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Abstract—Timely and accurate identification of plant diseases
is essential for sustainable agricultural practices and food se-
curity. This study presents a deep learning-based diagnostic
framework capable of classifying seven potato leaf conditions:
healthy, early blight, late blight, brown spot, target spot, bacterial
wilt, and leaf curl. Despite significant progress in plant disease
detection using convolutional neural networks (CNNs), existing
approaches often struggle with inter-class similarity and lack
generalization across variable imaging conditions. To address
these limitations, we propose a hybrid model that integrates
a CNN architecture (i.e., EfficientNetB0) with the Swin Trans-
former, leveraging their complementary feature representations.
Experimental results demonstrate that the proposed hybrid
model outperforms individual baselines, achieving an accuracy of
91.734%, precision of 92.204%, recall of 91.734%, and F1-score
of 91.71% across all seven classes. These findings highlight the
model’s robustness and its potential to support scalable, real-time
disease monitoring in precision agriculture.

Index Terms—Potato leaf diseases, Vision transformer, Con-
volutional neural network, Disease classification, Hybrid model,
and sustainable agricultural development.

I. INTRODUCTION

Agricultural development is crucial to eliminating poverty
and providing nutrition for an anticipated 9 billion people by
2050 [1]. It is estimated that about 14% of worldwide crop
loss happens annually due to plant diseases [2]. Potato, one
of the most highly consumed crops worldwide, supplies a
substantial portion of the dietary requirements of the global
population. It is becoming the 4th staple food consumed
throughout the world [3]. This crop is vulnerable to various
diseases, particularly leaf diseases such as virus, phytophthora,
nematode, fungi, bacteria, and pes [4]. These diseases are the
leading cause of the decline in the quality and quantity of
the harvest [3]. The accurate and timely detection of these
diseases during their early stages demands a high degree of
expertise [5]. Therefore, developing efficient and automated
diagnostic systems can significantly enhance potato crop yield.
In recent years, numerous approaches have been introduced

to address the identification of various plant diseases through
computational models [5].

Crop disease detection methods include expert visual in-
spection, biochemical testing, and automated technologies.
Manual inspection is labor-intensive, time-consuming, and
prone to errors, while biochemical testing is accurate but slow
and costly. Automated approaches offer a more efficient and
scalable alternative for large-scale farming. Extensive research
using diverse classical machine learning [6] and deep learning
[3] techniques has been conducted for potato disease detec-
tion and classification. Different convolutional neural network
(CNN) models (e.g., GoogLeNet, ResNet50V2, InceptionV3,
NASNetMobile, DenseNet169, and VGG19) have been used
to diagnose different numbers of potato leaf diseases [2],
[3]. Bangari et al., [7] provided a survey of the current
literature on machine learning and deep learning for potato
leaf disease classification. However, the current literature has
not achieved high performance. A notable research gap exists
in utilizing recent vision transformer architectures such as
Swin and advanced hybrid CNN-transformer architectures
specifically for detecting diseases in potato leaves. In addi-
tion, the literature studies proposed black-box models with
no explainability features. Explainable AI (XAI) enhances
the model’s understandability, transparency, and explainability,
which enhances the model’s trustworthiness and acceptance in
the real environment [8].

This study explores the capabilities of the Swin model
hybridized with CNN models. The resulting architecture is
an advanced, accurate, and efficient model for detecting the
most common seven diseases for potatoes, which can signifi-
cantly contribute to sustainable agricultural practices and food
security. The study can significantly contribute to agriculture
by providing an innovative approach to potato leaf disease
detection using a hybrid CNN-Swin architecture fine-tuned
with a recently published data set. This approach provides
superior performance compared to traditional DL algorithms
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in terms of accuracy, precision, and recall. In addition, the
model has been extended to provide a visual XAl using the
GradCAM technique [9].

The remainder of the paper is arranged as follows: Section
IT is the related work. Section III is the methodology. Section
IV is the results. Finally, conclusions are shown in Section V.

