
Secure Generative Adversarial Networks

Subhasis Thakur1 and John Breslin2

1 University of Galway, Galway, Ireland subhasis.thakur@universityofgalway.ie
2 University of Galway, Galway, Ireland john.breslin@universityofgalway.ie

Abstract. Generative Adversarial Networks (GAN) can produce realis-
tic synthetic data that can be used in many applications including train-
ing other neural networks. However, a malicious GAN can intentionally
exclude specific data while training the GAN model and it can create
an incorrect neural network model. In this paper, we propose a secure
GAN model where we partition the GAN model among two entities (a)
a GAN provider (only who knows the discriminator model of GAN) and
(b) a GAN user (who builds the generator model of the GAN). The GAN
provider does not share its training data for the discriminator model but
allows the GAN user to choose the type of data to be used to train the
discriminator model. The GAN provider and the GAN user engage in
oblivious transfer and zero-knowledge proof protocol to verify (a) the
correct discriminator model is developed by the GAN provider, and (b)
the correct discriminator model is used to train the generator model. We
prove the proposed protocols for building GAN are secure and privacy-
preserving. We also present an experimental evaluation of the proposed
GAN.

Keywords: Generative Adversarial Network · Zero-knowledge proofs ·
Oblivious transfer.

1 Introduction

Generative Adversarial Network (GAN) produces synthetic data with a proba-
bility distribution matching the real data. There are many applications of GAN
as the synthetic data can be used as datasets to train various machine learning
models. A GAN model has three main components, (a) a real dataset, (b) a neu-
ral network for Discriminator (D), and (c) a neural network for Generator (G).
A GAN operates as follows: first D is trained with data from real data (labeled
as 1) and fake data (labeled as 0) to efficiently determine if a data is real data.
Next, the generator is trained as it takes a random input, and its outcome is
used as input to D to decide if the discriminator will accept fake data generated
by the discriminator. Usually, Binary Cross Entropy is used as a loss function
to train D and G. In this paper, we build a privacy-preserving and secure GAN
model where a GAN provider owns the training datasets for the discriminator
model and does not want to share such data and the discriminator model with
the GAN user, who builds the GAN generator neural network by sending the
outcomes from the generator neural network to the discriminator network. The

2 S. Thakur et al.

GAN user does not control the execution of the discriminator model and it must
verify outcomes from the discriminator neural is the result of the actual exe-
cution of a neural network constructed using the data types requested by the
GAN user. In this paper, we build a secure and privacy-preserving GAN model
where our main results are as follows: (1) We present an oblivious transfer-based
protocol to allow the GAN user to securely choose data types to train the dis-
criminator model and to choose sample datasets to be used to verify the correct
training and usage of the discriminator neural network. (2) We present a zero-
knowledge-proof-based protocol to verify the discriminator model is correctly
trained with the requested data categories. (3) We present a zero-knowledge
proof-based protocol to verify that a correct discriminator model is used to train
the generator neural network. (4) We present an analytical and experimental
evaluation of the proposed GAN model. The paper is organised as follows: in
section 2 we discuss the privacy and security problems with GAN, in section
3 we present the secret GAN model, in section 4 we prove that the proposed
GAN model is secure and privacy-preserving, in section 5 we present an experi-
mental evaluation of the GAN, in section 6 we discuss related literature, and we
conclude the paper in section 7.

2 Security problems with GAN

The overview of GAN is as follows: The neural network for the Discriminator D
is trained with a combination of real data (labeled as 1) and fake data (labeled as
0) such that it can decide if the input data belongs to real data or not (outputs
1 or 0). After training D, the neural network for the generator is trained as
it takes random input data to the neural network of G. The outcome of G is
used as the input to the neural network of D. D classifies the inputs from G
into either 1(classifies input from G as real data) or 0 (classifies input from G
as fake data). Based on the classification of D, a loss function is used to train
G. The interaction between G and D can be modelled as a minimax game.
If the GAN user does not have access to train the discriminator model and
parameters of the discriminator model then we have the following privacy and
security problems: (1) A malicious GAN provider may not use the proper data
to train the discriminator neural network. (2) A malicious GAN provider may
not use the proper discriminator model to train the generator model. (3) Data
to train the discriminator model and discriminator model can not be revealed
to the GAN user to verify if proper discriminator model is developed and used.
In this paper, we present a GAN model to address these security and privacy
problems.

