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ARTICLE INFO ABSTRACT

Keywords: The real-time forecasting of critical physiological indicators in intensive care units (ICUs) is essential for early
Real-time patient monitoring intervention and clinical decision support. This study introduces a novel framework, StreamHealth Multi-
Time-series data forecasting Horizon AlI, which has been designed to perform multivariate, multi-horizon time-series forecasting for vital
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Sequence-to-sequence modeling
Multi-horizon forecasting
Attention-based modeling

Deep learning

signs, specifically for a person’s blood oxygen saturation level (SpO2) and respiratory rate (RR). The framework
leverages advanced attention-based models, with a particular emphasis on the Temporal Fusion Transformer
(TFT) and Temporal Convolutional Network (TCN), and we benchmark its performance against classical deep
learning architectures, including LSTM, GRU, Bi-LSTM, Bi-GRU, CNN, and Sequence-to-Sequence (Seq2Seq)
models with and without attention mechanisms. Both univariate and multivariate forecasting tasks are explored
across multiple prediction horizons (i.e., 7, 15 and 25 min), using physiological time-series data from the
MIMIC-III database. The proposed system incorporates a cascaded fine-tuning strategy, wherein the TFT model
is sequentially fine-tuned on individual patients’ data, significantly enhancing the model’s generalizability to
unseen patient profiles. Empirical results demonstrate that the TFT model consistently outperforms baseline
models across all forecasting settings, achieving lower RMSE and MAE values, and exhibiting superior capacity
for capturing long-sequence dependencies and temporal feature dynamics.

To validate its applicability in real-time clinical environments, the framework integrates a simulated
streaming infrastructure using Apache Kafka and Apache Flink, enabling continuous data ingestion, forecasting,
and visualization of vital signs. This end-to-end deployment underscores the system’s potential for ICU
monitoring, allowing clinicians to anticipate patient deterioration proactively. In summary, we introduce a
comprehensive framework that uniquely integrates TFT with cascaded fine-tuning for multivariate, multi-
horizon forecasting of critical ICU indicators. Additionally, we demonstrate a simulation for a real-time
deployment pipeline using Kafka and Flink, enabling robust and generalizable ICU monitoring in clinical
settings. As a result, this work has contributed a robust and clinically relevant Al solution for real-time
healthcare monitoring.

1. Introduction (COPD) patients can experience fluctuating SpO2 levels, underlining
the limitations of intermittent measurements (that could miss these

Blood oxygen saturation (SpO2) and respiratory rate (RR) are fluctuations) and the importance of predictive monitoring [4]. The
critical indicators of a patient’s health, particularly in intensive care continuous monitoring of RR is equally important, particularly for

settings [1-3]. For example, chronic obstructive pulmonary disease patients with COPD, respiratory infections, or asthma, as it helps to
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detect disease severity and ensure timely interventions. Predicting
SpO2 and RR simultaneously provides a more complete understand-
ing of respiratory conditions, enabling early detection of breathing
distress [3].

Integrating artificial intelligence (AI) into healthcare has enabled
significant advances in both monitoring and predictive capabilities [5].
Al techniques, including deep neural (DL) networks and transformer
models, are being increasingly deployed to analyze complex patterns in
medical data and to predict vital signs, thereby bringing transformative
improvements to patient care. These studies have shown promising
results in anticipating changes in vital signs over time [6-9]. Erion
et al. [10] applied ML and DL models to predict hypoxemia or non-
hypoxemia using time series data based on different features such as
demographic data, real-time measurements of vital signs, and labora-
tory results. Bandopadhaya et al. [11] proposed an e-health solution
that integrates deep learning (DL) models with IoT devices for the
early detection of problematic SpO2 levels in COVID-19 patients. Priem
et al. [12], Zhang et al. [13] and Tonmoy et al. [14] applied DL models
to predict SpO2 using a photoplethysmogram (PPG). Shuzan et al. [15]
applied machine learning (ML) and DL algorithms as single regression
models to predict RR and SpO2.

The authors in [16-18] used the Beth Israel Deaconess Medical
Center (BIDMC) [19] dataset to train and evaluate ML models to
predict RR and SpO2. Kumar et al. [16] applied different DL models
such as LSTMs, CNNs, LSTMs with an attention layer, hybrid CNN-
LSTMs, bidirectional-LSTMs (Bi-LSTMs), and Bi-LSTMs with an atten-
tion layer for one-step ahead prediction of RR using 32 s and 64 s
windowing on the Capnobase and MIMIC-II (via BIDMC) datasets. Lee
et al. [17] presented a method combining gradient boosting (GB) with
autocorrelation-based power spectral feature extraction to predict RR
using the BIDMC dataset.

