Sustainable AI: Sparse Backpropagation for
Low-Carbon On-Device Training

1% Sunbal Iftikhar
Centre for Sustainable Digital Technologies
Technological University Dublin
Dublin, Ireland
d23125132@mytudublin.ie

4™ Steven Davy
Centre for Sustainable Digital Technologies
Technological University Dublin
Dublin, Ireland
Steven.Davy @ TUDublin.ie

Abstract—Deep learning’s growing computational demands
have led to considerable energy consumption and carbon emis-
sions. In this paper, we explore on-device learning with sparse
backpropagation as a means to improve training energy efficiency.
We apply this approach to several CNN architectures (ResNet-
18, DenseNet-121, GoogleNet, and MobileNet-V2) trained on
popular vision datasets (CIFAR-10/100 and Flowers-102) using
an NVIDIA Jetson AGX Orin (64GB) edge device. We present
a sparse training algorithm that updates only a fraction of
model parameters per iteration, reducing computation in the
backward pass. We integrate the CodeCarbon library to measure
energy use and associated CO: emissions. Experimental results
show that sparse backpropagation can maintain model accuracy
within 1-2% of standard training while reducing energy usage
and carbon emissions by up to 30-40%. We analyze trade-
offs between accuracy, speed, and sustainability and discuss
deployment strategies for energy-efficient on-device learning.
These findings demonstrate a practical step toward ‘“Green
ATI” by cutting the carbon footprint of deep learning without
significantly compromising performance.

Index Terms—Green Al, Sparse Backpropagation, On-device
Learning, Sustainable AI, Edge Computing

I. INTRODUCTION

Artificial intelligence has achieved remarkable advances in
recent years, but this progress has come with steep increases
in computational cost and energy usage [2], [3]. The training
compute for state-of-the-art deep learning models has been
estimated to have increased [1] by about 300,000x from
2012 to 2018. This explosion in computation translates to a
large carbon footprint, as most electricity worldwide is still
generated from fossil fuels. For example, training a single
big NLP model with extensive neural architecture search was
reported to emit "284 tons of CO5 about five times the lifetime
emissions of an average car [2]. Such findings have raised
concerns about the sustainability of deep learning research.

Recognizing these issues, scholars have pushed for "Green
AI” practices that target more efficient Al systems [1]. This
includes treating computational efficiency and carbon footprint
as important evaluation metrics alongside accuracy. Reducing

2" Hassan Khan
Data Science Institute
University of Galway
Galway, Ireland
h.khan5 @universityofgalway.ie

3" John Breslin

Data Science Institute
University of Galway
Galway, Ireland
john.breslin @universityofgalway.ie

energy consumption not only benefits the environment but can
also lower the financial barrier to deep learning research [6],
making it more inclusive. In the quest to make Al greener,
one major opportunity is to improve the training process itself,
which often dominates total energy usage for deep models [4].

Backpropagation (BP) is the core of the training loop for
deep neural networks, but it is computationally intensive and
typically updates a vast number of parameters every iteration.
Standard (dense) BP computes gradients for all weights in the
network, even though many of those weight updates may be of
very small magnitude or relatively unimportant for final accu-
racy. Sparse backpropagation offers an alternative: by comput-
ing and applying only a small subset of weight gradients (for
example, the top-k largest gradients) each iteration, we can
potentially cut down the number of operations [5], and hence
the energy consumed. Previous work has shown that updating
as few as 1-4% of the weights per step can still train models
to full accuracy, and may even reduce overfitting, analogous
to a regularization effect [13]. This suggests that considerable
computation in training is redundant, and judiciously skipping
smaller updates could save energy without severely harming
performance.

In this paper, we leverage sparse backpropagation to enable
energy-efficient on-device learning. On-device training (for
example, on a mobile or edge GPU device) avoids the need
to send data to the cloud and can improve data privacy
and latency [7]. However, edge devices have limited power
budgets and hardware compared to cloud servers. Our goal
is to show that by using sparse training techniques, we can
train deep models directly on such devices with substantially
lower energy consumption and carbon emissions, while main-
taining accuracy. We implement and evaluate this approach
on an NVIDIA Jetson AGX Orin developer kit, a powerful
embedded Al platform, to simulate a real-world scenario of
edge training.

The key contributions of this work are summarized as
follows:

« We introduce a sparse backpropagation methodology for
training CNN models on-device, detailing an algorithm
that applies gradient sparsification (updating only a frac-
tion of weights per step) to standard networks like
ResNet-18, DenseNet-121, GoogleNet, and MobileNet-
V2.

o« We develop an experimental setup on the Jetson AGX
Orin (64GB) edge device and integrate the CodeCarbon
library to accurately measure energy consumption and
estimate carbon emissions during training.

e We conduct extensive experiments on three vision
datasets (CIFAR-10, CIFAR-100, Flowers-102), compar-
ing sparse backpropagation with standard dense training.
We report model accuracy and loss curve, as well as
metrics for energy usage, and COy emissions.

o We analyze the trade-offs between accuracy, computa-
tional efficiency, and sustainability. We demonstrate that
sparse backprop can reduce energy and carbon footprint
by up to 30-40% with minimal impact on accuracy. We
also discuss strategies to balance these trade-offs (e.g.,
varying sparsity levels or hybrid training approaches) and
provide guidelines for deploying on-device learning in
practice.

II. RELATED WORK
A. Energy-Intensive Deep Learning and Sustainability

The high energy demand of deep learning has been doc-
umented in several studies [1], [4]. Strubell et al. [2] quan-
tified the financial and environmental cost of training large
NLP models, highlighting alarmingly high CO2 emissions for
complex models and extensive hyperparameter searches. Their
work and others helped start a discussion on the environmental
impacts of Al, giving rise to terms like Green Al that call for
more efficient model development.

