
A Self-Contained Configurable and Explainable
Rule-Based Recommendation System Suitable For

Deployment on Low-Resource Shared Web Hosting
1st Mirco Soderi

Data Science Institute
University of Galway

Galway, Ireland
mirco.soderi@universityofgalway.ie

2nd John Gerard Breslin
Data Science Institute
University of Galway

Galway, Ireland
john.breslin@universityofgalway.ie

Abstract—Artificial intelligence (AI) is often associated with
articulated services offered by cloud service providers that
require specialised expertise to be used effectively and efficiently
and involve charges per subscription, per resource usage, or
both. However, small businesses might not be in a position to
make significant investments in infrastructure, specialist staff,
and cloud services. In this work, we propose a configurable
rule-based expert system that delivers a sorted list of motivated
recommendations based on data submitted through a web survey
service and, most importantly, entirely implemented in PHP
and deployable to a basic shared web hosting service, which
the vast majority of companies, even the smallest ones, such as
single-person brokerage companies, are already using to have a
presence on the Internet. This has the potential to impact social
sustainability, making AI technologies accessible to a broader
variety of business players and to their customers, and to impact
environmental sustainability by making the identification of the
right provider for the right client less expensive from all the
different points of view. Software artefacts are available on
GitHub that can be used for demo purposes and as a starting
point for the development of customised systems.

Index Terms—Artificial intelligence, expert system, recom-
mendation system, web survey, PHP, shared hosting, social
sustainability, environmental sustainability, broker

I. INTRODUCTION

The system described in this work is suitable for use in bro-
kered markets. Typically, businesses that operate in brokered
markets, referred to as agents or intermediaries, have multiple
clients that they intend to offer possible goods or services
to, and recommendations on these can either be provided by
humans or by recommender systems of the type described
in this manuscript. There are many examples of brokered
markets; these include insurance, finance, real estate, fitness,
private lessons, and freelance professionals, and there are

This publication has emanated from research supported in part by the Eu-
ropean Digital Innovation Hub Data2Sustain, co-funded by Ireland’s National
Recovery and Resilience Plan (the EU’s Recovery and Resilience Facility),
the Digital Europe Programme, and the Government of Ireland, and by a grant
from Taighde Éireann - Research Ireland under Grant Number 12/RC/2289 P2
(Insight). For the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript version arising
from this submission.

examples of brokering that extend even beyond the perimeter
of business, such as social or political brokerage [1].

Requirements can be obtained from clients in a variety of
ways, including in-person meetings, calls, or Web surveys.
Web surveys [2] are a convenient method of obtaining in-
formation from Web users, asynchronously. Users can be the
general public as well as potential customers or partners that
submit information in the context of a signed agreement.
For example, a broker might use web surveys to collect
information from companies that provide a service and po-
tential customers of those companies that rely on the broker
to find the best match. Most importantly, there are many
different actors in these markets, from global giants to single-
person companies [3]. Although big players can afford spe-
cialised staff, infrastructure investments, and cloud services,
smaller players might benefit from solutions that support the
identification of possible matches without involving relevant
investments in staff, infrastructure, or cloud services. For this
reason, it is worth investigating the possibility of delivering AI
functionalities, such as rule-based expert systems [4], as part
of low-resource cost-effective applications, such as a PHP-
based web application hosted on a free shared hosting service.
The software should be (i) modular [5], to make it possible
to seamlessly integrate new functionalities or configuration
options over time as needed without excessive effort; (ii)
configurable, so that the reasoning of the system can be easily
evolved over time to take into account new aspects or adjust
their weight [6], and (iii) self-contained, which means that it
should not rely on external services for data analytics or make
use of software components that are not available in low-end
web hosting services, unlike other web-based decision support
systems described in the literature [7].

The proposed approach can positively impact social sus-
tainability by making it possible for everyone to get quality
recommendations at low cost thanks to the democratisation
of traditionally sophisticated, access restricted, and expensive
AI technologies [8]. At the same time, environmental sus-
tainability can be positively impacted from many points of
view. First, the proposed approach characterises itself for its

20
25

 3
5t

h
Ir

is
h

Si
gn

al
s a

nd
 S

ys
te

m
s C

on
fe

re
nc

e
(I

SS
C

) |
 9

79
-8

-3
31

5-
75

93
-9

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
SC

67
73

9.
20

25
.1

12
91

39
0

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 20,2026 at 17:25:09 UTC from IEEE Xplore. Restrictions apply.

efficiency in terms of energy usage compared to traditional
AI solutions deployed on high-performance infrastructures. In
addition, since it is Web-based, it reduces the need to travel
[9], and since potentially hundreds or thousands of options are
evaluated in a single click, it eliminates the need to address
all the operators singularly, which leads to significant savings
if multiplied by the number of clients [10].