In multi-horizon forecasting, predictions are provided for multiple
future horizons or time points rather than just one step ahead as in
traditional time series forecasting. This can also be applied to univariate
or multivariate time series [20], and UMH or MMH is used in our
paper to refer to univariate or multivariate multi-horizon (time series)
forecasting respectively. Most literature studies, especially in the ICU
domain, depend on a single input feature and give predictions one step
into the future [21]. For example, the authors in [16] predicted RR just
one second into the future, which significantly limits the practical med-
ical utility of their results, as ICU physicians require longer prediction
horizons to make informed clinical decisions.

Models that can interpret multivariate data and provide multi-
horizon time series forecasting are crucial in sensitive medical domains,
especially in settings that need real-time monitoring and forecasting,
such as in ICUs [22]. Real-time processing of time series data is crucial
for providing timely and accurate decisions for effective interven-
tions. Therefore, combining the capabilities of advanced Al models and
stream processing can enable real-time ingestion, collection and analy-
sis, and provide timely and accurate decision-making processes [23].
To address the challenges mentioned above, we pose the following
research questions:

1. How can multi-task learning models be designed to accurately
and simultaneously forecast multiple physiological signals (SpO2
and RR) over multiple future horizons in real-time ICU environ-
ments?

2. In what ways can transformer-based architectures, specifically
the Temporal Fusion Transformer (TFT), outperform traditional
deep learning models in capturing long-term dependencies and
multivariate dynamics in ICU data?

3. How does the proposed StreamHealth Multi-Horizon Al frame-
work enhance model generalizability and enable practical de-
ployments in intensive care settings through its integration of
cascaded fine-tuning and real-time streaming infrastructures?
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4. How can distributed systems such as data lakes and stream-
ing data architectures improve the real-time processing of time
series data for healthcare monitoring?

We have found no studies in the literature that have investigated
these research questions using transformers and time series data in
ICU settings [24]. MMH time series forecasting is critical in domains
requiring continuous monitoring and decision-making, particularly in
sensitive healthcare environments like ICUs. These settings demand
real-time predictions of multiple physiological indicators such as RR
and SpO2 to enable proactive interventions and improve patient out-
comes. While classical deep learning models, including GRUs, LSTMs,
Bi-LSTMs, Bi-GRUs and CNNs, have shown promise in time series
analysis, they can struggle with capturing long-sequence dependencies
and inter-variable interactions in multivariate forecasting tasks [16].

Enhancements such as attention mechanisms in sequence-
to-sequence (S2S) architectures (e.g., S2S-LSTM, S2S-GRU) partially
address these limitations, but have yet to be shown to demonstrate
robust performance in multi-horizon forecasting within ICU settings.
Transformer-based models, particularly the Temporal Fusion Trans-
former (TFT) [25], have emerged as a powerful alternative due to their
ability to model complex temporal relationships and dynamic feature
selection. Despite their potential, the application of transformer models
to MMH forecasting in ICUs remains underexplored.

Existing research often focuses on single-variable or short-horizon
predictions, leaving a significant gap in addressing the unique chal-
lenges posed by ICU datasets, such as those from the MIMIC-III
dataset [17]. These challenges include high-dimensional data, variabil-
ity in physiological signals, and long-term predictions to support critical
care decisions. This study aims to bridge this gap by comprehensively
evaluating classical DL models, S2S architectures, and transformer-
based models for MMH time series forecasting in ICUs. Leveraging
the MIMIC-III dataset, we focus on understanding the performance
limitations of these models, and highlight the superiority of transform-
ers like TFT in handling long-sequence dependencies, generalizability,
and real-time forecasting capabilities. By addressing these gaps, this
research contributes to advancing predictive analytics in healthcare,
and supports the development of robust, real-time monitoring systems
tailored to critical care environments.

We have implemented the novel StreamHealth Multi-Horizon Al
(SMHA) framework to address the essential challenges of multivari-
ate multi-horizon (MMH) real-time healthcare monitoring. This frame-
work is designed to overcome limitations in existing methods, such
as handling complex multivariate time series data, intermittent mea-
surements, and the need for accurate synchronization across multiple
variables. By integrating AI with big data streaming technologies,
SMHA leverages an attention-based encoder—-decoder model alongside a
robust data infrastructure, including a data lake and streaming architec-
ture. This approach enhances predictive accuracy for RR and SpO2 over
various time horizons, marking a significant advancement in real-time
healthcare analytics.