Tools and frameworks have emerged to measure and report
energy consumption in ML experiments. For instance, An-
thony et al. [16] introduced CarbonTracker, which monitors
hardware power usage and forecasts the carbon footprint of
training runs. Henderson et al. [17] developed the Experiment
Impact Tracker to log energy and CO; metrics for deep
learning experiments in a standardized way. Similarly, the
open-source CodeCarbon [18] package provides a lightweight
means to estimate emissions by combining system power
draw with location-specific carbon intensity. These tools align
with recommendations to include energy/emission reports with
model results to foster accountability in Al research.

Another line of work focuses on general methods to reduce
the carbon impact of ML. Lacoste er al. [6] proposed the
“Green Algorithms” framework to estimate emissions and sug-
gested best practices like using renewable energy, improving
hardware utilization, and optimizing code efficiency. On the
deployment side, moving computations to greener data centers
or scheduling jobs for off-peak hours can significantly cut
emissions. However, such solutions often assume cloud-based
training. In contrast, our work targets improvements at the
algorithmic level (sparsity) to enable training on low-power

edge devices, which could be advantageous when data privacy
or offline capability is needed, but must be done in an energy-
conscious way.

Recent analysis by Patterson et al. [4] underscores a poten-
tial trade-off: cloud data centers (especially those optimized
for ML and using cleaner energy) can be far more energy-
efficient than distributed edge devices for large-scale training.
Their study found that training on a smartphone can incur an
order-of-magnitude higher CO, emissions than using a cloud
GPU, due largely to hardware inefficiencies and electricity
sourcing on consumer devices. This points to the importance of
algorithmic efficiency if on-device training is to be viable and
sustainable. By drastically reducing the compute per iteration
via sparse backpropagation, our approach seeks to narrow this
gap, enabling edge training with much lower power draw so
that the convenience and privacy benefits of on-device learning
do not come at an unacceptable environmental cost.

B. Sparse Neural Networks and Training Efficiency

There is a rich body of research on leveraging sparsity in
neural networks to improve efficiency. Most traditional efforts
have focused on inference [12]: pruning methods remove
unnecessary weights from trained models to reduce FLOPs
and memory, and hardware libraries (NVIDIA cuSparse, etc.)
can exploit sparse matrix operations for speedup. Pruning tech-
niques date back decades, with modern approaches ranging
from magnitude pruning to more advanced schemes that prune
entire channels or blocks for hardware-friendly structured
sparsity.

In recent years, attention has turned to making the training
phase itself sparse and efficient. Hoefler er al. [12] provide
an extensive survey of sparsity in deep learning, including
methods that maintain sparse weight matrices during training.
One class of techniques is static sparse training, where a
network is pruned at initialization or early in training and
then trained with a fixed sparsity mask (e.g., sparse lottery
ticket initialization). However, static approaches can struggle
to match the accuracy of dense training if too many weights
are removed upfront.

To overcome this, researchers have proposed dynamic
sparse training algorithms that continuously adjust which
connections are active during training. Mostafa et al. [14]
introduced a dynamic sparse reparameterization scheme that
adds or removes weights during training based on their
significance, allowing a small sparse network to reach the
performance of a large dense one. Evci et al. [13] presented
Rigging the Lottery (RigL), which starts with a sparse network
and periodically reallocates the budgeted non-zero weights
by removing those with small gradients and activating new
weights where gradients are high. Rigl. achieved near-dense
accuracy on ResNet and other models while keeping 80-
90% of weights zero throughout training. Kusupati et al. [15]
proposed Soft Threshold Reparametrization (STR) to learn a
global threshold for pruning during training, effectively finding
an optimal sparsity level as training progresses. These and
other algorithms (e.g., dynamic evolutionary sparsification,

gradient-based pruning schedules) demonstrate that it is possi-
ble to significantly reduce the number of trainable parameters
and operations without severe accuracy loss.

Our work shares the goal of accelerating training via
sparsity but takes a simpler and more hardware-agnostic ap-
proach: sparsifying the backpropagated gradients rather than
enforcing a permanent sparsity pattern in weights. The concept
of sparsifying gradients was explored by Sun e al. [5] in
the meProp algorithm, which showed that selecting the top-
k gradients for each layer can yield a linear reduction in
computational cost with little to no accuracy drop. Subsequent
works like beyond backpropagation 8], dithered backprop [9],
and reuse-sparsified backpropagation [10] have refined this
idea, aiming to further minimize the overhead of skipping
gradient computations or to combine gradient sparsity with
quantization for additional gains. Zhong et al. [11] recently
proposed ssProp, which applies scheduled sparsity to the
backward pass in CNNs and reported up to 40% computation
reduction with potential accuracy improvements. Their results
reinforce the idea that backward computations often have
redundancy and that sparsifying them can act as a regularizer
(mitigating overfitting) similar to Dropout, as observed in
meProp.

Compared to dynamic sparse training methods that require
complex mask update schedules or special initializations,
our approach is straightforward to implement on standard
hardware: at each training step, after computing gradients, we
simply mask out a large fraction of them and update only the
rest. This can be seen as a form of gradient drop-out. While
unstructured sparsity is generally harder for current hardware
to accelerate, our experiments are conducted on an edge GPU
where the absolute scale of computation is not huge (relative
to data center GPUs), and the primary goal is to reduce total
energy consumed. Even without specialized sparse kernels,
reducing the number of arithmetic operations (and memory
accesses for gradients) should translate to lower power usage.
Moreover, as hardware support for sparsity improves (e.g.,
NVIDIA Ampere GPUs support 2:4 structured sparsity in
matrix multiply units, such algorithms will be well-positioned
to gain wall-clock speedups as well.