II. OVERVIEW

The system is suitable for scenarios in which there are
several options, physical goods or services, that are made
available to potential clients, and a recommendation must be
provided to the latter about which option best suits their needs.
In fact, the recommendation system always returns all the
options, ranked from the most suitable to the least suitable
for the specific potential client under consideration. Associated
with each option is a human-friendly description made up of a
few statements that describe the elements that have been taken
into consideration to evaluate that specific option against that
specific potential client. The statements are ordered from the
one that had the highest impact on the evaluation of the option
to the one that had the least impact.

The system consists of three key components: (i) rules,
which are made of conditions and consequences; (ii) recom-
mendation engine; (iii) data access layer. An overview of the
system is provided in Fig. 1; examples are reported in italics.

A. Rules

Each rule includes conditions, consequences, and a human-
friendly motivation expressed in natural language. For each po-
tential client and for each option, all conditions are tested, and
they must be all verified for the rule to apply. If all conditions
are verified, the consequences are applied. If consequences are
applied, points are added or subtracted to the specific option,
and the motivation of the rule is added to the advantages or
disadvantages of the option, respectively. The number of points
can be fixed, or it can result from a computation based on one
or more responses that the potential client has given about
their needs, and based on one or more features of the specific
option under consideration. The motivation of the rule is meant
to be shown to the potential client, so the phrasing of the
motivation will need to take that into account. For example,
if the semantics of the rule is if the number of bathrooms that
the client needs is the same as the number of the bathrooms in
the house then the house gains 100 points, a good motivation
to be included in the rule would be The house has exactly the
number of bathrooms that you need.

B. Ranking

When all rules have been applied to all options for a
specific potential client, the options are ranked according to
the points they have. The more points obtained, the higher the
position of the option in the list of recommendations provided
to the specific potential client. In addition, for each option,
the statements that describe the advantages and disadvantages
are ranked according to the points that have been added or

subtracted from the option by the rule that has added the
statement to the advantages or disadvantages of the option,
with the most impactful listed first.

C. Recommendation engine

The recommendation engine accepts in input the preferences
expressed by the potential client, it retrieves the rules, it
retrieves the full list of the options with details, then for each
option it goes through all the rules, determines for each of
them if it applies on the basis of the conditions, and if it
does, it gives or detracts points from the option, and appends
a statement to the list of the advantages or disadvantages,
according to the consequence specified in the rule. For each
option, if multiple rules apply, all of them are enforced. In the
end, the recommendation engine ranks the options, and inside
of each option, it ranks the advantages and disadvantages, and
it returns the recommendation in the form of a JSON that the
Web application will then present to the potential client in a
suitable formatting. This work does not cover the presentation
aspect; it stops at provisioning the recommendation in the form
of a JSON document.

D. Data access layer

The data access layer contains functions that implement the
retrieval of the rules, the retrieval of the responses given by
the potential client about their needs and preferences, and
the retrieval of the options, each with all its related details,
along with a few configuration parameters that are required
for retrieving the mentioned information. The preferences
of the potential client and the details of each option must
be representable in the form of questions and answers, and
each question must be representable through two texts: (i)
the formulation of the question that is presented to the user
who fills out the survey; (ii) a reformulation (chunk) that is
kept hidden and that is suitable for referring to that specific
piece of data within decision rules in such a way that the
overall formulation of conditions and consequences results as
natural as possible. It is important to stress that chunks are
structural information; they are part of the questions, not of
the answers. For production use, security measures must be
taken or external services must be relied on.

III. RULES ENFORCEMENT

At the core of the system is the enforcement of the rules
that govern the ranking of the options. In this section, the
enforcement of the rules is covered in detail.

A. Assessment of conditions

The recommendation engine iterates over all the options,
for each option iterates over all the rules, and for each rule
iterates over all the conditions to determine if all of them are
satisfied, in which case the rule consequences are applied.