The proposed framework also demonstrates the practical implemen-
tation of MMH forecasting by combining multivariate data aggregation
from IoT devices and sensors with a distributed file system using
Apache Flink and InfluxDB for efficient time series data handling.
Grafana further supports the system by enabling real-time analysis and
visualization of raw and predicted data. This comprehensive integration
ensures high availability, fault tolerance, and actionable insights, ulti-
mately contributing to proactive healthcare management and decision
making. By addressing existing gaps and advancing real-time moni-
toring, the SMHA framework paves the way for improved predictive
analytics in healthcare settings.

The current study investigates in detail the capabilities of time
series transformers (e.g., TFTs) to be able to learn from multivariate
time series data, and how they can be used to provide multi-horizon
predictions that are compared with classical DL. models and models
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with bidirectional, S2S, and attention features. The study explores the
robustness, generalizability, and stability of these models. In addition,
the architecture is extended to provide real-time monitoring. The main
objectives of our paper can therefore be summarized as follows:

« Introduction of the SMHA Framework: A novel framework has been
developed for the real-time multivariate multi-horizon forecasting
of critical ICU indicators such as SpO2 and RR, integrating data
lakes, streaming data, and Temporal Fusion Transformers.
Exploration of Transformer Architectures: For the first time, the use
of advanced transformer models, specifically the TFT, has been
investigated for MMH forecasting of physiological indicators in
ICU settings, addressing some of the limitations with classical
deep learning methods.

Comparison with Classical Deep Learning Models: Comprehensive
experiments have been conducted with classical and sequence
modeling methods, including LSTM, GRU, Bi-LSTM, Bi-GRU,
CNN, S2S, and S2S-Attention, benchmarking their performance
in both UMH and MMH forecasting tasks.

Demonstration of TFT Superiority: The TFT model significantly out-
performs classical deep learning approaches in both the UMH and
MMH tasks, particularly in handling long-sequence dependencies
and complex temporal dynamics.

* Robust Cascaded Fine-Tuning: A cascaded fine-tuning approach has
been implemented and validated, demonstrating the generaliz-
ability and robustness of the TFT model using unseen patient data
from the MIMIC-III dataset.

Real-Time Forecasting System: A simulated sensor system was de-
veloped, leveraging Python, Kafka, and Apache Flink for real-
time data generation, slicing, and forecasting using S2S-Attention
models for both SpO2 and RR in parallel.

Advancing Healthcare Monitoring: This work has contributed to im-
proving healthcare decision-making by enhancing the predictive
accuracy of real-time ICU monitoring systems.

Validation on MIMIC-III Dataset: The framework has been vali-
dated using a dataset of 20 patients, demonstrating the feasibility
and efficacy of the approach on real-world clinical data.
Generalizable Insights for Physiological Data Modeling: Key chal-
lenges in multivariate time series forecasting were addressed,
including temporal synchronization and variability, thereby pro-
viding insights applicable to broader physiological and healthcare
data analytics domains.

Potential for Broader Adoption: The practical applicability of the
framework has been highlighted in real-time healthcare monitor-
ing systems, paving the way for future research and deployment
in clinical settings.

The remainder of this paper is organized as follows. Section 2
presents the related work. Section 3 presents an overview of big data
streaming platforms. Section 4 presents the methodology and our ar-
chitecture. Section 5 discusses the experimental results and has an
associated discussion. Section 6 presents some of the limitations and
our ideas for future work. Finally, Section 7 concludes the paper.

2. Related work

This section is structured into four subsections to discuss the litera-
ture related to four aspects: predicting SpO2, predicting RR,
transformer-based models, and finally, real-time systems for medical
applications.

