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Abstract—This paper presents a modular open source rule-
based expert system that leverages semantic web principles to
evaluate relationships between entities stored in a graph database.
The system is configurable by design, enabling users to define
domain-specific rules that determine whether two resources
match, based on user-submitted ontologies and associated graph
data. The reasoning engine is entirely custom-developed and
symbolic, based on definitions and conditions that are chained via
logical expressions. Its modular architecture allows extensibility
via Python modules for rule evaluation and data transformations,
fostering adaptability to different domains. Semantic expressive-
ness is enabled through Neo4j and its neosemantics toolkit, facili-
tating ontology-driven CRUD operations and inference. The Web
interface provides autogenerated forms derived from ontologies,
simplifying data manipulation. Although general purpose, this
system is particularly suited for sustainability-aware decision
making in contexts where explainability, interoperability, and
traceability are paramount, as it empowers users to configure
logic aligned with dynamic sustainability criteria, supports trans-
parent evaluation of alternatives based on heterogeneous seman-
tic data, and delivers interpretable, traceable justifications for
decisions involving ecological, societal, and economic dimensions.
Compared to previous work, it uniquely integrates rule-based
reasoning, modular extensibility, semantic graph storage, and
explainable logic in a lightweight and deployable architecture.

Index Terms—Expert systems, semantic web, ontology-driven
systems, rule-based reasoning, graph databases, explainable AI,
modular software architecture, sustainability decision support,
Neo4j, FastAPI.

I. INTRODUCTION

Expert systems are increasingly critical in domains where
transparency, domain-specific configurability, and semantic in-
teroperability are essential. Applications that support complex
decisions in infrastructure planning, sustainability assessment,
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or social impact assessment often rely on heterogeneous data
and require explainable outputs. To address these challenges,
we present an open source, configurable, and modular expert
system based on semantic graph technologies.

The proposed system enables users to define rules using
domain-specific ontologies and to make decisions by evalu-
ating whether a pair of resources in a graph database satis-
fies specified logical conditions. Rules are decomposed into
definitions and conditions, combined via logical connectors
and evaluated symbolically through Python functions. This de-
sign ensures full explainability, traceability, and extensibility.
Ontology-based user interfaces are automatically generated,
allowing intuitive creation and manipulation of both data and
rules.

The system architecture is scalable and built using modern,
lightweight technologies, such as FastAPI for the back-end,
Neo4j with the neosemantics toolkit to store semantic graph
data, and a simple JavaScript front-end for ontology-driven
CRUD operations. Unlike prior systems, which often entangle
rule logic with specific application code or rely on black-box
AI models, our approach separates evaluation logic into mod-
ular, reusable Python components. This promotes adaptability,
modularity, and reusability in all sectors.

From a sustainability perspective, such a system allows
practitioners to model context-sensitive rules, environmental,
social, or technical, and to evaluate potential actions in a
transparent and justifiable way [1]–[3]. Although this work
is applicable across domains, its value is particularly clear
in decision support scenarios where semantic clarity and
auditability are critical.

The remainder of the paper is structured as follows. Sec-
tion II discusses related work. Section III details the architec-
ture of the system. Section IV presents the reasoning engine.
Section V describes the ontology-driven user interface. Finally,
Section VI concludes and outlines future directions.

II. RELATED WORK

The proposed system is at the intersection of expert systems,
semantic web technologies, and graph-based knowledge repre-
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sentation. Previous work in rule-based reasoning has produced
well-known tools such as CLIPS [4] and Drools [5], but these
are often tightly coupled with specific data representations
and lack semantic awareness. More recent frameworks such
as Apache Jena [6] and RDF4J [7] support semantic querying
via SPARQL, but are generally focused on RDF stores and do
not integrate well with property graph models like Neo4j.

Several projects have explored semantic data integration
for environmental or urban planning contexts, which shows
the relevance of ontology-based systems for sustainability.
However, these systems often rely on static rule definitions
or focus exclusively on reasoning over prestructured datasets.
In contrast, the proposed system empowers domain experts to
define and extend rules at run-time, using ontologies as both
data schema and user interface generation tools.

Neo4j has been adopted in semantic contexts through its
neosemantics toolkit, which enables the import and query
of RDF statements [8]. Although Neo4j AI capabilities, in-
cluding link prediction and graph embeddings, offer promise
for inductive reasoning, the proposed system adopts a purely
symbolic approach. This ensures explainability and control,
key requirements in domains such as public infrastructure or
regulatory compliance.

In terms of architecture, modularity has received increas-
ing attention in knowledge-based systems [9]. The proposed
system advances this trend by isolating transformation logic
and condition evaluation into Python modules, facilitating
easy customisation and reuse. The reasoning engine itself
is designed to be domain-agnostic and interpretable, which
resonates with recent calls for transparent AI in high-stakes
decision-making.