3 Secure GAN Model

Our solution to construct a secure GAN model is as follows: (1) First, the GAN
provider and the GAN user will engage in an oblivious transfer-based protocol to
securely choose an appropriate type of dataset to train the discriminator neural

Secure Generative Adversarial Networks 3

network and collect dataset samples. It will allow the GAN provider to know the
chosen data type but it will hide the information on data samples collected by
the GAN user. (2) Next, the following sequence of training the discriminator and
generator will be followed: (a) The GAN user generates random data as input to
its generator model. It sends such random input data to the GAN provider. (b)
The GAN provider chooses a training dataset to train the discriminator model.
It labels the training data as 1 and it labels the random data from the GAN user
as 0. It combines and shuffles these two datasets. The GAN provider uses this
combined dataset to train the discriminator neural network. The GAN provider
stores evaluation values for the functions in the discriminator neural network
along with the corresponding input data. After completing the discriminator
neural network training it informs the GAN user. (c) The GAN user may check
if the discriminator neural network is properly trained or not. It can use the
sample data or the random data it generated previously for such verification.
The GAN user and provider will engage in the zero-knowledge proof protocol
described in section 3.2. (d) Next, the GAN user will use the same random
data generated in step 1 as input to its generator neural network. And, it sends
this outcome to the GAN provider as input to the discriminator model. The
GAN provider will execute the discriminator model with such input data and
send its outcome to the GAN user. (e) The GAN user may again engage in the
verification of neural network execution for the previous step. It will use the
outcome from the discriminator to train its generator model. In section 3.1 we
will describe the protocol for securely collecting data samples from the GAN
provider, in section 3.2 we will describe zero-knowledge proof-based verification
of deep neural network execution, in section 3.3 we will describe the protocol for
verifying if the discriminator model is properly trained or not, and, in section
3.4 we will describe if proper discriminator model is used to train the generator
neural network.

3.1 Secure sample data collection

The objective of this protocol is to securely collect a set of sample datasets from
the GAN provider by the GAN user such that the GAN provider does not know
the identity of the sample data collected from it. Let there be z datasets d1, . . . , dz
such that each dataset di belongs to a category Ci, i.e., there are z categories of
data. We assume that each dataset contains n data instances. The GAN provider
assigns a unique index to each category between 1 to z. Each data instance for
the dataset di gets a unique index between ((i − 1)n + 1) to (in). The GAN
provider generates a Merkle tree from these data instances using the Hashes of
these data instances by considering data instances with increasing indices, i.e.,
Hash of data instance with index 1 is the first (leftmost) leaf node of the Merkle
tree, Hash of data instance with index 2 is the first (2nd leftmost) leaf node of
the Merkle tree and so on. We will design an oblivious transfer-based protocol
to choose an appropriate dataset to train the discriminator neural network as
shown in figure 1(a).

4 S. Thakur et al.

3.2 Verification of Deep Neural Networks

Overview of KGZ-based zkSNARK The proposed secure GAN model needs
to verify a deep neural network, i.e., it needs to verify that the outcome from a
deep neural network is indeed the result of executing the deep neural network
functions for a given input. We will use the deep neural network verification
method developed in [8, 7]. We will use the KGZ polynomial commitment scheme
[4] as the zero-knowledge proof protocol. In this verification process, the GAN
provider acts as the prover, and the GAN user acts as the verifier. In this section,
we will briefly discuss KGZ-based zero knowledge proof protocol. In this protocol,
the prover has a polynomial F (x) and it computes the value of F (x) at x = a
as y. It wants to convince the verifier that y is indeed the result of computing
F (x) for the input y. We will use the following terms: (1) G1,G2 (Elliptic curves
with bilinear pairing), (2) E() (Bilinear pairing function over G1,G2), (3)g1, g2
(Generators of G1,G2), (4) p1, p2 (Prime numbers for G1,G2), (5) Add(),Mul()
Adds elliptic curve points and multiplies elliptic curve points with integers.