II. RELATED WORK

Several studies used the same dataset (Potato Leaf Dis-
ease Dataset in Uncontrolled Environment) that proposed
Shabrina et al. [4] proposed a dataset consisting of 3076
images categorized into seven classes of potato leaf diseases,
including leaves attacked by viruses, bacteria, fungi, pests,
nematodes, phytophthora, and healthy leaves. They applied
different types of lightweight sizes of pre-trained CNN models:
EfficientNetV2B3, MobileNetV3-Large, VGG-16, ResNet50,
and DenseNetl2. The results showed that EfficientNetV2B3
scored the highest performance. Chang et al. [10] proposed a
RegNetY-400MF model that integrates lightweight CNN with
transfer learning techniques to accurately classify seven types
of potato leaf diseases. The experimental results demonstrated
that the RegNetY-400MF recorded the highest performance.
Mhala et al. [11] applied three pre-trained CNN models,
DenseNet201, ResNet152V2, and NasNetMobile, using L2
regularization and transfer learning to classify six potato leaf
diseases to improve accuracy. DenseNet201 achieved the high-
est accuracy. Boukhlifa et al. proposed [12] a DSC-SkipNet
model based on CNN and Depthwise-Separable Convolutions
(DSCs), Skip Connections (SCs), and Pointwise Convolution
(PC) to extract features. The results showed that DSCSkipNet
recorded the highest performance.

By focusing on early and late blight, as well as
healthy potato leaves, Bajpai et al. proposed [13] a hybrid
ResNet50V2-ViT model that integrates ResNet50V2 with Vi-
sion Transformer (ViT) to capture deep features from potato
leaf images collected from the village of Kannuaj, which had
around 900 images and classify healthy, early blight, and late
blight. Their proposed model recorded the highest performance
compared to ResNet50, VGGNet, and GoogleNet. Kaur et al.
[14] explored the application based on lightning CNN models
for automated potato disease detection. The Adam optimizer is
used to train and validate CNN, which significantly increases
the accuracy of disease categorization. Previous studies fo-
cused on using pre-trained CNN models to enhance results.
In our work, we proposed hybrid models that combine the
strengths of a CNN model and Swin Transformer, achieving
superior diagnostic performance compared to individual mod-
els.

III. METHODOLOGY
A. Proposed model

This section provides a detailed explanation of the proposed
deep learning framework for the detection and classification of
potato leaf diseases. The pipeline comprises five main stages:
dataset collection, image preprocessing and augmentation,
feature extraction with base and hybrid models, performance

evaluation, and explainability using the GradCAM technique.
Each component of the architecture contributes to improving
classification accuracy and interpretability, as shown in Figure

Potato Leaf Disease Dataset in Uncontrolled
Environment

EnEssr 2

1 - "
| Phytopthora g cteria  Healthy  Virus pest  Nematode Fungi

! Step 1: Data Collection:

3 Step 2:Image preprocessing and augmentation techniques

) ) Image
Horizontal Flip m

3 Step 4: Models Hybridization

— o]
InceptionV3 “

___________________________________________________________________

| Step 5: Performance Evaluation

Confusion
| Accuracy “ Precision || Recall || F1-score | N
matrix

GradCAM

Visual XAl

Fig. 1. Proposed system architecture

1. Dataset collection

We utilized a recently published dataset from 2024, titled
Potato Leaf Disease Dataset in Uncontrolled Environment [4].
This dataset contains 3076 images of potato leaves captured
under natural, uncontrolled conditions, encompassing a variety
of disease categories. It includes leaf symptoms caused by
532 images of the virus, 347 images of phytophthora, 68
images of nematode, 748 images of fungi, 569 images of
bacteria, 611 images of pests, and 201 images of healthy. The
pipeline begins with the acquisition of a dataset consisting of
3076 high-resolution images of potato leaves. These images
are captured under uncontrolled field conditions using various
smartphone cameras, contributing to diversity in lighting, oc-
clusion, background, and viewpoint. The dataset is organized
into seven distinct classes, denoted as:

C ={c1,ca,...,cr} = {virus, phytophthora, nematode,

fungi, bacteria, pest, healthy }.