2.1. Predicting SpO2
Various studies have applied ML and DL classification models to

predict hypoxemia or non-hypoxemia. Erion et al. [10], applied logistic
regression (LR), XGBoost, a one-dimensional convolutional network
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(1DCNN), and LSTM on a patient’s blood oxygenation data to predict
hypoxemia or non-hypoxemia using a private dataset that collected
from an academic medical center’s Anesthesia Information Manage-
ment System (AIMS). This dataset included demographic data (age,
sex, height, weight), patient information, diagnoses, treatments, and
observations. Annapragada et al. [26] presented two stages of DL
models: regression and classification to predict SpO2 and to classify
SpO2 levels into hypoxemia and non-hypoxemia. For the regression
stage, SWIFT (SpO2 Waveform ICU Forecasting Technique) used two
different LSTM architectures for forecasting SpO2 30 min into the
future. The first deep LSTM architecture consisted of five hidden layers,
and the second shallow LSTM architecture consisted of two hidden
layers. Both had batch normalization and an output layer. The two
models, used to predict the level of SpO2, were evaluated by MSE.
Then, each time point was classified as hypoxemia and non-hypoxemia
for the classification stage based on an SpO2 threshold of 92%.

Bandopadhaya et al. [11] proposed an e-health solution that inte-
grates DL models with IoT devices for the early detection of problematic
SpO2 levels in COVID-19 patients. A time series of SpO2 levels for
patients was collected via IoT and used to train the encoder-decoder
LSTM model and predict SpO2 levels. The results showed that the
encoder—decoder LSTM model recorded the lowest error. More studies
have applied ML and DL regression models to forecast RR and SpO2,
and recently, deep learning methods have been used to leverage PPG.
Shuzan et al. [15] applied different regression models: support vector
regression (SVR), Gaussian process regression (GPR), ensemble trees,
linear regression, and decision tree regression (DTR) to forecast RR
and SpO2 separately using photoplethysmograms (PPG). They applied
different feature selection (FS) methods using the feature (selection)
Ranking Library (FSLib) to reduce the dimensionality of the PPG data.
GPR was chosen as the best ML algorithm for both RR and SpO2, and
the FS methods FitRGP and ReliefF gave the best performance for RR
and SpO2, respectively.

Gurvan et al. [12] applied the DL model to predict SpO2 using
PPG signals collected from the BIOSENCY BORA Band SpO2 Validation
Study (BORA) dataset. Zhang et al. [13] presented a customized dataset
collected from wearable sensing of PPG signals that were used to
monitor SpO2. They then applied linear/nonlinear models to predict
Sp02, resulting in a low RMSE of 1.8%. Tonmoy et al. [14] applied
different ML regression methods: logistic regression (LR), decision tree
regression (DTR), random forest regression (RFR), support vector re-
gression (SVR), and K-neighbors regression to predict SpO2 using a
private dataset of PPG signals collected using a smartphone. The results
showed that LR recorded the best performance with the lowest MAE.

Chowdhury et al. [18] proposed the ROSE-Net model inspired by
DenseNet and ConvMixer and then adapted it for one-dimensional data.
It included three stages: a projection stage, a convolution stage, and a
pooling with SpO2 estimation stage. Convolution layers with a patch
size equal to the stride were used to reduce the representation of a
single input. The output of each layer was concatenated with all the
other layers in the convolution layer, which were densely connected.
Then, the final features were pooled using the Global Average Pooling
Layer to estimate the SpO2 level. The model was trained on clinical
PPGs from BIDMC and was tested on the rPPG dataset. These results
demonstrated the model’s ability to estimate SpO2 levels. As observed,
most literature studies, especially in the ICU domain, depend on a single
input feature and can only predict one time step into the future.

2.2. Predicting RR

As mentioned, Kumar et al. [16] have applied different DL models
(CNN, LSTM, LSTM with an attention layer, a hybrid CNN-LSTM model,
Bi-LSTM, and Bi-LSTM with an attention layer) in order to be able
to predict RR one step ahead of time. They used 32- and 64-second
windowing on the BIDMC (extracted from MIMIC-II) and Capnobase
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datasets, which include electrocardiograms (ECGs) and PPGs, plus sur-
face electromyogram (SEMG) data that was collected from various
biosensors. The results showed that Bi-LSTM with an attention layer
recorded the best performance with the lowest MAE for the one-step
head prediction of RR. Baker et al. [27] proposed a simple and effective
respiratory quality index (RQI) scheme to assess the degree of quality of
each modulation-extracted respiration signal from ECG and PPG data
extracted from MIMIC-III. They then developed a BiLSTM model for
estimating RR, which employs calculated RRs and their supplementary
quality indices as input features. They estimated RR based on 20-, 30-,
and 60-second segments, and impressive MAE results were shown even
down to the shortest segment length. The results showed that their
proposed RQI with a BiLSTM recorded the best results for continuous
and non-invasive respiratory rate monitoring.