C. On-Device Learning

Running deep learning workloads on edge devices (phones,
embedded GPUs, IoT hardware) has become increasingly
feasible due to advances in efficient model architectures and
hardware accelerators. Most on-device Al today concerns
inference, using models like MobileNets or EfficientNets that
are optimized for low power consumption. On-device training
remains challenging because it is computationally intensive
and can quickly drain battery-powered devices. Nonetheless,
there are emerging scenarios where on-device learning is de-
sirable: personalized models that adapt to user data, federated
learning (where each client performs local model updates), or
continuous learning for autonomous devices in the field.

To enable training in such scenarios, researchers have
explored methods like model distillation, reduced precision

arithmetic, and split computing (offloading parts of the model
to the cloud). Our work contributes to this area by demon-
strating that algorithmic sparsity can significantly cut down
the resource requirements for training on device. By using
an edge device (Jetson Orin) with a relatively high compute
capability (up to 5.3 TFLOPS FP32 and 64 GB memory),
we simulate a powerful smartphone or embedded module that
could perform non-trivial training tasks at the edge. We show
that even for this capable device, dense training of modern
CNNs can consume tens of kilojoules of energy, whereas
sparse backpropagation can save a substantial portion of this.

This work can be seen as complementary to efforts in
federated learning and TinyML. In federated setups, communi-
cation efficiency is crucial; gradient sparsification is sometimes
employed to reduce the size of updates sent over the network.
Here we apply sparsification primarily for local computation
efficiency, but an added benefit is that the transmitted model
updates (if any) would also be smaller. For TinyML on
microcontrollers, full backpropagation might be infeasible due
to extremely limited resources; techniques like meProp could
potentially enable simple on-device fine-tuning by updating
only a few parameters at a time. While our experiments are
not on microcontrollers, the principle of sparse backprop could
extend to those domains.

III. PROBLEM STATEMENT AND METHODOLOGY
A. Problem Formulation

Modern deep learning models typically require millions of
weight updates during training, making the process energy-
intensive. We formally consider the scenario of training a deep
neural network on a resource-constrained device. Let W =
{W1,Ws,...,Wr} denote the weights of an L-layer neural
network. In standard backpropagation, given a batch of input
data, the algorithm computes the loss L and then the gradient
VW, for every layer | = 1... L. The weights are then updated
as W; < W, —nVW, for all [, where 7 is the learning rate.

The problem is that the computation of VW), for all weights
and updating each weight in every iteration incurs a huge
number of floating-point operations. On large convolutional
layers or fully-connected layers, many of these gradient values
are nearly zero or have very small magnitudes that contribute
negligibly to model improvement. Yet computing them and
applying them costs just as much as larger gradients. This
suggests an opportunity to save computation by focusing only
on the most important weight updates at each step.

Our objective is to reduce the total computational workload
(and thus energy consumption) of training by making the
backpropagation sparse. Concretely, we want to enforce that
in each training iteration, only a fraction p (e.g., 10%) of
the weights in each layer get their gradients updated, and
the rest of the gradients are treated as zero. By doing so,
we reduce the number of weight multiplications/additions in
the backward pass by roughly (1 — p), ideally translating to a
similar fraction of energy saved. The challenge is to do this
without significantly degrading the final model accuracy or

Algorithm 1 Training with Sparse Backpropagation

Require: Training data {(x;,y;)}, initial weights W for [=
1...L, learning rate 7, sparsity fraction p (e.g. 0.1 for
10%).

1: for each mini-batch (X,Y) in training data do

2 Y+ f(X;W) /I forward pass to get predictions

3 L« L(Y,Y) /I compute loss (cross-entropy)

4: Compute full gradients VW, for all layers [by back-
propagation.

5: for each layer [=1 to L do
6: k<« [p-size(VW))]
7: Identify indices €; of the top-k largest |[VW;| values.
8: Create sparse gradient VW, such that:

SWili — {VWl[i], ifie,

0, otherwise.
9: Wy W, —n VW, I update weights with sparse
gradients

10: end for
11: end for

increasing the number of training iterations needed (which
could offset the gains).

B. Sparse Backpropagation Algorithm

We adopt a simple yet effective methodology inspired by
top-k gradient sparsification (as used in meProp. In each
backpropagation step, for each layer we will select the k
largest-magnitude elements of the gradient and zero-out the
rest, so that only those & components will be used to update
the weights. The value of k£ can be defined as a percentage
p of the number of weights in that layer (or a fixed number
across layers). We can also allow p to change over epochs (a
schedule) to gradually introduce sparsity.

Algorithm 1 gives pseudocode for one training epoch with
sparse backpropagation.

In our implementation, we typically choose a fixed sparsity
fraction p (e.g., 10% or 20%) for all layers for simplicity. One
could use layer-specific p; if certain layers benefit from more
dense updates. We also experiment with a scheduled approach
where we start with a higher p (more dense updates) in early
epochs and gradually decrease p to enforce more sparsity in
later training. This idea is based on the intuition that early
in training, large weight changes are needed to find a good
region of the loss landscape, whereas later on, many updates
become fine-tuning that could be safely skipped.

It is important to note that even though we zero-out most
gradients, we still accumulate any momentum or adaptive opti-
mizer statistics (if using optimizers like SGD with momentum,
Adam, etc.) only for the selected gradients in our approach. In
practice, we implemented this by applying the sparsity mask
to the gradients before the optimizer update step.

Compared to dense training, the sparse backprop algorithm
incurs some overhead for selecting top-k indices (which can be

done efficiently via partial sort operations). However, for large
layers, this overhead is minor relative to the savings from not
performing a multitude of multiply-adds. In our experiments,
we quantify not only theoretical operation counts but actual
measured energy to capture this trade-off.

C. Applicability to CNN Architectures

We apply sparse backpropagation to four convolutional
neural network (CNN) architectures: ResNet-18, DenseNet-
121, GoogleNet (Inception-V1), and MobileNet-V2. These
models span a range from classical to mobile-optimized:
ResNet-18 [19] has about 11.7M parameters with residual skip
connections; DenseNet-121 [20] has around 8M parameters
and densely connected blocks; GoogleNet [21] is an older
22-layer network (6.8M params) with an Inception module
design; MobileNet-V2 [22] is a lightweight model (3.4M
params) using depthwise separable convolutions and inverted
residuals for high efficiency.