Setup for common reference string: During this step, the prover and the
verifier computes a set of random numbers. Let G1 be an elliptic curve for the
prime number P and g1 be the generator of G1. Let τ be a random positive
integer less than P. A set of l random numbers are generated from τ as follows:

p1 = g1, p2 = M(τ, g1), , . . . , pl = M(τ l−1(Mod(P)), g1) (1)

where M() is a function to multiply an positive integer with an elliptic curve
point resulting a new elliptic curve point. We can use a ceremony to form the
random number. The prover and verifier knows the above random points for
both bilinear elliptic curves. We represent these random points for G1,G2 as
follows:

p1l = M(τ l−1(Mod(P1)), g1), p
2
l = M(τ l−1(Mod(P2)), g2) (2)

Commitment to a function: Let F (x) = a0 + a1x+ a2x
2 + · · ·+ akx

n be the
polynomial of degree n. We can create a commitment to F (x) as follows:

Commit(F (x)) = Add(Mul(a0, p
1
1),Mul(a1, p

1
2), . . . ,Mul(an, p

1
n)) (3)

Proof of Evaluation for a Polynomial : For a function F (x), let F (x = a) is
y. The prover creates a proof of evaluation as a point in the elliptic curve in G1

as follows: Let,

Q(x) =
F (x)− y

x− a
= r0 + r1x+ r2x

2 + · · ·+ rnx
n

Commit(Q(τ)) = Add(Mul(r0, p
1
1),Mul(r1, p

1
2), . . . ,M(rn, p

1
n)) (4)

. Verification of proof of evaluation: The prover sends the verifier the following
values: (1) The commitment to the function F (x) as Commit(F (τ)) in G1. (2)
The set of values of function evaluation at a as y. (3) The set of commitment
for proof of function evaluation to the functions as {Commit(Q(τ))} in G1.

Secure Generative Adversarial Networks 5

The verifier checks the validity of the commitment to the function evaluations
by checking if the following equivalence holds:

E(Commit(Q(τ)), (τ − a)) ≡ E(Commit(F (τ))− y, g2), (5)

where Commit(Q(τ)) and Commit(F (τ))− y are computed using elliptic curve
G1 and (τ − a) is computed using the elliptic curve G2. Note that the above
equation checks if the commitment to the proof of function evaluation is correct,
i.e., the polynomial division for equation 5 has no reminder. Note that verification
requires multiplication of two elliptic curve points and hence we used bilinear
pairing-based elliptic curves for this purpose.

Deep Neural Verification with KGZ zkSNARK Commitment to the
DNN functions Let F (x) = b11+w1

1,1x+w1
2,1x

2+ · · ·+w1
n,1x

n, i.e., coefficients
of F (x) is the set of weights and bias for a node in the DNN. The prover creates
a commitment for F (x) as follows:

Commit(F 1
1 (τ)) =Add(Mul(b11,P1),Mul(w1

1,1, p
1
2), . . . ,Mul(w1

n,1, p
1
n)) (6)

For each DNN layer, the prover creates n elliptic curve points for the elliptic
curve G1, and in total, it creates nk such points. The set of commitments for
layer i will be denoted as the set ∪n

j=1Commit(F i
j (τ)).