To our knowledge, no previous open-source system provides
a lightweight, scalable, and fully modular expert system that
combines rule-based logic, semantic graph data, and ontology-
driven UI in a web-accessible package. This paper aims to fill
this gap.

III. SYSTEM ARCHITECTURE

The proposed system is a modular open source expert
system designed to support configurable and explainable
reasoning over semantic graph data. It is implemented as
a lightweight containerised web application composed of a
FastAPI-based back-end, a static JavaScript front-end, and
a Neo4j graph database extended with semantic capabilities
via the neosemantics toolkit. Figure 1 presents a high-level
overview of the system architecture.

A. System Components

The system consists of three main components:
• Frontend: A static web interface served by FastAPI

using StaticFiles. It is implemented with HTML,
CSS, and JavaScript (using jQuery), and provides user
interaction for model upload, data manipulation, rule
configuration, and decision requests.

• Back-end: A set of RESTful APIs developed with
FastAPI. The APIs support ontology submission, CRUD

Fig. 1. System Architecture Overview

operations for data and rules, and most importantly,
the reasoning engine, which includes the evaluation of
the configured definitions and the verification of the
configured conditions. All interactions are handled from
the back-end, using the Neo4j Python driver.

• Graph Database: A Neo4j instance extended with the
neosemantics (n10s) toolkit to support RDF import and
semantic querying. The database also uses the APOC
plugin for initialisation and indexing. Ontologies and all
graph data, including the system configuration (defini-
tions and rules), are stored in this database.

B. Ontology Management

Ontology files can be uploaded through the front-end and
are stored in a server-accessible static directory. The back-
end then issues a Cypher query to import the ontology using
the n10s.onto.import.fetch procedure, passing the
ontology URL and the serialisation format specified by the
user. Once loaded, the ontology informs both the structure of
the data and the generation of dynamic input forms on the
front-end.

Although the ontology is assumed to be stable post-upload,
the front-end reflects any direct modifications made in Neo4j
(e.g., via Cypher queries), making the system highly respon-
sive to ontology changes.

C. Reasoning Engine

When a recommendation about whether two data resources
match is requested, the reasoning engine performs a server-
side evaluation based on a sequence of well-defined steps.

1) The definitions are retrieved from Neo4j. Each defini-
tion is of type literal, property, or computation, with
corresponding parameters.

2) The value of each definition is computed:
• Literal: A user-specified constant.
• Property: Retrieved via Cypher traversal starting

from either selected node.
• Operation: Result of applying a Python function

(from operations.py) to the value of another
definition.
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3) Rules are retrieved as fragment arrays; a fragment can
contain a condition, bracket, logical operator, or a ref-
erence to a definition. Fragments are rewritten and then
joined into a Boolean Python expression.

4) The expression is evaluated based on Python condition
implementations from the conditions.py module.

5) If all rules return True, the system returns a match;
otherwise, a mismatch.

The system returns not only the final recommendation,
but also a full JSON structure representing the evaluated
definitions, rules, and condition outcomes, ensuring complete
transparency of the decision logic.

D. Data and Rule Storage

Both rules and definitions are stored directly in Neo4j:

• The definitions are labelled as Rule and
ExpertSystemRuleDefinition, with
parameters stored as properties (definiendum,
definiens_type, and up to five
definiens_value_X fields).

• Rules are labelled as Rule and
ExpertSystemRuleCondition, with a name
and a condition description represented as an
ordered set of fragments.

Front- and back-end communicate through RESTful calls.

E. Modularity

The system is modular in design. Data transforma-
tions and conditions are implemented in two separate
files: operations.py and conditions.py, respectively.
These are invoked dynamically via name-based dispatch and
evaluated within a controlled context. While non-developers
cannot yet upload or register new functions, the modular
design supports easy extension by developers.

F. Deployment and Interoperability

The full system is containerised using Docker Compose,
comprising two services: application (FastAPI back-end
and Web front-end) and database (Neo4j with APOC and
neosemantics). All artefacts are publicly available on GitHub1.

Thanks to its RESTful architecture, the system is interoper-
able with other platforms and services, supporting integration
into broader decision workflows or semantic data infrastruc-
tures.

IV. REASONING

The core of the system is a custom-built reasoning engine
that determines whether two user-selected entities in the se-
mantic graph satisfy a configurable set of conditions defined
via a modular symbolic rule system. The engine prioritises full
explainability, deterministic logic, and extensibility through
user-defined definitions and rules.

