.24 67.47
Accuracy Precision
97 96.61 705 70.22
69.99
96.5 70
9% 69.5 69.34
955 95.31
69
95 94.71
68.5 68.27
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% 68
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Fig. 4. Accuracy comparison of models Fig. 5. Precision comparison of models

DenseNet201 for classifying different classes of skin lesion
present in HAM10000 dataset. Results shows that the class
expert DCGAN framework perform well in classifying dif-
ferent skin leisons present in HAM10000 dataset.

To evaluate whether a single-model alternative could
match the performance of our per-class DCGANs, we imple-
mented a class-conditional DCGAN (cDCGAN) following
Mirza and Osindero [24]. The cDCGAN was trained on all
seven lesion classes simultaneously for 150 epochs on an
NVIDIA Tesla V100 GPU (32 GB), requiring 8 hours of
wall-clock time and peaking at 12 GB of GPU memory. In
contrast, each of our per-class DCGANs was trained for 100
epochs on the same hardware, averaging 4 hours and 6 GB
of memory per class (totaling 28 hours and 42 GB if run
sequentially, or 4 hours and 6 GB if parallelized across seven
GPUs). Quantitatively, the cDCGAN-augmented classifier
achieved a macro-average accuracy of 95.3%, compared to
96.6% for the per-class DCGAN approach . More impor-
tantly, the per-class design yielded notable gains on minority
classes improving the DF Fl-score by 4.2% and VASC
by 3.7% whereas the cDCGAN showed only 1-2% im-
provements over the non-augmented baseline. These results
indicate that while a cDCGAN reduces training overhead,
it underperforms on underrepresented classes, likely due to
mode-collapse risks when modeling multiple distributions
jointly. Thus, despite its higher aggregate training cost, the
per-class DCGAN framework remains justified for applica-
tions demanding high sensitivity on rare lesion types.

Proposed model demonstrated a superior performance with

a macro average accuracy of 96.61%, which surpasses the
results of ResNet50 (94.71%), InceptionV3 (95.31%), and
DenseNet201 (94.21%) as shown in figure 4. This indicates
that the DCGAN can generate images that significantly aid in
improving the classification accuracy across all lesion types.
Notably, the class expert DCGAN achieved high accuracy in
all classes, with particularly impressive results for the MN
and BCC classes, indicating that the generated images are
highly effective for training robust classifiers.

Precision is crucial for minimizing false positives, and the
class expert DCGAN achieved a macro average precision of
70.22%, which is slightly higher than DenseNet201 (69.99%)
and notably better than ResNet50 (68.27%) and InceptionV3
(69.34%) as shown in figure 5. The DCGAN showed signif-
icant improvement in precision for the BCC (84.75%) and
DF (67.48%) classes, highlighting its capability to generate
high-quality, class-specific images that enhance the classi-
fier’s ability to distinguish between different lesion types
accurately.

The F1-score, which balances precision and recall, saw an
improvement with the DCGAN, achieving a macro average
of 67.00% as shown in figure 6. This performance is higher
than that of ResNet50 (64.03%), InceptionV3 (64.99%),
and DenseNet201 (65.99%). The DCGAN particularly ex-
celled in the AKIEC (61.40%) and DF (67.35%) classes,
demonstrating its effectiveness in generating realistic images
for challenging and under represented lesion types. The
high Fl-scores for these classes suggest that the DCGAN
is successful in enhancing the model’s ability to correctly
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identify both true positives and reduce false negatives.

Overall, the results highlight that the class expert DC-
GAN model outperforms the conventional models and with
the powerful approaches of data augmentation and transfer
learning help in outperforming other models in term of
accuracy, precision and Fl-score. Thus this highlights the
effectiveness of proposed model in handling imbalanced
datasets and generating high-quality synthetic images for
skin lesion classification tasks.

V. CONCLUSION AND FUTURE WORK

This research introduces a class expert DCGAN model for
classifying skin lesions, leveraging its capability to generate
high-quality synthetic images and enhance classification per-
formance. The proposed DCGAN demonstrates significant
improvements in generating high-fidelity images, leading
to better classification performance across all metrics. En-
hanced accuracy (96.61%), precision (70.22%), and F1-
score (67.47%), especially for underrepresented lesion types
like DF and VASC, highlight the model’s effectiveness in
addressing imbalanced datasets. This results in more reliable
and robust classifiers, ultimately improving dermatological
diagnostics. The proposed DCGAN is a valuable tool for
automated skin lesion diagnosis, particularly in managing
underrepresented lesion types. Future work should focus on
expanding the dataset to include more diverse skin types and
conditions, testing the model in real-time clinical settings,
and optimizing it for faster inference and lower computa-
tional requirements. These steps will enhance its robustness,
generalization, and accessibility for widespread clinical use.
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