Function Evaluation A DNN function f(x) = y11 = b11 + ∪n
i=1aiw

1
i,1 is

evaluated as b11 + a1x
1 + a2x

2 + · · ·+ anx
n. Hence we need to find a value for x

that can represent the set of numbers b11, a1, . . . , an. The prover and the verifier
generate a number x as follows:

1− 1

(a1 + a2 + · · ·+ an)
= x (7)

The above equation holds for large n. We assume that the DNN model is large
and hence n is large. Using this value of x, the prover calculates DNN functions
for layer1. We denote such a set of evaluations as the set {y1i }. Note that, the
set {y1i } is the input to layer2, and for layer2 we calculate the value of x for
DNN functions of layer2 using the same procedure.

Proof of Evaluation Note that, value of evaluation for DNN functions
{F 1

i (x)} at layer1 is the set {y1i }. For each function F 1
i , the prover creates a

proof of evaluation as a point in the elliptic curve in G1 as follows: Let,

Q1
1(x) =

F 1
1 (x)− y11
x− a

= r0 + r1x+ r2x
2 + · · ·+ rnx

n

Commit(Q1
1(τ)) = Add(Mul(r0, p

1
1),Mul(r1, p

1
2), . . . ,M(rn, p

1
n)) (8)

The set of proof of evaluations for layer1 will be denoted as the set {Commit(Q1
i (τ))}.

Verification of proof of evaluation The verifier has the following values:
(1) The set of commitment to the DNN functions at layer1 as ∪n

j=1Commit(F i
j (x)).

(2) The set of value of DNN function evaluation at layer1 as {y1i }. (3) The set

6 S. Thakur et al.

of commitment for proof of function evaluation to the DNN functions at layer1
as {Commit(Q1

i (τ))}. The verifier checks the validity of the commitment to the
function evaluations by checking if the following equivalence holds:

E(Commit(Q1
i (τ)), (τ − x)) ≡ E(Commit(F i

j (x))− y1i) (9)

Note that the above equation checks if the commitment to the proof of function
evaluation is correct, i.e., the polynomial division for equation 5 has no reminder.
Note that verification requires multiplication of two elliptic curve points and
hence we used bilinear pairing-based elliptic curves for this purpose.

3.3 Training and verification of the discriminator neural network

The objective of this protocol is to ensure that the discriminator is trained with
the data category requested by the GAN user. The protocol is shown in Table 2.
Briefly, it is as follows: (1) The GAN user will generate a set of random data to be
used as input data to its generator neural network. It will send this random data
to the GAN provider. (2) The GAN provider will combine the chosen dataset in
section 3.1 and the random data from the GAN user by labelling the chosen data
as 1 and random data from the GAN user as 0. It will use this combined dataset
to train the discriminator model. (3) During training of the discriminator model,
the value of functions within the discriminator neural network will be stored and
may be used to verify that the discriminator neural network is properly trained.
The GAN provider will create a Merkle tree using these values of discriminator
function evaluation. The GAN provider will send the roots of the Merkel trees to
the GAN user after completing training of the discriminator model. The GAN
provider will also send the commitments to the discriminator neural network
functions (as shown in equation 6, section 3.2) (4) The GAN user will either
choose a sample data as chosen in section 3.1 or the random data it has sent to
the GAN provider in step 1. The GAN user and GAN provider will use the neural
network execution verification using zero-knowledge proof as shown in section
3.2 with the input as the collected data samples or the random data the GAN
user has generated. The verification will be as follows: (a) The GAN user will
send the index of the sample dataset for verifying discriminator neural network
verification. (b) The GAN provider will reveal the discriminator neural network
function evaluation for the index of the sample dataset by revealing data in the
Merkle tree whose root it has sent to the GAN user in the previous step. (c)
The GAN provider will use the root of the Merkle tree to verify if the revealed
value of discriminator neural network function evaluations is correct. (d) Next,
the GAN provider and the GAN user will engage in the zero-knowledge proof
explained in section 3.2 to verify that given the input data in step 1 and the
function evaluation values revealed in the previous step correspond to the actual
execution of the discriminator neural network.