1https://github.com/mircosoderi/rule-based-semantic-match

A. Reasoning Workflow

When a match request is sent, the front-end calls the
/api/recommendation endpoint with two parameters:
left and right, corresponding to the identifiers of the two
selected nodes. All reasoning is performed server-side, and
the front-end is responsible only for initiating the request and
rendering the results.

The reasoning pipeline comprises the following phases:
1) Definition Retrieval: The system queries the Neo4j

database to retrieve all defined definitions by the
user. Each definition is labelled as a node with
metadata indicating its name (definiendum), type
(definiens_type), and up to five positional
parameters (definiens_value_0 through
definiens_value_4).

2) Definition Evaluation: The engine computes the value
of each definition depending on its type:

• Literal: A static value, specified directly in the
definition parameters.

• Property: Retrieved via a Cypher query that navi-
gates the graph from one of the two selected nodes;
parameters specify the start node (left or right), its
expected semantic class and the path to the value.

• Operation: The name of a function and its operand
(another definition) are specified. The function is
dynamically loaded from the operations.py
module and applied to the operand value.

3) Rule Retrieval: Rules are represented as nodes in the
Neo4j database, in which the condition property
carries an ordered set of fragments, each of which
contains a reference to a definition, names of a condition,
a logical operator, or a bracket.

4) Rule Rewriting: The system parses each rule’s frag-
ment array to construct an evaluatable Python expres-
sion. When a condition fragment is encountered (e.g.
“is equal to”), it is replaced by a function call (e.g.
“is equal to(val l, val r)”) referencing the value(s) ad-
jacent definition(s) as parameters. All condition func-
tions reside in the conditions.py module. Defini-
tion references are replaced with empty strings (they are
incorporated in function calls anyway), and the logical
operators and brackets are preserved.

5) Rule Evaluation: The resulting expression string (e.g.,
is_equal_to("value1", "value2") and
is_not_empty("value3")) is evaluated using
Python’s eval() function in a safe context. The
output is a Boolean result that indicates whether the
rule is satisfied.

6) Final Decision: If all rules are evaluated to True, the
system returns a match; otherwise, a mismatch.

B. Reasoning Workflow Example

In this example, we consider the case in which:
• The user has selected as left resource a resource that

represents a person named Mario.
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Fig. 2. Example of a simple reasoning workflow

• There is a rule that dictates that the name must be at least
3 characters long.

• There is an operation function named len that returns the
length of the string received in the input.

• There is a condition function named
is greater than or equal to that returns true if the
first argument is greater than or equal to the second.

In this case, the reasoning would develop as shown in Fig. 2.

C. Explainability and Output Structure

In addition to the final recommendation, the system returns a
comprehensive motivation containing all definitions with their
types, parameters, and computed values, along with all rules

with their definition and the result of the evaluation of each
condition in each rule.

This structured response allows users and systems to fully
trace and interpret the decision-making process, satisfying key
explainability requirements for transparency and auditability.

D. Performance Considerations

Although the system does not implement explicit caching,
Neo4j internal query caching enhances performance for re-
peated lookups. To optimise query speed, each node in the
graph is assigned an eid property (equal to Neo4j internal
elementId) during creation, and indexes are built on this
property. All property-based definitions use labels and relation-
ship types in Cypher queries to further improve performance
in high-connectivity graphs.

E. Extensibility

The symbolic and modular nature of the reasoning logic
enables developers to extend the system by adding new
operations to operations.py and new condition functions
to conditions.py.

V. USER INTERFACE

The user interface (UI) of the system is designed to be
lightweight, semantically aware, and functionally aligned with
the principles of explainable and configurable expert systems.
Although intentionally minimalist, the front-end provides full
access to the ontology-driven structure, supports dynamic
interaction with semantic data, and visually conveys the logic
behind decision-making processes. Figure 3 and Figure 4 give
a sense of how the recommendation page looks like.

A. Interface Overview

The UI is divided into four main sections, accessible through
a top-level navigation menu.

• Model: Uploads and visualises the data model (ontology).
• Data: Displays and edits semantic data instances using

autogenerated forms.
• Rules: Allows users to define and manage decision rules

via guided input.
• Decision: Enable pairwise node comparison and visualise

rule-based reasoning outcomes.
Each section is rendered client-side using HTML, CSS,

and jQuery. Static assets are served by the FastAPI back-end
through a /html mount point.

B. Ontology-Driven Form Generation

When the data page loads, the front-end sends a GET
request to the /api/model endpoint. The server responds
with a JSON representation of the ontology, which consists
of Resource nodes and relationships retrieved from the
database, where they were stored by the neosemantics import.
It is worth mentioning that semantic classes, properties, and
relations are all stored in the database as nodes with appro-
priate labelling.