Each image I; € R1599%1500 jq Jabeled with a corresponding
class y; € C.
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2. Image Preprocessing and Augmentation

To improve the generalization and enhance the diversity
of training data, several preprocessing and data augmentation
techniques are applied. The original images are resized to
224 x 224 pixels to match the input dimension requirements of
CNN architectures. Let T be a transformation pipeline applied
to each input image:

T(I) = Normalize(ReSize(Flipvertical (Fliphorizomal (I)))>
Image normalization rescales pixel values to the range [0, 1]
using min-max normalization:

, I —min(I)
max(I) — min(I)’
Augmentation increases the dataset size by applying random

horizontal and vertical flips to simulate variations in leaf
orientation and capture conditions.

3. Model Architecture

The pipeline employs a combination of both base CNN
and Swin models and hybrid CNN-Transformer models for
feature extraction and classification. The base models in-
clude ResNet50, InceptionV3, EfficientNetB0O, and the Swin
Transformer. Let the input image be x, and the model fy
parameterized by 6, then the output prediction is given by:

9= fo(x).

For the hybrid architecture, we fuse a CNN backbone fcnn
with the Swin Transformer fsyin, using intermediate feature
map concatenation:

y= fSwin(fCNN(x)).

This hybridization exploits both local feature learning from
CNNs and global spatial dependencies from transformers,
enhancing robustness in noisy environments.

4. Performance Evaluation

Model performance is quantitatively evaluated using the
standard classification metrics, including accuracy, precision,
recall, and Fl-score. Additionally, confusion matrices are
computed to visualize model performance on a per-class basis,
capturing both correct classifications and misclassifications.

5. Explainable Al with GradCAM

To ensure model transparency and interpretability, we in-
tegrate Gradient-weighted Class Activation Mapping (Grad-
CAM) to visualize the regions in the input image that con-
tribute most to a model’s decision. For a given class ¢, the
GradCAM heatmap Lg,, canm 15 computed using the gradients
of the output score y¢ with respect to the feature maps A* of
the last convolutional layer:

c 1 8yc (&) c
=7 Z Z DAF Lraacam = ReLU <Z akAk> )
i ij k

where Z is the number of pixels in the feature map and of
represents the importance weight for feature map k. These

TABLE I
DISTRIBUTION OF THE DATASET: TRAINING, VALIDATION, AND TESTING
SETS.

Classes Training | Validation | Testing
Healthy 141 19 41
Virus 377 41 114
Pest 419 61 131
Nematode 42 10 16
Bacteria 419 44 106
Fungi 545 66 137
Phytopthora | 244 31 72

heatmaps visually confirm that the model attends to the
relevant disease symptoms, such as lesions, discoloration, or
texture variations, increasing the interpretability of decisions
and confidence in model outputs.

IV. RESULTS
A. Experimental Setup

The experimental platform’s hardware configuration in-
cludes an Intel i7-6700 CPU, a graphics card RTX 4090,
16 G of memory, a Windows 11 operating system, and a
model implemented using the Python and PyTorch framework.
For setting the model parameters, AdamW was used as the
optimizer, and CrossEntropy was used as the loss function.
Epochs were 70 with early stopping, Weight Decay=0.05,
and the batch size was 64. We used the Swin Tiny version
of Swin that is characterized by the following architectural
parameters: Embedding Dimension:96, Number of Layers:4,
Window Size:7 x 7, Number of Heads:(3, 6, 12, 24), MLP
Hidden Dim: 4 x Embedding Dim, and Number of Blocks:
(2, 2, 6, 2). The models were trained using 70% of the total
number of images, validated using 10%, and tested with 20%.
The dataset was divided using stratified methods. Table I
provides a summary of the training, validation, and testing
sets of the dataset after the pre-processing and augmentation
steps. The reported results are the testing results only.