Examples of conditions follow, in the case for example of
an estate agent that is using the system to provide recommen-
dations to people interested in buying a house: (i) the region
where the client is looking for a house is not the same as the

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 20,2026 at 17:25:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. System overview

region where the house locates; (ii) it is true that the client
wants a bus stop near the house; (iii) the price that the client
is ready to pay is higher than the price of the house; (iv) the
size of the house that the client needs is lower than the size of
the house; (v) the client’s preference in terms of the furniture
in the house is *yes, there must be furniture*; (vi) the number
of bathrooms that the client needs is higher than the number
of the bathrooms in the house.

To determine whether a condition is verified, the rec-
ommendation engine accesses the software module where
conditions are implemented using reflection. Each condition
is implemented by a function that returns true if the condi-
tion is verified. To identify the function that is suitable for
evaluating the given condition, regular expressions are used.
The recommendation engine iterates over the functions that
are implemented in the conditions module, and for each of
them, it retrieves the comment that describes the function, and
it builds a regular expression applying predefined transforma-
tions to such comment. Then, it uses the regular expression to
determine if there is a match with the condition that has to be
evaluated. If there is a match, that means that the function is
the appropriate one to evaluate the condition.

Examples of comments are: (i) ... is not (the same as) ...;
(ii) it is true that ...; (iii) ... is higher than ...; (iv) ... is
lower than ...; (v) ... is (the same as) ...; (vi) ... is higher
than Comparing the example comments with the example
conditions provided above, it is intuitive to understand how a
regular expression can be written starting from the comment,
to determine if the condition is one that can be evaluated using
the function that is associated with the comment. Basically, the
regular expression is built in a way such that any sequence
of characters of any length is allowed in place of every
occurrence of three dots, and in place of any part of the

comment that is enclosed within brackets. For example, the
regular expression constructed from ... is not (the same as) ...
is /ˆ()(.*)(is not)(.*)()(.*)()$/, whereas the
regular expression that is constructed from it is true that ...
is /ˆ(it is true that)(.*)()$/. The functions are
tested in order, and the search stops as soon as a match is
found. Due to this, ambiguities can be avoided by wisely
sequencing functions in the condition module. For example,
the function described by the comment ... is (the same as) ...
is implemented after the function described by the comment
... is not (the same as)

Once the function has been identified, it is necessary to
extract the parameters that must be passed to the function so
that it can determine if the condition is verified or not in the
specific case. The parameters are segments of the condition
that fill the gaps (three dots) that are present in the comment.
If the comment includes more than one gap, the corresponding
number of parameters is extracted. In the six examples of
condition/comment presented above, the following parameters
would be extracted: (i) (1) the region where the client is
looking for a house, (2) the region where the house locates;
(ii) (1) the client wants a bus stop near the house; (iii) (1)
the price that the client is ready to pay, (2) the price of the
house; (iv) (1) the size of the house that the client needs, (2)
the size of the house; (v) (1) the client’s preference in terms of
the furniture in the house, (2) *yes, there must be furniture*;
(vi) (1) the number of bathrooms that the client needs, (2) the
number of the bathrooms in the house.

In more technical terms, to extract the parameters for
example from the condition the region where the client is
looking for a house is not the same as the region where
the house locates, once that it has been determined that the
function that is suitable for evaluating the condition is the

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 20,2026 at 17:25:09 UTC from IEEE Xplore. Restrictions apply.

one that is described by the comment ... is not (the same as)
..., what happens is that the comment is split using the three
dots as a separator, obtaining in this example the following
segments: (i) empty string; (ii) is not (the same as); (iii)
empty string. Then, the list of the segments is traversed taking
the segments in groups of contiguous two, and each pair of
segments is used for constructing a regular expression that
is suitable for extracting what is present in the condition in
place of the three dots that separate the two segments. If the
comment contains parts in brackets, the two cases are treated
separately; a first attempt of extraction is made including the
part in brackets (but removing the brackets themselves), and
if it fails, a second attempt of extraction is made excluding
the brackets and whatever it is that they contain.

The extracted parameters can be literals or references to
answers. This is where the chunk comes into play. For each
extracted parameter, the recommendation engine goes through
the questions that are asked to the potential client, and if
the parameter that was extracted from the condition exactly
corresponds to the chunk that is associated with one of those
questions, then the parameter is resolved to the answer that
the potential client has given to that question. If no match is
found, the same is performed in the options form. If no match
is found, the parameter is interpreted as a literal value.