The front-end identifies semantic classes as nodes labelled
n4sch__Class, and for each class:
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Fig. 3. User interface overview: screenshots of the model, data, rules, and
decision pages.

1) The heading is appended with the class name.
2) An update/delete form is dynamically generated, where

all existing instances of that specific class are listed.
3) A second form is dynamically generated to input new

instances, with fields generated using the defined prop-
erties and relationships of the ontology (Figure 5).
In particular, the UI navigates n4sch__DOMAIN and
n4sch__RANGE relationships to extract the relevant
fields for each class, and input field types are chosen
according to the associated semantic type (e.g., text,
number, select). Relationship fields are presented as
lists of checkboxes populated from data nodes of the
expected range class.

Fig. 4. User interface overview: screenshots of the model, data, rules, and
decision pages.

C. Rule Editor Interface

The rule configuration interface is fully drop-down driven.
Users build a rule by iteratively selecting elements from a
uniform drop-down menu that includes definitions, conditions,
logical connectors, and brackets.

Each time a selection is made, a new drop-down appears to
guide the user through the rule composition. While currently
agnostic to rule syntax, the system assumes validity and saves
the rule as-is. Rules are only validated indirectly during evalu-
ation; any invalid rule is marked as “not satisfied”, contributing
to a “mismatch” decision.

D. Recommendation Page and Visual Feedback

When the user selects two data nodes and triggers a rec-
ommendation request, the user interface displays a detailed
evaluation summary that includes the full list of definitions
with their computed values, and a structured list of rules with
pass/fail results for each rule.

Unsatisfied rules are rendered in red, bolded, and enlarged
text to aid in quick identification. Although not formatted
with styled visual components, the output is clean, clearly
segmented, and easy to interpret. As such, it provides complete
transparency in the reasoning process.

E. Limitations and Future Work

The interface is minimalist but semantically rich, with a
fixed-width layout. Basic input validation is performed through
appropriate HTML markup and JavaScript based on property
types (e.g. integers, booleans). However, the UI currently lacks
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Fig. 5. Ontology-driven form generation: from semantic classes, properties,
and relations to HTML markup for input fields.

real-time synchronisation, accessibility features, and respon-
sive behaviour.

The planned improvements include the following.
• Live syncing of ontology and data updates using Web-

Sockets.
• Smarter, context-aware rule editors to prevent invalid

syntax at input time.
• Support for front-end ontology editing and re-importing.
• A redesigned responsive interface with accessibility sup-

port.
• User roles and authorisation mechanisms.
• Possibility to register, package, or load modules (condi-

tions, operations) dynamically, possibly even from exter-
nal sources, and to auto-generate user interface through
introspection and related techniques.

The current interface strikes a balance between functionality
and simplicity, allowing users to interact with semantically
modelled data and configure decision logic with minimal effort
and maximal clarity.

VI. CONCLUSION AND FUTURE WORK

This paper presents a modular, configurable, and explainable
rule-based expert system grounded in semantic web princi-
ples and graph databases. Users can model domain-specific
reasoning using ontologies and declarative rules to determine
matches between graph nodes. The system pairs a lightweight
FastAPI backend with a semantically aware front end that sup-
ports ontology-driven data manipulation, rule configuration,
and decision explanation. It uses a fully symbolic, transparent

reasoning engine based on rule rewriting, ensuring traceable
and auditable outcomes.

Prioritising explainability and modularity, the system offers
a clean and extensible interface to enhance decision logic.
Unlike black-box AI, it supports transparency and semantic
interpretability, making it suitable for domains such as sus-
tainability assessment and policy planning. The application is
open-source and containerised, easing integration into broader
systems.

Future work includes support for dynamic condition reg-
istration, remote libraries, context-aware validation, ontology
editing, and live rule tracking via real-time sync (e.g. Web-
Sockets). Usability improvements and the creation of domain-
specific logic packs will also promote reuse and accessibility.

This system provides a foundation for semantic decision
tools that are both explainable and extensible, enabling inter-
operable user-centric reasoning platforms.

APPENDIX A
HOW AI ASSISTED IN THE PREPARATION OF THIS WORK

ChatGPT (GPT-4-turbo) [10], a large language model de-
veloped by OpenAI, was extensively used for the preparation
of the initial draught of all sections of this manuscript.
The phrasing was then finalised with the help of Writefull
[11], the integrated AI assistant in Overleaf [12]. The Chat-
GPT chat showing how the tool was used for the prepa-
ration of this work is available at https://chatgpt.com/share/
67f7f3ac-b2bc-8013-852d-ad0ce2b9cfcc
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