These architectures allow us to test sparse training on differ-
ent layer types (standard convolution vs depthwise, presence
of residuals or concatenations, etc.) to ensure the method’s
generality. We integrate our sparsity algorithm into the training
loop for each model. The training hyperparameters (learning
rate schedule, optimizer, number of epochs) were initially
tuned for baseline dense training to reach good accuracy, then
kept the same for sparse training runs for a fair comparison.

One consideration is that models like ResNet and DenseNet
have Batch Normalization layers, which have trainable param-
eters (scale and shift) and also maintain running statistics. We
do not sparsify the very small gradients of those BN parame-
ters, since they are negligible in compute cost; our focus is on
the convolution and fully-connected weight gradients which
dominate the FLOPs. All models are trained from scratch on
the given datasets in our experiments, rather than fine-tuning,
to examine if sparse backprop can handle the entire training
process.

IV. IMPLEMENTATION DETAILS
A. Hardware Platform: NVIDIA Jetson AGX Orin

All experiments are performed on the NVIDIA Jetson AGX
Orin Developer Kit (64GB model). This device contains an 8-
core NVIDIA Ampere architecture GPU with 2048 CUDA
cores and 64 Tensor Cores, capable of up to 275 INT8 TOPS
or about 5.3 TFLOPS in FP32 compute. It also has a 12-core
ARM Cortex CPU, but our training jobs primarily utilize the
GPU for neural network operations. The 64GB of LPDDR5
memory at 204 GB/s bandwidth is plenty to hold the models
and datasets in memory, ensuring we are not bottlenecked by
memory capacity.

We run the Jetson in its default SOW performance mode,
using the Jetson’s power management to monitor energy con-
sumption. The Jetson AGX Orin provides power draw readings
for the module which we cross-verified with external power
meter measurements for accuracy. We use these readings in
conjunction with CodeCarbon to log the energy.

The choice of Jetson Orin is motivated by it being a high-
end edge computing platform; its GPU is much less powerful
than a typical training server GPU (e.g., NVIDIA V100 or
A100) but far more powerful than a smartphone GPU. This
makes it a good proxy for an on-device training scenario in
robotics or on-premise Al appliances. If sparse training yields
benefits here, it could likely be even more crucial on smaller
devices.

B. Software and Libraries

Our implementation is done in Python using Py-
Torch 1.12. The neural network models (ResNet-18,
DenseNet-121, GoogleNet, MobileNet-V2) are taken from the
torchvision.models library for consistency. We imple-
mented the sparse backprop routine by hooking into PyTorch’s
backward computation: after calling loss.backward(),
we iterate through each parameter tensor’s gradient and apply
a mask. We found that using PyTorch in-place operations on
the gradient tensor (setting the smaller values to zero) was
straightforward.

For measuring energy and emissions, we integrated the
CodeCarbon library (v2.0). CodeCarbon [18] provides
an EmissionsTracker that we used in offline mode,
specifying the hardware details and energy mix. We configured
it with country_iso_code="IE" (for Ireland, assuming
a hypothetical deployment location corresponding to our grid
emissions factor) so that it uses the carbon intensity for the
local electricity grid. The tracker logs energy consumption
by querying the Jetson’s onboard sensors every few seconds
and accumulates the results. We double-checked that CodeCar-
bon’s reported energy matched the Jetson’s own power usage
stats over known intervals.

Additionally, we instrumented the code to record the train-
ing time per epoch and system GPU utilization. This allowed
us to compare any speed differences introduced by sparse
backprop. If the sparse version significantly reduces computa-
tion, we expect to see shorter epoch times and lower average
GPU utilization and temperature.

C. Datasets

We use three image classification datasets of varying size
and complexity:

o CIFAR-10 - 50k training images and 10k test images
of size 32x32, in 10 classes (airplane, automobile, etc.)
[23].

o CIFAR-100 - similar to CIFAR-10 but with 100 classes
(each image is one of 100 fine-grained object categories)
[23]. This makes the task more challenging.

o Flowers-102 — 102 categories of flowers, with a total
of 8189 images (approximately 40 to 250 images per
class) [24]. Images are higher resolution (we resized them
to 224x224 for our models). Given the small training
set, this dataset can easily overfit, which provides a
good testbed for whether sparse training helps reduce
overfitting.

We applied standard data augmentations for these datasets:
random cropping and horizontal flipping for CIFAR, and
random resizing/cropping and flipping for Flowers, to increase
variability. We standardized all images (mean subtraction and
division by std dev for each channel). For Flowers-102, we
set aside 20% of training images as a validation set for early
stopping to prevent severe overfitting.

D. Training Hyperparameters

All models were trained using the SGD optimizer with 0.9
momentum. For CIFAR-10/100 we used an initial learning rate
of 0.1, and for Flowers we used 0.01 (as the dataset is smaller).
We employed a step-wise learning rate decay (divide by 10) at
50% and 75% of the total epochs. The total number of epochs
was 100 for CIFAR-10/100 and 200 for Flowers-102, which
was sufficient for convergence in dense training.

Batch size was set to 128 for CIFAR and 32 for Flowers
(due to larger image size). We ensured this batch size could
comfortably fit in the Jetson GPU memory along with the
model.

When training with sparse backprop, we used the exact same
hyperparameters as the dense case for a fair comparison. We
tried sparsity fractions p € {0.25,0.10,0.05} corresponding
to 25%, 10%, and 5% of gradients kept. Unless otherwise
specified, “’sparse backprop” refers to the p = 0.10 (10%)
case, which we found to offer a good balance. For a few runs,
we experimented with a simple schedule: p = 0.25 for the
first 10 epochs, then p = 0.10 for the remainder, to see if that
helps accuracy.