B. Application of consequences

If all conditions are verified for a given potential client,
option, and rule, then consequences of that rule are applied to
the option for that potential client.

Similarly to conditions, consequences are expressed in nat-
ural language. Examples of consequences follow: (i) the house
loses 1000 points; (ii) the house loses as many points as 10
times the difference between the age of the house and the age
of the house that the client wants.

Similarly to conditions, there is a software module where all
the functions that implement the application of consequences
are wrapped. Given a consequence expressed in natural lan-
guage, the identification of the appropriate function for ap-
plying the consequence, and the extraction of the parameters
happen in the same way as has been described for conditions.

The function that applies the consequences accepts three
input parameters: (i) parameters, which is the list of parame-
ters that have been extracted from the statement that describes
the consequence in the rule; (ii) rule, which is an object that
represents the rule to be applied; (iii) status, described in the
following of this section. Speaking of the extraction of the
parameters, for example, if the consequence that is present in
the rule is the house loses 1000 points and the function that
implements the consequence is described by the comment the
function loses ... points, then the list of the parameters has
length 1 and contains the only element 1000, while if the
consequence present in the rule is the house loses as many
points as 10 times the difference between the age of the house
and the age of the house that the client wants and the function
that implements the consequence is described by the comment
the house loses as many points as ... times the difference

between ... and ... then the list of the extracted parameters
has length 3, and it contains (i) the literal value 10, (ii) the
value that results from the resolution of the parameter the age
of the house, and (iii) the value that results from the resolution
of the parameter the age of the house that the client wants.

The status object is part of the representation of each
option, together with the properties that describe the pecu-
liar features of the option. It is passed by reference to the
function that implements the consequence and contains three
properties: (i) points, (ii) advantages, and (iii) disadvantages.
The application of the consequence consists of: (i) adding
or subtracting a certain number of points by modifying the
value of the property points in the status object; (ii) adding a
new object to the list of advantages or disadvantages, which
contains two properties, namely weight, and description. The
weight is set to the number of points that the consequence
function has given or subtracted from the option, in absolute
value. The description is retrieved from the rule that the
consequence function has applied, and it consists of a client-
friendly motivation for the addition or subtraction of points
from the specific option.

IV. PROOF OF CONCEPT

For a proof of concept, we have considered the case of an
estate agent, so in our case the potential client is a person that
is looking for a house and the options are all the different
houses that are on sale at a given point in time.

A. Software artifacts

All artefacts related to this proof of concept are available
on GitHub1. It is a Docker Compose application, based on
PHP and the Apache web server. The ZIP archive contains the
Docker Compose configuration file, the Dockerfile, and a TAR
archive with the artefacts of the application that are copied to
the Web root of the Apache web server through commands
contained in the Dockerfile. The TAR archive contains the
following files and folders: (i) rules.json, which contains the
rules that are used for the ranking for the purposes of the proof-
of-concept; (ii) conditions.php, which contains the functions
that implement the conditions that are used in the proof-of-
concept; (iii) consequences.php, which contains the functions
that implement the consequences that are used in the proof-of-
concept; (iv) recommender.php, which contains the implemen-
tation of the recommendation engine; (v) config.php, which
contains a few configuration parameters and functions that
implement the data access layer; (vi) the forms folder, which
contains subfolders and PHP pages that simulate the TypeForm
APIs, as it will be described in detail in the following of this
section; (vii) the analysis folder, which includes a Postman
collection and a spreadsheet with performance measurements,
as it is described in detail in Section V.

B. Data source

The functionalities and configuration parameters related to
the access to data are wrapped in the config.php page. We

1https://github.com/mircosoderi/estateagent

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 20,2026 at 17:25:09 UTC from IEEE Xplore. Restrictions apply.

considered the case where all data are stored in a TypeForm
account. TypeForm is an online surveying system. It exposes
APIs for schema and data retrieval, but the free account comes
with too stringent limitations to carry out scalability tests, and
opting for a paid account would have forced the reader to do
the same, so we finally decided to simulate the strictly needed
subset of the TypeForm APIs in the forms folder.

The relevant TypeForm APIs are: (i) GET /form/form id,
with no arguments, to retrieve the structure of a
form/survey; (ii) GET /form/client form id/responses,
with the included response ids parameter that identifies the
survey response of interest, and the page size parameter that
sets the maximum number of survey responses that should be
included in the API response.