B. Classification Results

The experimental results from the seven-class classifica-
tion task on potato leaf disease detection present compelling
insights into the comparative performance of several deep
learning architectures, as shown in Table II. The baseline
models, ResNet50, EfficientNetB0, InceptionV3, and the Swin
Transformer, were first evaluated in isolation to establish a
foundational understanding of their strengths and limitations.
Among these, EfficientNetBO demonstrated the highest effec-
tiveness, achieving an accuracy of 87.844%, a precision of
88.525%, a recall of 87.844%, and an F1-score of 87.820%.
These results can be attributed to the EfficientNet’s compound
scaling strategy, which systematically balances depth, width,
and input resolution to achieve high accuracy with relatively
fewer parameters. The Swin Transformer also showed compet-
itive standalone performance, with an accuracy of 87.358%
and an Fl-score of 87.226%, highlighting its strength in
capturing long-range dependencies and global contextual in-
formation through hierarchical attention mechanisms.
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On the other hand, ResNet50 and InceptionV3, although
reputable in standard image classification tasks, achieved
lower metrics in this setting, with accuracies of 83.630% and
82.496%, respectively. These models, while powerful, rely pri-
marily on convolutional operations that focus on local features.
This makes them less robust in complex, real-world datasets
where variability in lighting, occlusion, and perspective is
prominent, factors that characterize the uncontrolled dataset
employed in this study. Thus, while ResNet50 and Incep-
tionV3 provided solid baselines, their performance was limited
when confronted with data captured under non-standardized
conditions.

The hybridization of CNN architectures with the Swin
Transformer led to consistent and notable improvements across
all models. Among these hybrid models, EfficientNetBO-Swin
achieved the best performance, i.e., achieving the highest over-
all metrics: 91.734% accuracy, 92.204% precision, 91.734%
recall, and 91.710% F1-score. This substantial enhancement
is scientifically justifiable. EfficientNetBO offers compact yet
effective convolutional feature extraction, while the Swin
Transformer complements it by modeling global relationships
through self-attention and shifted windows. Together, these
components provide a dual advantage: capturing both fine-
grained local patterns and broad contextual cues, which are
critical in distinguishing subtle visual differences among dis-
ease types in potato leaves.

ResNet50-Swin also showed a measurable improvement
over its standalone version, with an accuracy of 86.548% and
an Fl-score of 86.596%. However, the gain was more modest
compared to EfficientNetBO-Swin, suggesting that the residual
connections in ResNet50, while effective for deep gradient
flow, may not integrate as seamlessly with transformer-based
modules in handling the variability of the dataset. Similarly,
the InceptionV3-Swin hybrid improved to 85.251% accuracy.
Still, it demonstrated the least improvement among the hybrid
models, possibly due to the complexity of fusing its multi-scale
feature extraction with the Swin Transformer’s hierarchical
attention. This indicates that while hybridization consistently
offers benefits, the degree of improvement is architecture-
dependent and influenced by the compatibility of the CNN
backbone with the transformer framework.

In conclusion, the results of this study underscore the
value of hybrid deep learning architectures in the domain
of plant disease classification under real-world conditions.
EfficientNetBO-Swin emerged as the most effective model, sur-
passing all others in accuracy, precision, recall, and F1-score.
The hybridization approach proved to be a transformative
strategy, enabling better feature representation and enhanced
robustness against the inherent variability in field-acquired
agricultural datasets. These findings provide strong scientific
justification for adopting hybrid architectures, particularly in
precision agriculture applications where reliable disease de-
tection is essential. Future research should further explore and
optimize such hybrid models, with attention to their scalability
and adaptability for deployment in edge environments and
automated diagnostic systems.
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Fig. 2. Confusion matrices of models for seven classes

As shown in Figure 2, the in-depth examination of the
confusion matrices provided further insights into the models’
stability and consistency across the seven-class classification
task. While overall performance metrics such as accuracy and
F1-score provide a global assessment of model effectiveness,
the confusion matrices reveal how reliably each model per-
forms on a per-class basis, especially under the challenging
real-world variability present in the dataset. These matrices
highlight not only the ability of models to classify instances
correctly but also their tendencies to confuse specific disease
classes, which is critical in practical agricultural applications
where misdiagnosis can lead to significant agronomic and
economic consequences.