Soojeong et al. [17] presented a method that combined gradient
boosting (GB) with an autocorrelation function-based power spectral
feature extraction process to predict RR using the BIDMC dataset, which
achieved higher stability and accuracy. Their method recorded the best
performance when compared to LSTMs and SVR. Bian et al. [28] pro-
posed a DL model based on a network architecture (ResNet) to predict
RR values. PPG time-series data was used to train the model through
a process that augmented the data with a synthetic PPG dataset to
overcome the insufficient data problem often encountered in DL. Their
results showed that the proposed DL model scored the best compared
to classical methods. Again, most literature studies, especially in the
ICU domain, depend on a single input feature and predict a single time
step into the future.

2.3. Transformer-based models

Classical ML and DL models have some limitations in terms of
long sequence time-series forecasting. Transformer-based models us-
ing attention mechanisms can learn long temporal dependencies [29].
TFT is a well-known and powerful transformer-based model for multi-
horizon time-series forecasting [25], which has been used in different
domains. Li et al. [30] presented a novel model that combined CNNs
and TFTs to detect Obstructive Sleep Apnea (OSA) using single-lead
ECG signals. The model used a deep residual shrinkage module, a
multi-scale convolutional attention (MSCA) module, and a multilayer
convolution module to extract rich time-frequency features from short
ECG sequences efficiently.

In an ICU setting, Sun et al. [31] proposed the Static and Multi-
variate Temporal Attentive Fusion Transformer (SMTAFormer) to pre-
dict short-term ICU readmission risks by integrating static and dy-
namic temporal clinical data, using the MIMIC-III dataset to construct
the Readmission Risk Assessment (RRA) dataset. Leveraging a trans-
former encoder for temporal feature representation and a multi-head
attention mechanism, SMTAFormer captures intra-correlations among
multivariate temporal features and inter-correlations with static data.

He et al. [32] proposed TFT-multi, an extension of the Tempo-
ral Fusion Transformer (TFT), designed for simultaneous multivariate
time-series forecasting of vital sign trajectories in the ICU. Address-
ing the challenges of predicting multiple interconnected variables,
the model enhanced the original TFT by modifying its input-output
structure and loss function to handle multivariate data more efficiently.
Focusing on the healthcare domain, it predicted five vital signs: mean
arterial blood pressure, pulse, SpO2, temperature, and respiratory rate,
using data from MIMIC-IV plus an independent institutional dataset.
These studies highlighted the TFT’s potential in multi-horizon fore-
casting of multivariate ICU features. However, there is a research gap
in this literature whereby the TFT has not been deeply tested under
different settings, including single-task, multitask, and cascaded fine-
tuning for improved generalizability. We investigate in much more
detail the capabilities of TFTs compared with classical DL models to
predict multivariate outcomes under different training methodologies.
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Recent advances in time-series forecasting have introduced models
such as N-BEATS [33], Informer [34], FEDformer [35], and
Prophet [36]. N-BEATS is a powerful univariate architecture based
on backward and forward residual links, primarily designed for inter-
pretable univariate forecasting tasks. Prophet, developed by Facebook,
is widely used for business-oriented seasonal forecasting but is less
suitable for multivariate, high-frequency, and real-time applications.
Informer and FEDformer are efficient transformer-based architectures
optimized for extremely long sequences and massive-scale datasets
(e.g., weather and traffic), often requiring high computational resources
and lacking the fine-grained temporal interpretability necessary for
ICU monitoring. In contrast, TFT explicitly supports multivariate multi-
horizon forecasting, incorporates static and time-varying covariates,
and provides interpretable outputs, making it well-suited for healthcare
time-series analysis. Therefore, although we recognize the contribu-
tions of these models, we focused our evaluation on architectures that
align closely with the clinical forecasting goals of this study.

2.4. Real-time systems for medical applications

Various research studies have used Spark with ML to solve medical
problems. For example, Nair et al. [37] introduced a real-time system
for predicting heart disease using a decision tree (DT) and Spark. The
system was tested using health attributes that were extracted from
streaming tweets. Then, the DT was applied to predict the health status
of the user. Abderrahmane et al. [38] developed a real-time system for
predicting cancer diseases based on Spark and DTs. Firstly, an offline
model was developed using preprocessing and by analyzing historical
cancer datasets. Then, the model was integrated with Spark to give
predictions in real time. Ed-daoudy et al. [39] applied six ML models
with feature selection methods to develop offline models that were
also used in real time. Kafka was used to received streaming health
tweets and they were then ingested into Spark. The Spark Streaming
extension was used to extract health attributes, and random forest (RF)
was applied to give predictions in real time.