With that in mind, we structured the forms folder in a way
such to expose the following APIs: (i) GET /form/exad2bN7,
which returns the structure of the survey submitted to clients;
(ii) GET /form/exad2bN7/responses, which returns a fictional
response given by a client; (iii) GET /form/xNPPsDO0,
which returns the structure of the survey used to input the
options/houses; (iv) GET /form/xNPPsDO0/responses, which
returns page size fictional houses.

A detailed discussion of the TypeForm representation of
forms and responses is beyond the purposes of this work.
However, it is important to mention that in the JSON document
that describes the structure of the form, each question includes
two properties: (i) title, which contains the question displayed
to the user; (ii) ref, where we put the chunk, as defined above.

The config.php also contains a function that accesses
the rules.json document to retrieve the full set of fic-
tional rules. For scalability evaluation, the parameter pre-
tend you have these many rules can be included in the GET
request made to the recommendation engine, and it is passed
down to the function that retrieves the rules, which returns the
indicated number of rules, duplicating them if necessary, then
randomly picking the required number of them.

C. Operation

The proof-of-concept web application is run by cloning
the GitHub repository, navigating to the root of the local
repository, and running the command docker compose up. The
application listens on port 80.

The recommendation engine in particular returns a JSON
object with two properties: (i) recommendations, a JSON array
of options/houses, with each option containing the properties
that describe the house, along with the status object as de-
scribed in Section III-B; (ii) exe time, with separate indication
of the computation and data access time.

The analysis folder in particular contains the export of the
Postman collection that we have used to verify the correctness
of the system and for performance analysis.

The collection contains a few variables whose names start
with results, which were generated during our local perfor-
mance tests; the reader should delete them before performing
their own tests. The other variables contain the following
configuration parameters: (i) website baseurl, the hostname

and path to the root of the proof-of-concept web applica-
tion; (ii) typeform baseurl, to be set to localhost to use the
simulated TypeForm APIs; (iii) client typeform response ids,
the identifier of the TypeForm response that contains the
potential client preferences; (iv) benchmark counter, used by
the performance test script that we have implemented in
the collection; (v) benchmark options, the number of op-
tions/houses that we want to pretend to be available, which
can be set manually, but is also used by the performance test
script; (vi) benchmark rules, the number of rules that we want
to pretend to be configured, which can be set manually, but is
also used by the performance test script.

The collection contains one request only, the Recommender
request, which includes the performance test script as a post-
request script. The request can be run manually to inspect
the response body or automatically through the collection
runner to assess the system scalability. In the latter case, the
recommended initial values of the collection variables are: (i)
benchmark counter set to 0; (ii) benchmark options set to 2;
(iii) benchmark rules set to 10. If the recommended config-
uration is used, the performance test script makes it happen
the following: (i) 10 requests are sent for each combination
of number of options and rules, and the average response
time is stored in a new collection variable; (ii) the number
of options ranges from 2 to 1024 and doubles at each step;
(iii) the number of rules ranges from 10 to 100 at steps of 10.

V. RESULTS

Both correctness and performance have been evaluated.
The correctness has been verified by manual inspection of
the responses provided by the recommendation engine for a
variety of client preferences, options, and rules. Performance
has been verified (i) by running the Postman collection with
the configuration indicated in Section IV-C to evaluate local
performance; (ii) by issuing browser requests to evaluate
the performance of the application deployed on free web
hosting infinityfree.com; Postman could not be used because
the provider only allows requests from web browsers for free
plans.

In terms of performance, the response time includes: (i)
data access; (ii) computation of the recommendation; (iii) net-
work/client overhead. Data access and computation times are
measured by the recommendation engine for each request and
returned alongside actual recommendations. The computation
times measured in the real free web hosting service for a
growing number of options and rules are represented in Fig.
2 and in Fig. 3, respectively.

It is worth noticing that: (i) the computation time grows
approximately as fast as the number of options does for a
fixed number of rules, whatever the number of rules is; (ii)
the computation time roughly grows as much as the number of
rules does for a fixed number of options, whatever the number
of options is; (iii) the computation time observed for a system
with 100 rules and 1024 options is 1699 ms.