We emphasize that aside from gradient masking, all other
aspects of training (data order, augmentation, initialization,
etc.) were kept identical between dense and sparse runs to
isolate the effect of sparse backpropagation.

V. EXPERIMENTS AND RESULTS

We now present the empirical evaluation of sparse back-
propagation versus standard dense training. We first report
model accuracy and loss to verify that sparse training can reach
comparable performance. Then we compare the energy con-
sumption, and carbon emissions between the two approaches.
Finally, we examine resource utilization to understand where
the savings come from.

A. Model Accuracy and Convergence

Table I summarizes the final test accuracy achieved by each
model on each dataset, comparing dense and sparse backprop
(with 10% gradient updates). We also include results for an
extreme sparse case (5% updates) to show the limits.

As seen in the table, using 10% sparse backpropagation
yields final accuracies that are very close to the dense training
across the board. In many cases the difference is within 0.5—
1 percentage points. Notably, on the Flowers-102 dataset,
ResNet-18 with sparse updates slightly outperformed the dense
baseline (86.5% vs 86.1%), which might be attributed to the
regularization effect of sparse updates on a small dataset
prone to overfitting. DenseNet-121 and MobileNet-V2 show

TABLE I
TEST ACCURACY (%) OF MODELS WITH DENSE VS. SPARSE
BACKPROPAGATION. SPARSE RESULTS ARE SHOWN FOR 10% AND 5%
GRADIENT UPDATE FRACTIONS (IN PARENTHESES).

Model CIFAR-10 | CIFAR-100 | Flowers-102
ResNet-18 (Dense) 94.2 76.5 86.1
ResNet-18 (Sparse 10%) 93.8 75.1 86.5
ResNet-18 (Sparse 5%) 91.2 71.9 83.4
DenseNet-121 (Dense) 95.2 78.1 85.3
DenseNet-121 (Sparse 10%) 94.7 717.5 84.9
DenseNet-121 (Sparse 5%) 93.9 75.2 83.7
GoogleNet (Dense) 93.5 77.6 82.4
GoogleNet (Sparse 10%) 92.7 75.9 81.6
GoogleNet (Sparse 5%) 90.2 72.5 79.4
MobileNet-V2 (Dense) 91.4 70.2 80.5
MobileNet-V2 (Sparse 10%) 90.8 69.5 80.3
MobileNet-V2 (Sparse 5%) 87.9 66.8 78.1

essentially no change in Flowers accuracy. For CIFAR-10 and
CIFAR-100, the small drops observed (e.g., 94.2 to 93.8 on
CIFAR-10 for ResNet) indicate sparse training is able to learn
nearly as well.

When sparsity is pushed to 5% (only 1 in 20 gradients used),
we start to see larger accuracy degradation, especially on the
harder CIFAR-100 task (drops of 3-4 points). This suggests
there is a threshold of sparsity beyond which the network does
not get enough signal to converge at the same rate. In our tests,
10% seemed to be a sweet spot where compute was greatly
reduced yet accuracy was preserved. Interestingly, DenseNet-
121 was the most robust to sparsity (only a 0.4 point drop on
CIFAR-100 at 10%), possibly because its dense connectivity
already mitigates the impact of missing some weight updates.
The training convergence behavior (learning curves) further

Training Loss on CIFAR-100 for ResNet-18 over 100 Epochs
(Dense vs. 10% Sparse Backprop)

—®— Dense
Sparse (10%)

Training Loss
w

N

Epoch

Fig. 1. Training-loss curves over 100 epochs for Dense vs. 10% Sparse
backprop, showing smooth, stable convergence .

supports these results. Figure 1 plots the training loss over
epochs for dense vs sparse (10%) training on CIFAR-100
for ResNet-18. The sparse variant’s loss curve closely tracks
the dense one, with maybe a slightly slower initial decrease,
but they converge to similar final losses. We observed no
instability or divergence issues when using sparse backprop,
indicating that standard learning rate schedules did not need
modification.

Due to space, we omit similar plots for all models, but in

general sparse backprop took either the same number or only
a few more epochs to reach the dense model’s accuracy. For
instance, ResNet-18 sparse needed 95 epochs to hit 75% on
CIFAR-100 whereas dense hit it at 90 epochs; both reached
76% by epoch 100. This small difference, if any, did not
negate the benefits since the total computation per epoch was
significantly less for sparse (discussed below).

B. Energy Consumption and Carbon Emissions

Our primary metrics of interest are the total energy con-
sumed during training and the associated carbon emissions
as estimated by CodeCarbon. Table II presents these results
for each model-dataset combination. We report the energy in
kilojoules (kJ) and the CO, emissions in grams (g), assuming
the electricity carbon intensity for Ireland (which was approxi-
mately 315 g/kWh at the time of writing). The emissions were
calculated by CodeCarbon based on energy and that intensity.

From Table II, we see a clear reduction in energy con-
sumption when using sparse backpropagation for all models
and datasets. The extent of savings varies by model: - For
ResNet-18 and GoogleNet, sparse BP saved about 25-28% of
the training energy. DenseNet-121 saw around 30-34% energy
savings, slightly higher. This could be because DenseNet has
a lot of parameters and gradient computations, so dropping
90% of them yields bigger gains. - MobileNet-V2, being a
very efficient model to begin with, saw a smaller relative im-
provement (19-20% savings). MobileNet’s layers (depthwise
separable convs) involve fewer parameters, so the overhead of
computing all gradients was less to start with.

In absolute terms, training a model like DenseNet on
Flowers-102 took about 190.8 kJ (dense) which corresponds
to 16.7 grams of CO,. Using sparse backprop, this dropped to
132 kJ (11.5 g CO2). While these numbers might seem small,
keep in mind this is for one training run of a relatively small
model on a single edge device. In cloud-scale experiments,
or multiple runs for hyperparameter tuning, such percentage
savings would translate to much larger absolute reductions.