Secure Generative Adversarial Networks 7

3.4 Verification of Correct Discriminator Model Usage in Training
the Generator

The objective of this protocol is to ensure that the correct discriminator is used
to train the generator neural network. The protocol is as follows: (1) The GAN
user generates a set of random data as input to the generator neural network
(same data as generated in step 1 in section 3.3). (2) The GAN user uses this
data as the input data to the generator neural network and sends its outcome to
the GAN provider who uses it as the input to the discriminator neural network.
The outcome for the discriminator neural network is sent back to the GAN user,
who estimates the loss function using it to revise the parameters of the generator
neural network. (3) The GAN user can engage in a zero-knowledge proof-based
verification (as described in section 3.2) of the discriminator network as follows:
(a) The GAN user and provider will use the random data as input to the
functions of the discriminator neural network, the GAN provider will reveal the
evaluation of discriminator functions for these given inputs and the outcome of
the discriminator neural network. Using protocols shown in section 3.2 the GAN
user can verify if these outcomes actually correspond to the execution of the
discriminator neural network.

4 Analysis

Theorem 1. The protocol for secure data sampling procedure is correct and
secure.

Proof. The objective of this protocol is to hide the identity of samples collected
from the GAN provider. Note that we used an oblivious transfer protocol for
securely collecting such data samples. As shown in Table 1, the GAN user makes
random choices over the data instances for a specific data category as shown in
Step 3. Such a choice is hidden by creating an elliptic curve point from the
index of the chosen data instance. To reveal the choices made by the GAN user,
the GAN user must solve the discrete logarithm problem to know such a choice
of data samples from the corresponding elliptic curve. The protocol is correct
because the following equivalence holds: Decryption.Key = Mul(bi, A).

Encryption.Key = Mul(a,R)−Mul(i, T)

= Mul(a, (Mul(ci, A) +Mul(bi, g1)))−Mul(i,mul(a,A))

= Decryption.Key (10)

The above equivalence holds if ci = i, this means the GAN user can only decrypt
the data samples which it has chosen.

Theorem 2. The protocol for training the discriminator is secure.

Proof. The objective of this protocol is to ensure that the discriminator neural
network is trained with the datasets by the GAN user. Note that the training

8 S. Thakur et al.

procedure includes the following: (1) The GAN provider proves that the data
instance to be used to train the discriminator belongs to the dataset chosen
by the GAN user. As mentioned in section 3.1, the GAN provider uses the
procedure to check the membership of a leaf node in a Merkle tree to prove that
the data instance belongs to the chosen dataset. Note that, before collecting
sample data instances and revealing the chosen data category, the GAN user
receives the Root of the Merkle tree (section 3.1). Hence the GAN provider
cannot change data instances or use data from a different data category. (2) We
claim that the chosen dataset is used to train the discriminator neural network
according to the protocol mentioned in Table 2 because: (a) as shown in Line
8, Table 2, the GAN provider trains the discriminator neural network and sends
the commitment to the neural network function of the discriminator to the GAN
user along with the valuation of the neural network functions. (b) The GAN user
can verify the valuation is indeed the result of the discriminator neural network
model execution if the input is part of sample datasets collected according to the
protocol shown in Table 1. The neural network verification protocol can be used
to securely execute such verification. (c) It is possible that the GAN provider
may not use correct data in Step 8. However, the above verification can prevent
such manipulation by the GAN provider. As the GAN provider does not know
the identity of the data samples collected according to the protocol in Table 1, it
does not know if it will go through the verification process of step 9 (Table 2), it
will be reluctant to use the wrong data to train the discriminator neural network.
(3) Further, the GAN provider sends commitments to the trained discriminator
neural network to the GAN user after every training cycle (Steps 8 and 10). The
GAN user can check if such commitments mismatch with each other as proof
that neural network parameters are changed after every training iteration.

Theorem 3. The protocol for training the generator is secure.