Ahmed et al. [21] applied various ML models in order to determine
the best model which could be used to predict heart disease in real
time. They used univariate and relief feature selection methods with
DT, SVM, RF and LR applied on the heart disease dataset. Kafka
was used to read data from Twitter and stream it to Spark. RF was
then applied to predict heart disease in real time. Farki et al. [40]
investigated techniques for real-time blood pressure forecasting, and
integrated ML techniques with real-time streaming data processing sys-
tems like Apache Spark and Kafka. Web-based tools were implemented
to test the scalability of this technology for remote patient tracking and
individualized healthcare. Ahmed et al. [41] also investigated a real-
time system for forecasting systolic blood pressure (SBP). They applied
DL models such as LSTM, Bi-LSTM and GRU on historical time-series BP
data, in order to determine the best model for forecasting. The Bi-LSTM
model was found to deliver the best results in predicting near-future
values for SBP in real time. Simulated sensors were used to generate
streaming SBP values, which were then sent to a Kafka topic (unit of
organization). The Spark Streaming extension was then used to read
this Kafka data in a streaming form, after which sliding window sizes
were applied to the data, and this was sent to the Bi-LSTM model to
predict near-future SBP values.

Liang Tan et al. [42] proposed a 5G-enabled real-time monitoring
for COVID-19 patients using big data platforms and DL models. Firstly,
they developed CNN and LSTM models for predicting COVID-19 using
ECG signals. Secondly, 5G was used to send and receive data from wear-
able sensors. After that, the Flink streaming data processing framework
was applied to access electrocardiogram data.
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Table 1
Comparing literature studies based on highlights and limitations.
Papers Years Highlights Limitations Datasets
Erion, 2017 Applied DL to forecast hypoxemia using just SpO2. Used a Did not cover multi-task transformer models, multivariate multi-horizon forecasting, Private dataset
Gabriel personalized dataset (AIMS). integrating big data platforms with models, or weight optimization using multi-patient
et al. [10] time-series data.
Nair et al. 2018 Introduced a real-time system with DT to predict heart Used structured datasets, did not use time-series data. Did not cover multi-task MIMIC-IIT
[37]1 disease using a structured dataset, Spark and Kafka. Tested transformer models, multivariate multi-horizon forecasting, or weight optimization using
predictions in real time using health-related attributes multi-patient time-series data.
extracted from streaming tweets.
Abderrah- 2018 Introduced a real-time system with DT to predict cancer Used structured datasets, did not use time-series data. Did not cover multi-task Structured
mane et al. disease using a structured dataset, Spark and Kafka. Tested transformer models, multivariate multi-horizon forecasting, or weight optimization using cancer disease
[38] predictions in real time using a simulated dataset. multi-patient time-series data. dataset
Ahmed 2020 Introduced a real-time system with ML and feature selection Used structured datasets, did not use time-series data. Did not cover multi-task Structured heart
et al. [21] methods to predict heart disease using a structured dataset, transformer models, multivariate multi-horizon forecasting, or weight optimization using disease dataset
Spark and Kafka. multi-patient time-series data.
Ahmed 2021 Investigated a real-time system for forecasting BP in real Used only one feature based on time-series data. Did not cover multi-task transformer MIMIC-IIT
et al. [41] time using time-series data, based on a DL model, Spark and models, multivariate multi-horizon forecasting, or weight optimization using multi-patient
Kafka. time-series data.
Annapragada 2021 Forecasted SpO2 using a DL model and time-series data. Forecasted SpO2 only. Did not cover multi-task transformer models, multivariate Private dataset
et al. [26] Applied classifications and regressions. Applied DL to the multi-horizon forecasting, integrating big data platforms with models, or weight
prediction of hypoxemic events using SpO2. Proposed their optimization using multi-patient time-series data.
SWIFT model to estimate results.
Baker et al. 2021 Respiratory modulation signals were extracted from ECG and Did not cover multi-task transformer models, multivariate multi-horizon forecasting, MIMIC-IIT
[27]1 PPG waveforms to estimate RR. Applied several different integrating big data platforms with models, or weight optimization using multi-patient
neural network (NN) structures to predict RR. Developed an time-series data.
RQI scheme to assess the results.
Kumar et al. 2022 Applied LSTM and GRU DL models to estimate RR and Did not explore models for long-period time series. Used multi-second segments from BIDMC, a
[16] breathing patterns. Applied the attention mechanism to the BIDMC dataset. Did not cover multi-task transformer models, multivariate subset of
improve the algorithm’s performance. multi-horizon forecasting, integrating big data platforms with models, or weight MIMIC-II
optimization using multi-patient time-series data.
Soojeong 2022 Combined GB with an autocorrelation-based power spectrum Did not explore models for long-period time series. Used multi-second segments from Private dataset
et al. [17] to extract features. Applying ML and DL models to predict the BIDMC dataset. Did not cover multi-task transformer models, multivariate
RR. multi-horizon forecasting, integrating big data platforms with models, or weight
optimization using multi-patient time-series data.
Zhang, 2022 Forecasted SpO2 using linear/nonlinear models based on Did not cover multi-task transformer models, multivariate multi-horizon forecasting, Private dataset
Qingxue personalized time-series data. integrating big data platforms with models, or weight optimization using multi-patient
et al. [13] time-series data.
Shuzan 2023 Applied ML models to estimate RR and SpO2 from PPGs. Did not cover multi-task transformer models, multivariate multi-horizon forecasting, BIDMC, a
et al. [15] Applied a feature selection approach. integrating big data platforms with models, or weight optimization using multi-patient subset of
time-series data. MIMIC-II
Bandopad- 2023 Forecasted SpO2 using an encoder-decoder model based on Did not cover multi-task transformer models, multivariate multi-horizon forecasting, Private dataset
haya et al. time-series data. Applied model on own dataset. integrating big data platforms with models, or weight optimization using multi-patient
[11] time-series data.
Tonmoy 2024 Forecasted SpO2 using ML models based on personalized Did not cover multi-task transformer models, multivariate multi-horizon forecasting, Private dataset
et al. [14] time-series data. Applied different pre-processing steps to integrating big data platforms with models, or weight optimization using multi-patient
enhance results. time-series data.
Chowdhury 2024 Proposed ROSE-Net to estimate SpO2 using DL. Included Did not explore models for long-period time series. Used multi-second segments from BIDMC, a
et al. [18] three stages: a projection stage, a convolution stage, and a the BIDMC dataset. Did not cover multi-task transformer models, multivariate subset of
pooling with SpO2 estimation stage. multi-horizon forecasting, integrating big data platforms with models, or weight MIMIC-II