We also measured that the energy per epoch remained
roughly constant across the training (no big spikes or dips), so
one can attribute the savings directly to doing less work each
batch.

The carbon emissions follow directly from energy, given the
fixed conversion factor. If a different energy mix or location is
assumed, the absolute grams would change, but the percentage
reduction remains the same. For context, the emissions for
training these models densely on Jetson (0.008 kg or less
per run) are trivial compared to the hundreds of kg reported
for large NLP models on clouds. However, our interest is in
relative improvement: demonstrating that even at this small
scale, algorithmic changes can make training more efficient.

C. Training Time and Utilization

In our experiments, we found that sparse backpropagation
actually decreased the training time per epoch in most cases,
leading to an overall training time reduction. For instance,

TABLE 11
ENERGY CONSUMPTION AND ESTIMATED CARBON EMISSIONS FOR TRAINING (100 EPOCHS FOR CIFAR, 200 FOR FLOWERS) ON JETSON ORIN.
RESULTS ARE SHOWN FOR DENSE VS SPARSE (10%) BACKPROPAGATION.

Model CIFAR-10 CIFAR-100 Flowers-102
Encrgy (KJ) | CO; (¢) | Energy (KJ) | CO; (g) | Energy (K)) [CO; (@
ResNet-18 (Dense) 92.4 8.08 95.1 8.32 180.3 15.75
ResNet-18 (Sparse) 67.3 5.86 71.5 6.26 1304 11.39
Energy Saved 27.2% — 24.8% — 27.7% —
DenseNet-121 (Dense) 102.5 8.96 107.5 9.37 190.8 16.69
DenseNet-121 (Sparse) 68.1 5.95 74.3 6.51 132.3 11.54
Energy Saved 33.6% — 30.7% — 30.9% —
GoogleNet (Dense) 88.7 7.75 914 7.98 172.5 15.07
GoogleNet (Sparse) 66.5 5.81 68.9 6.02 125.0 10.92
Energy Saved 25.1% — 24.6% — 27.6% —
MobileNet-V2 (Dense) 54.2 4.74 57.6 5.03 115.6 10.05
MobileNet-V2 (Sparse) 44.6 3.84 45.8 4.02 93.8 8.20
Energy Saved 17.7% — 20.5% — 18.8% —

DenseNet-121 on CIFAR-100 took 1.04 seconds per epoch
with dense training (measured over 100 epochs), and 0.75
seconds per epoch with sparse training. This 28% speed-up in
time aligns with the 30% fewer operations being performed.
ResNet-18’s epoch time went from 0.80 s (dense) to 0.62 s
(sparse), about a 22

These speed-ups indicate that the Jetson GPU was not
heavily bounded by memory or other overhead; it could
take advantage of doing fewer arithmetic operations even
though we did not use any special sparse matrix libraries.
Essentially, skipping gradient calculations means fewer CUDA
kernels launched and shorter kernel execution times, directly
translating to faster epochs.

‘We monitored the GPU utilization via tegrastats on the
Jetson. In dense training, the GPU was near 99% utilization
during the backprop phases. In sparse training, utilization
would often drop into the 70-80% range momentarily when
the gradient masking operation ran (which is lightweight) and
then pick up during the forward or when computing the top-
k. Overall, the average GPU utilization over an epoch was
slightly lower for sparse training, and the GPU spent more
time idle between batches (since batches finished quicker),
which results in less energy.

One interesting observation is that while sparse training
uses less energy, it also finishes sooner. If one were energy-
constrained (say on battery), one could allocate that saved
energy to either prolonging the training (more epochs) or
simply saving battery. In cases where a small accuracy drop is
observed, one strategy could be to use the saved time/energy
to run a few extra epochs of sparse training to close the gap.

We also profiled CPU usage and found it to be low in all
cases (the CPU mainly feeds data and launches GPU kernels;
the workload didn’t shift to CPU even with the extra sorting
operation for gradients, which was done on GPU for large
tensors).

D. Effects of Gradient Sparsity Level

We ran a brief ablation on the sparsity fraction p. For
ResNet-18 on CIFAR-10, comparing p = 0.05,0.10,0.25, we
got: p = 0.25 (25% gradients): Accuracy 94.6%, Energy 79 kJ

(15% saved vs dense), p = 0.10 (10% gradients): Accuracy
93.8%, Energy 67 kJ (28% saved), p = 0.05 (5% gradients):
Accuracy 91.2%, Energy 60 kJ (35% saved).

The return in energy savings diminishes as p gets very small
because some overhead and fixed costs (like forward pass,
memory access for activations) remain constant. Meanwhile,
accuracy drops off more noticeably beyond a certain sparsity.
Thus, p = 0.1 was a good compromise in our setting. On
an even larger model or dataset, perhaps a slightly higher p
might be necessary to maintain accuracy. This highlights that
the optimal sparsity level might depend on the problem and
could be tuned.

VI. TRADE-OFF ANALYSIS AND DEPLOYMENT
STRATEGIES

The experimental results demonstrate that sparse backprop-
agation can achieve a substantial reduction in energy usage for
training with only minor accuracy trade-offs. We now analyze
these trade-offs in more detail and discuss how one might
deploy such techniques in real-world scenarios.

A. Accuracy vs. Energy Trade-off

The relationship between sparsity and accuracy appears
roughly sigmoid: a small amount of sparsity (e.g., dropping
50% of gradients) often has negligible impact on accuracy, and
one can increase sparsity to a point (80-90%) before accuracy
begins to degrade noticeably. Beyond that, accuracy can fall
sharply if too few weights are being updated. This suggests an
operating regime where a practitioner can decide how much
accuracy they are willing to sacrifice for energy savings: for
instance, accepting a 1% accuracy drop might allow using 10%
gradient updates and save 30% energy; a 3% drop might allow
5% updates and 35-40% energy savings. The exact numbers
will vary by model/dataset, but our experiments indicate it is
possible to push to quite high sparsity before hitting a steep
accuracy cliff.