Proof. The protocol for training the generator is secure because: Note that,
inputs to the discriminator model are created by the GAN user, hence it cannot
be manipulated by the GAN provider. We use the neural network verification
protocol shown in section 3.2. Such a zero-knowledge proof protocol is secure
and cannot be manipulated by the GAN provider. The committed discriminator
model (as discussed in step 3, section 3.3) will be used in the above verification;
hence the GAN provider cannot use a different discriminator model. The GAN
user computes the loss function from the outcome of the discriminator model
and uses it to train the generator model.

5 Experimental Evaluation

We evaluate the secure GAN platform in terms of the time it takes to verify
the neural network of the discriminator. We implement the KGZ-polynomial
commitment scheme-based verification in Python. We use an Apple Macbook
Pro with M1 Pro processor and 16 GB memory. We measure the time it takes to
verify the discriminator neural network by increasing the degree of polynomials

Secure Generative Adversarial Networks 9

representing DNN functions. We increase the polynomial degree from 2 to 512.
We observe the time it takes to verify polynomials is increased from 3.8 seconds
to 5.3 seconds. In the paper [19], we have shown that we need three verifications
per neural network layer. We claim that the increment in the time to verify is
very small as we increased the polynomial degree from 2 to 512. Degree of such a
polynomial indicates size of a neural network, i.e., number of weights and a bias
as formulated in page 7. Hence the proposed verification method can be used in
practical applications. In the figure below, we plot the time it takes to verify the
DNN functions.

(b)(a)

Fig. 1. Protocol and Results

6 Related Literature

GAN was introduced in 2014 in the paper [2]. There have been many advance-
ments in GAN research in the last few years. In [3] the authors have investigated
optimization problems in GAN. In [6] the authors developed GAN for convolu-
tionary neural networks. In this paper, we used zero-knowledge proof for DNN
verification. In [1] the authors have developed a zero-knowledge proof protocol
that allows the prover to prove that it still knows a number. We use Zero-
Knowledge Succinct Non-Interactive Arguments of Knowledge (zk-SNARKs)
which reduces the size of proof and complexity of proof verification consider-
ably. We use the KGZ polynomial commitment scheme developed in [4, 8]. Other
constructions of zkSNARKs developed in [5] use quadratic arithmetic program-
based construction of zkSNARK. In this paper, we advance the state of the

10 S. Thakur et al.

art in GAN as we propose a secure GAN model. We have investigated GAN
manipulation at various stages including appropriate training data selection for
discriminators, and correct training of the discriminator neural networks.

7 Conclusion

In this paper, we proposed a secure GAN model. We consider the scenario where
a malicious GAN provider does not choose and use appropriate data to train the
discriminator model that is hidden from the GAN user. Also, a malicious GAN
provider may not correctly use the discriminator model to train the generator
model. We solved these security problems with GAN with oblivious transfer
protocol and zero-knowledge proofs. We proved that the proposed verification
protocol is efficient. Further, we will extend the results of this paper in developing
a secure GAN as a service platform.

Acknowledgment

This publication has emanated from research supported by grants from Science
Foundation Ireland (SFI) under Grant Numbers 21/FFP-A/9174 (Sustain) and
12/RC/2289_P2 (Insight).

References

1. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

2. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks (2014),
https://arxiv.org/abs/1406.2661

3. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved
quality, stability, and variation (2018), https://arxiv.org/abs/1710.10196

4. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials
and their applications. In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT
2010. pp. 177–194. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

5. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252
(2013). https://doi.org/10.1109/SP.2013.47

6. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learn-
ing with deep convolutional generative adversarial networks (2016),
https://arxiv.org/abs/1511.06434

7. Thakur, S., Breslin, J.: Secure coalition formation for federated machine learning.
In: Fred, A., Hadjali, A., Gusikhin, O., Sansone, C. (eds.) Deep Learning Theory
and Applications. pp. 238–258. Springer Nature Switzerland, Cham (2024)

8. Thakur, S., Breslin, J.: Verification of deep neural networks with kgz-based zksnark.
In: Arai, K. (ed.) Intelligent Systems and Applications. pp. 79–95. Springer Nature
Switzerland, Cham (2024)