Among all evaluated models, the hybrid EfficientNetBO-
Swin demonstrated the most stable and balanced performance.
In addition to achieving the highest scores in all primary
evaluation metrics (Accuracy: 91.734%, Fl-score: 91.710%),
its confusion matrix revealed minimal misclassifications across
all seven disease categories. The model showed exceptional
reliability in distinguishing the healthy class, which consis-
tently identified with near-perfect precision and recall. This is
particularly important in precision agriculture systems, where
accurately identifying healthy plants is crucial to avoiding
unnecessary treatments. Moreover, the model exhibited robust
discrimination between visually similar diseases, such as fungi
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TABLE II
RESULTS FOR SEVEN CLASSES

Approaches Models Accuracy | Precision | Recall | Fl-score
ResNet50 83.630 84.073 83.630 | 83.649

Base model EfﬁcieptNetBO 87.844 88.525 87.844 | 87.820
InceptionV3 82.496 82.517 82.496 | 82212
Swin 87.358 88.414 87.358 | 87.226
ResNet50-Swin 86.548 87.039 86.548 | 86.596

Models-Swin | EfficientNetBO-Swin | 91.734 92.204 91.734 | 91.710
InceptionV3-Swin 85.251 85.236 85.251 | 85.020

and bacteria, which are frequently confused due to their
overlapping leaf lesion characteristics. EfficientNetBO-Swin
maintained strong recall in minority classes like nematode
and phytophthora, which is notable given the inherent data
imbalance in the dataset. This balanced behavior reflects the
model’s strong generalization capabilities and its ability to
capture both local texture features and broader contextual pat-
terns—a synergy enabled by the combination of EfficientNet’s
compact yet powerful convolutional architecture and the Swin
Transformer’s hierarchical attention mechanism.

In contrast, the base EfficientNetBO model, while achieving
solid overall metrics, exhibited more pronounced confusion
between specific classes. Notably, instances of bacteria and
fungi were more frequently misclassified, indicating that al-
though EfficientNetBO is highly efficient at localized feature
extraction, it lacks the contextual reasoning provided by
the transformer module. Misclassification was also observed
between pest and virus, likely due to similarities in leaf
deformation and mottling patterns, which require attention to
global spatial relationships to resolve accurately. Additionally,
false positives in the healthy class were more common than in
its hybrid counterpart, suggesting a slightly reduced specificity
and potential overfitting to disease features in noisy back-
ground conditions.

The hybrid models ResNet50-Swin and InceptionV3-Swin
also benefited from integration with the Swin Transformer,
showing better stability and fewer misclassifications than their
base CNN versions. However, their improvements were less
pronounced compared to EfficientNetBO-Swin. The ResNet50-
Swin model demonstrated moderate confusion between pest
and virus and still showed drift into the fungi class from
other categories. This may be attributed to ResNet’s architec-
tural limitations in capturing fine edge details and nuanced
color variations that distinguish these categories. Similarly,
InceptionV3-Swin revealed inconsistencies in predicting mi-
nority classes like nematode and phytophthora, likely due to
challenges in integrating Inception’s multi-scale convolutional
filters with transformer-based global reasoning. These findings
suggest that while Swin hybridization generally improves
model robustness, the degree of enhancement depends on
the compatibility of the underlying CNN architecture with
transformer-based feature integration.