optimization using multi-patient time-series data.

2.5. Gaps in the literature

Table 1 shows a comparison of the research studies related to
the areas discussed. The comparison highlights some of the gaps in
the literature as regards physiological signal forecasting in ICU set-
tings. Most prior work has focused on single-task modeling, typically
addressing either SpO2 or RR independently, without exploiting the
potential of multitask learning for joint signal forecasting. Furthermore,
most of these studies were limited to univariate and single-horizon
time-series predictions, thus overlooking the complex temporal de-
pendencies and interactions between multiple physiological variables
over varying forecast horizons. Although transformer-based architec-
tures, particularly the Temporal Fusion Transformer (TFT), have shown
promising performance in other domains, their application remains
underexplored in healthcare time-series forecasting, with few studies
addressing their potential for multi-horizon multivariate predictions.
Additionally, existing research has rarely integrated real-time big data
infrastructures such as Apache Kafka and Flink with predictive models,
relying instead on offline processing or structured datasets that are
not representative of streaming ICU environments. Moreover, none of
the surveyed approaches adopted patient-level cascaded fine-tuning
strategies to improve model generalizability. They did not evaluate
model robustness across heterogeneous patient data from large-scale
clinical repositories such as MIMIC-III. These limitations collectively
underscore the novelty and necessity of the proposed StreamHealth

framework, which uniquely integrates multivariate multi-horizon fore-
casting with attention-based modeling, patient-specific fine-tuning, and
real-time deployments to advance continuous and clinically relevant
ICU monitoring.

3. Platforms

This section describes various platforms that we used to develop our
real-time forecasting framework. It should be noted that integrating
a machine learning model into a real-time monitoring system has a
well-known and almost standard approach [37-39,41]. We followed
the same streaming methodology, but with a different problem setting.