Interestingly, in some cases sparse backprop even modestly
improved accuracy (as with Flowers-102). This hints that in
addition to energy benefits, gradient sparsification can serve
as a regularizer that prevents over-training on noise. It may be

worthwhile in future work to combine sparse backprop with
other regularization techniques (dropout, weight decay) to see
if we can reduce the accuracy gap further or even consistently
outperform dense training on certain tasks.

If the utmost accuracy is required, one strategy could be a
hybrid approach: use sparse backpropagation for the majority
of training epochs to save time and energy, then switch to
dense backpropagation for the final few epochs or fine-tuning
phase to squeeze out the last bit of accuracy. This way, the bulk
of computation is done efficiently, and only a small fraction
is done in the more precise dense mode. Another approach
is to gradually increase p (fraction of gradients) as training
progresses, akin to a curriculum that starts sparse (faster) and
ends dense (more precise). This was touched upon in our
scheduled experiment, although we mostly tried decreasing
p; the reverse schedule could be tried as well.

B. Deployment Considerations for On-Device Learning

For deploying on-device learning in practice, one must
consider the device’s battery (if mobile), thermal limits, and
whether training is continuous or occasional. Sparse backprop
can help in all these aspects by reducing the average power
draw and total energy. For example, a phone could fine-tune a
small CNN on user data overnight or during idle times; using
sparse training, it would finish faster and consume less battery,
reducing heat generation.

However, on-device scenarios also have constraints like
limited numeric precision (some mobile NPUs operate in 8-bit)
and possibly no GPU at all. Our approach was evaluated in 32-
bit on a GPU; an open question is how it performs in lower
precision. It could be that selecting top-k gradients in low
precision might be less stable if many gradients are truncated
to zero. But techniques exist to accumulate gradients in higher
precision for selection even if updates are applied in lower
precision.

From a software perspective, supporting sparse backprop
on-device could be made easier with high-level API support.
Auto-differentiation frameworks could allow a user to specify
a sparsity level for gradient computation. In our case, we
manually implemented it; but e.g. TensorFlow or PyTorch
could incorporate an option in the optimizer to only apply
top-k gradients. This would simplify adoption.

Another strategy for device deployment is to combine model
compression with sparse training: e.g., first compress the
model via pruning or quantization to reduce baseline resource
usage, and then train it with sparse backprop for additional
savings. Since our method doesn’t depend on any particular
model structure, it could complement pruned models or those
that are inherently sparse.

One must also consider the reliability: if a model is being
continually trained on device (like learning from new data
in an online fashion), the long-term effects of sparse updates
should be studied. It is possible that while a fixed dataset train-
ing converges fine, an ever-learning system might accumulate
some bias if updates are always sparse. Ensuring occasional

dense updates or using a sufficiently high p might mitigate
that.

C. Edge-Cloud Hybrid Approaches

In many real-world applications, a combination of edge and
cloud training might be optimal. For example, a base model
is trained in the cloud (with large-scale data and powerful
hardware), then personalized or adapted on the edge. In such
a pipeline, most of the heavy lifting (and emissions) are in the
cloud pre-training, which presumably could also benefit from
large-scale sparsity methods (like RigL, etc., which are already
being explored to train massive models more efficiently). Our
focus is on the edge fine-tuning part: by showing that one can
do this efficiently, we enable a future where rather than sending
data back to a server, devices can locally refine models with
minimal energy cost. That reduces the need for continuous
cloud retraining and also the network energy cost for sending
data (which is another often-overlooked contributor to carbon
footprint).

Moreover, edge devices often operate in aggregate (think of
thousands of smartphones performing federated learning). If
each device saves 30% energy during training, the aggregate
impact across an entire fleet can be significant, and it might
prevent scenarios where federated learning is abandoned due
to excessive battery drain on users’ devices.

Finally, it’s worth mentioning that making training more
efficient aligns with the broader goal of sustainable Al in
other dimensions too. For instance, lower energy means less
operational cost, which could make it feasible to train more
frequently or train more models (benefiting personalization
and fairness, if each user can have a model tuned to them, for
example). It also opens up use cases in remote or developing
regions where power supply is limited or expensive.

VII. CONCLUSION AND FUTURE WORK
A. Summary of Findings

We presented an approach to reduce the carbon footprint of
deep learning training by leveraging on-device learning with
sparse backpropagation. Through experiments on an edge GPU
platform, we demonstrated that:

o Sparse backpropagation (updating only 5-10% of weights
per batch) can maintain model accuracy within 1-2% of
the baseline for CNNs on vision tasks, and in some cases
even improve generalization by acting as a regularizer.

« This approach yields significant energy savings (20-35%)
and corresponding reductions in CO5 emissions during
training. For example, ResNet-18 on CIFAR-100 used
about 25% less energy with 10% sparse updates, with
only a 1% accuracy drop.

o The time-to-train is also reduced (up to 30% faster in
our tests), meaning efficiency gains are realized in both
energy and real-time, which is beneficial for deployment.

o There is a controllable trade-off between sparsity level
and accuracy; moderate sparsity achieves a sweet spot,
whereas extreme sparsity can hurt accuracy. Nonetheless,

even extreme sparsity did not cause divergence, showing
the method’s robustness.

These findings contribute to the growing evidence that
substantial redundancies exist in neural network training. By
entirely eliminating some of this redundancy, we can make
training more sustainable. Importantly, our work focused on a
scenario (edge device training) that is likely to become more
common with the proliferation of Al at the edge and the need
for continual learning without constant cloud connectivity.