The same analysis has been performed for the Docker
Compose application in our local system (Intel Core i5-

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 20,2026 at 17:25:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Computation time (ms) for growing number of options on real hosting

Fig. 3. Computation time (ms) for growing number of rules on real hosting

1035G1, 16 GB RAM, Windows 10), and it has been observed
that: (i) the computation time is significantly higher in the local
system than in the real web hosting; (ii) the scalability is the
same observed in the real web hosting.

All measured values are reported in a spreadsheet in
the analysis folder, separately for the local and the remote
deployment. For each measurement, the following data are
provided: (i) number of rules; (ii) number of options; (iii)
computation time; (iv) data access time; (v) total response
time; (vi) scalability for growing number of options; (vii)
scalability for growing number of rules. Each sheet contains
100 measurements, each of which is averaged over 10 requests.
The scalability with respect to the number of options is
computed for each measurement n as (tn/tn−1)/(on/on−1),
with tn being the computation time in measurement n, tn− 1
the computation time in measurement n − 1, on the number
of options in measurement n, on − 1 the number of options
in measurement n-1. A similar approach is adopted for the
scalability with respect to the number of rules.

Data access times measured during our performance tests
are not relevant because the simulated TypeForm APIs were
accessed. As a side note, in real applications backed by Type-
Form, responses cannot be interpreted without first retrieving
the structure of the form, so four requests are needed: (i) client

form; (ii) client answers; (iii) option form; (iv) options with
details. Form structures change sporadically, so we can expect
cache hits in most cases. We have observed that the TypeForm
APIs to retrieve forms and responses execute in about 400 ms
on cache hit, and in about 800 ms otherwise, for a total of
about 2.5 seconds for small numbers of options; the scalability
for growing numbers of options could not be measured. Data
access is performed only once per recommendation request,
before the computation of the recommendation starts.

All of the above holds in the absence of concurrency. If mul-
tiple recommendations are requested exactly at the same time,
the response time is affected by the limitations that the web
hosting provider imposes on the computational resources that
can be used by a single website. The Reload all tabs of Google
Chrome has been used to simulate multiple users requesting a
recommendation to the remotely hosted application exactly at
the same time, and it has been observed that if more than 8
users send a request exactly at the same time, approximately
half of them get penalised in terms of response time, with
approximately 25% of them being heavily penalised. However,
this largely depends on the hosting provider and plan.

VI. CONCLUSIONS

In this work, a recommendation system has been presented
that is (i) self-contained, in the sense that it does not rely
on any external provider of data analytics functionalities; (ii)
Web-based; (iii) suitable for integration in web applications
that run on basic web hosting plans, even shared free web
hosting plans; (iv) configurable, with rules written in natural
language; (v) explainable, as it provides human-friendly de-
scriptions of the advantages and disadvantages of each option;
(vi) even though, sufficiently scalable and performant.

REFERENCES

[1] K. Stovel and L. Shaw, “Brokerage,” Annual review of sociology, vol. 38,
no. 1, pp. 139–158, 2012.

[2] M. Callegaro, K. L. Manfreda, and V. Vehovar, Web survey methodology.
Sage, 2015.

[3] Y. Kirkels and G. Duysters, “Brokerage in sme networks,” Research
Policy, vol. 39, no. 3, pp. 375–385, 2010.

[4] A. Abraham, “Rule-based expert systems,” Handbook of measuring
system design, 2005.

[5] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The structure
and value of modularity in software design,” ACM SIGSOFT Software
Engineering Notes, vol. 26, no. 5, pp. 99–108, 2001.

[6] J. E. Vargas and S. Raj, “Developing maintainable expert systems using
case-based reasoning,” Expert Systems, vol. 10, no. 4, pp. 219–225,
1993.

[7] Y. Zeng, Y. Cai, P. Jia, and H. Jee, “Development of a web-based
decision support system for supporting integrated water resources man-
agement in daegu city, south korea,” Expert Systems with Applications,
vol. 39, no. 11, pp. 10 091–10 102, 2012.

[8] P. K. Yu, “The algorithmic divide and equality in the age of artificial
intelligence,” Fla. L. Rev., vol. 72, p. 331, 2020.

[9] P. Zhu and S. G. Mason, “The impact of telecommuting on personal
vehicle usage and environmental sustainability,” International Journal of
Environmental Science and Technology, vol. 11, pp. 2185–2200, 2014.

[10] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in 2010 USENIX Annual Technical Conference (USENIX
ATC 10), 2010.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 20,2026 at 17:25:09 UTC from IEEE Xplore. Restrictions apply.