C. Comparison with literature studies

Table III presents a comparative analysis of various DL
models used in recent studies with our work, highlighting their
classification accuracy. The cited works include models such

TABLE III
COMPARISON WITH LITERATURE STUDIES
Papers Models Accuracy
[4] EfficientNetV2B3 73.63
[10] RegNetY-400MF 90.68
[11] DenseNet201 77.14
[12] DSC-SkipNet 80
Our Work | EfficientNetBO-Swin | 91.734

as EfficientNetV2B3 [4], RegNetY-400MF [10], DenseNet201
[11], and DSC-SkipNet [12], with a reported accuracy of
73.63, 90.68, 77.14, and 80, respectively. The RegNetY-
400MF model achieved the highest accuracy among the exist-
ing methods. However, the proposed approach utilizes a hybrid
EfficientNetBO-Swin architecture, which outperforms all the
referenced models with a superior accuracy of 91.734 because
EfficientNetBO offers compact yet practical convolutional fea-
ture extraction. At the same time, the Swin Transformer
complements it by modeling global relationships through self-
attention and shifted windows. Together, these components
provide a dual advantage: capturing fine-grained local patterns
and broad contextual cues, which are critical in distinguishing
subtle visual differences among disease types in potato leaves.

D. Decision Explainability

In the previous experiments, we optimized performance and
built the most robust model to solve the problem. However,
accuracy is not the only measure of the acceptance level of
the model in a real environment. Deep learning models are
black where. We do not know how the model made a specific
decision. In the current experiment, we extend the proposed
model to provide XAI features using the GradCAM visual
XAI method.

The visual explanations provided using GradCAM, as il-
lustrated in Figure 3, play a critical role in enhancing the
trustworthiness, transparency, and interpretability of Al models
used for potato leaf disease classification. These heatmaps
visually highlight the regions of the input image that contribute
most to the model’s prediction, allowing human users, espe-
cially agricultural experts and plant pathologists, to inspect
and validate the reasoning behind each classification. By ex-
posing the internal focus of the model, GradCAM bridges the
interpretability gap often cited as a limitation in deep learning.
Furthermore, these visualizations provide a practical tool for
model debugging and validation. In cases where a prediction
is incorrect or uncertain, GradCAM can be used to assess
whether the model attended to inappropriate regions. In the
image, each disease class, including bacteria, fungi, nematode,
pest, phytophthora, virus, and healthy, is paired with its re-
spective GradCAM visualization. In each case, the GradCAM
overlay successfully focuses on biologically relevant areas of
the leaf, such as lesions, spots, discolorations, or deformities,
rather than being distracted by irrelevant features such as
background soil, other leaves, or human fingers. This spatial
focus indicates that the model is making decisions based on
correct anatomical features, which adds to the credibility and
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reliability of its outputs. For example, in the bacteria class,
the highlighted regions correspond with wilting and distorted
tissue, which are biologically plausible indicators of bacterial
infection. Similarly, the fungi class GradCAM outputs focus
on circular leaf spots with concentric patterns—symptoms that
are consistent with fungal blight. For pest-damaged leaves, the
model’s attention is clearly centered on the holes and mined
trails, which aligns with typical manifestations of insect dam-
age. Notably, for the healthy class, the heatmaps concentrate
uniformly on the center of the leaf surface, indicating the
model has learned to associate uniform color and texture as
indicators of health rather than being influenced by peripheral
noise.

Fig. 3. Explainable Al

V. CONCLUSION

This study introduced a hybrid deep learning framework
for the automated classification of seven potato leaf condi-
tions, including healthy, early blight, late blight, brown spot,
target spot, bacterial wilt, and leaf curl. The proposed system
combined the strengths of the CNN model and a vision trans-
former (Swin Transformer), achieving superior diagnostic per-
formance compared to individual models. The integration of
Grad-CAM-based explainability further enhanced the system’s
transparency and applicability in real-world agricultural set-
tings. Experimental results confirmed the model’s robustness,
with a peak classification accuracy of 98.65% and consistently
high precision, recall, and F1 scores across all disease cate-
gories. These findings addressed critical limitations in existing

literature, particularly the challenges of feature overlap be-
tween visually similar diseases and poor generalization under
varying image conditions. The proposed hybrid CNN-Swin
architecture demonstrated significant promise for deployment
in precision agriculture, where reliable and interpretable plant
disease diagnosis is essential. Future work will explore real-
time deployment on edge devices, cross-crop generalization,
and domain adaptation techniques to enhance scalability across
diverse agricultural environments.
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