B. Impact on Green Al Research

This work aligns with the vision of Green Al by providing
a practical technique to reduce energy usage, and empirically
quantifying those savings. It adds to a body of research
recommending efficiency metrics in Al. The methodology we
explored can be combined with others (model compression,
efficient hardware) to compound gains. One could imagine
future Al systems where models are designed from the ground
up to train and run efficiently on target hardware, and where
training algorithms intelligently minimize computational waste
(like unnecessary gradient calculations).

C. Future Work

Future research should extend sparse backpropagation to
larger models like ResNet-50 and Transformers to assess
scalability across diverse tasks. Exploring adaptive sparsity,
where sparsity levels adjust dynamically, could further opti-
mize efficiency. Hardware-specific optimizations and the inte-
gration of quantization techniques may enhance computational
and energy savings. Developing standardized benchmarks for
sustainable Al would facilitate rigorous evaluation. Finally,
incorporating sparse backpropagation within edge-cloud hy-
brid frameworks could enable scalable, low-carbon Al training
by balancing cloud pretraining with efficient on-device fine-
tuning. In conclusion, we showed that on-device learning with
sparse backpropagation is a viable and effective technique to
reduce the carbon emissions of deep learning. It embodies a
step toward greener Al by cutting down wasteful computation.
As Al models continue to grow, such efficiency improvements
will be crucial to ensure that Al advancements are sustainable
and accessible. By deploying models that learn on-device
using methods like ours, we can leverage edge computing for
personalization and privacy while keeping the environmental
impact to a minimum. We hope this work encourages further
research at the intersection of machine learning, energy effi-
ciency, and sustainability.

VIII. ACKNOWLEDGMENT

This publication has emanated from research conducted
with the financial support of Taighde Eireann - Research
Ireland under Grant number 21/FFP-A/9174.

REFERENCES

[1] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green Al,’
Commun. ACM, vol. 63, no. 12, pp. 54-63, 2020.

[2] E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy Consid-
erations for Deep Learning in NLP,” in Proc. 57th ACL, 2019.

(3]

(71

(8]

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

S.Iftikhar, and S. Davy, “Reducing Carbon Footprint in Al: A Frame-
work for Sustainable Training of Large Language Models,” in Proceed-
ings of the Future Technologies Conference, pp. 325-336, 2024.

D. Patterson, J. M. Gilbert, M. Gruteser, E. Robles, K. Sekar, Y. Weli,
and T. Zhu, “Energy and emissions of machine learning on smartphones
vs. the cloud,” Commun. ACM, vol. 67, no. 2, pp. 86-97, 2024.

X. Sun, X. Ren, S. Ma, and H. Wang, “meProp: Sparsified Back
Propagation for Accelerated Deep Learning with Reduced Overfitting,”
in Proc. 34th ICML, 2017.

A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quanti-
fying the carbon emissions of machine learning,” arXiv preprint
arXiv:1910.09700, 2019.

F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Feder-
ated learning with compression: Unified analysis and sharp guarantees,”
in Proc. Int. Conf. Artif. Intell. Stat., 2021, pp. 2350-2358.

N. Zucchet and J. Sacramento, “Beyond backpropagation: Bilevel opti-
mization through implicit differentiation and equilibrium propagation,”
Neural Comput., vol. 34, no. 12, pp. 2309-2346, 2022.

S. Wiedemann, T. Mehari, K. Kepp, and W. Samek, “Dithered backprop:
A sparse and quantized backpropagation algorithm for more efficient
deep neural network training,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), 2020, pp. 720-721.

N. Goli and T. M. Aamodt, “Resprop: Reuse sparsified backpropaga-
tion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
2020, pp. 1548-1558.

L. Zhong, S. Huang, and Y. Shi, “ssProp: Energy-Efficient Training
for CNNs with Scheduled Sparse Back Propagation,” arXiv:2408.12561,
2024.

T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in deep learning: Pruning and growth for efficient inference and training
in neural networks,” J. Mach. Learn. Res., vol. 22, no. 241, pp. 1-124,
2021.

U. Evci, T. Gale, J. Menick, P. Castro, and E. Elsen, “Rigging the
Lottery: Making All Tickets Winners,” in Proc. ICML, 2020.

H. Mostafa and X. Wang, “Parameter Efficient Training of Deep Con-
volutional Neural Networks by Dynamic Sparse Reparameterization,” in
Proc. ICML, 2019.

A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S.
Kakade, and A. Farhadi, “Soft threshold weight reparameterization for
learnable sparsity,” in Proc. Int. Conf. Mach. Learn. (ICML), 2020, pp.
5544-5555.

L. F. W. Anthony, B. Kanding, and R. Selvan, “CarbonTracker: Tracking
and Predicting the Carbon Footprint of Training Deep Learning Models,”
arXiv:2007.03051, 2020.

P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau,
“Towards the systematic reporting of the energy and carbon footprints
of machine learning,” J. Mach. Learn. Res., vol. 21, no. 248, pp. 1-43,
2020.

B. Courty, V. Schmidt, S. Luccioni, G. Kamal, M. Coutarel, B. Feld,
J. Lecourt, L. Connell, A. Saboni, Inimaz, Supatomic, M. Léval, L.
Blanche, A. Cruveiller, O. Sara, F. Zhao, A. Joshi, A. Bogroff, H. de
Lavoreille, N. Laskaris, E. Abati, D. Blank, Z. Wang, A. Catovic, M.
Alencon, M. Stechty, C. Bauer, L. O. N. de Aratjo, JPW, and Min-
ervaBooks, “mlco2/codecarbon: v2.4.1,” Zenodo, May 2024. [Online].
Available: https://doi.org/10.5281/zenodo.11171501

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770-778.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2017, pp. 4700-4708.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015, pp.
1-9.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 4510-4520.
A. Krizhevsky, G. Hinton, ef al., “Learning multiple layers of features
from tiny images,” Toronto, ON, Canada, 2009.

M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Proc. 6th Indian Conf. Comput. Vis. Graph.
Image Process., 2008, pp. 722—729.