3.1. Apache Kafka

Apache Kafka is an open-source event-streaming system. Event
streaming captures real-time data from sensors, databases, cloud ser-
vices, and applications to form a stream of events. This stream of events
can be routed to different applications for storage and processing.
Kafka is designed to pipe these events from the source to the desired
location [43]. Kafka has three main capabilities. The first is the most
basic function: to publish and subscribe to streams of events for writing
and reading data. The second function is to store data streams for as
long as is needed. The third is to process streams in real time or in a
batch format [43]. The Kafka cluster consists of one or more brokers
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that manage the system’s reading and writing functionality. The cluster
uses Apache Zookeeper to maintain its state. Events are stored in topics
(a topic is a category or unit of organization in Kafka), and are stored
in an append-only sequence. Kafka brokers can hold more than one
partition for one topic [43].

Kafka has several APIs for exporting and reading data. The Producer
API allows an application to publish a stream of events on one or
more Kafka topics. The Consumer API reads one or more topics and
processes the events they produce. The Streams API allows stream
processing in real-time or batched processing [43]. This can also be
used to group topics or perform fundamental transformations, enabling
the configuration of input and output streams. Kafka also has a Connect
API, which is used to build and run reusable data connectors to import
from or export to external applications or systems. Some big data
systems have also built their own native connectors to Kafka to allow
for easier transferal of events.

3.2. Apache flink

Apache Flink is an open-source framework developed by the Apache
Software Foundation for distributed processing of streaming data and
batch data. It is designed with data streams in mind, and offers a very
low latency and a high level of fault tolerance. Flink works well for
both streaming data and big data as it has good scalability in terms
of performance, and it can be deployed on several systems, including
YARN, Kubernetes, and Mesos [44]. It includes the following functions:

- Table API is an API that offers both traditional tables, similar
to those found in SQL, and dynamic tables, which are used for
representing data streams. This API provides functionality that is
more or less identical to SQL queries with standard commands
such as SELECT, JOIN, GROUP BY, etc.

FlinkML provides a set of scalable ML algorithms and an intuitive
APL It contains algorithms for supervised learning, unsupervised
learning, data preprocessing, recommendation, and other utilities.
DataStream API. This allows users to process data streams and
work with the data in real time. This is typically not used unless
it is needed for significant optimization. The stream and batch
data processing layer is where both bounded and unbounded data
streams can be processed. This layer contains both the DataStream
and DataSet APIs. The DataStream API works with real-time data,
while the DataSet API is for batch processing. Batch processing
can be specified as a window, either tumbling or sliding, and
allows for time-based batching.

3.3. InfluxDB

InfluxDB is a real-time focused database service built with time-
series analytics in mind. InfluxDB is also very scalable, allowing for
clustering and cloud-based auto-scaling of clusters. InfluxDB is heavily
optimized for time-series data [45], which tends to be generated in
small sizes but very quickly. This could be up to as high as mil-
lions of data points per second, which is far too fast for conven-
tional databases. InfluxDB has been developed for high-availability
data retrieval, fast storage, IoT sensor data, and providing real-time
analytics [45]. InfluxDB is a time-series database that combines the
concepts of a database with retention time and policies. InfluxDB’s mea-
surements function acts much like tables do in a relational database,
and includes tags, fields and associated timestamp values. The tags are
indexed columns, and fields are not. Each record in the InfluxDB is
associated with a timestamp in a nanosecond-precision format. This
timestamp is essential for writing and processing the data in subsequent
layers [45].
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3.4. Grafana

Grafana is an open-source software system that allows services to be
monitored in a real-time and user-friendly way. It enables querying, vi-
sualization, and alerts on data or application logs. It allows developers
to create live, easy-to-process dashboards and send live alerts to users.
Alerts can be distributed using Grafana Alerting, which can go through
several notifiers, including PagerDuty, SMS, email, and Slack [46].

Dashboards are the main feature of Grafana. Dashboards allow for
a broad range of data visualizations. A sample dashboard could be
one used for monitoring Kubernetes clusters. Such a dashboard would
show many visualization types, including metrics over time between
locations. It would also give information on any errors, what clusters
they originate from, and storage availability. Such dashboards are
designed to make logs as readable and user friendly as possible. Plugins
allow many data types to be interpreted and various visualizations
to be shown to users, such as the outcomes of data analyses [46].
Grafana allows many frameworks and technologies to be monitored in
one location. For example, a dashboard could be created for developers
to ensure correct data flows from various data producers (sensors) to
data consumers (sinks) [46].

4. Methodology

This section gives details of the dataset description, the problem
formulation, and the proposed StreamHealth Multi-Horizon AI (SMHA)
framework. The proposed framework has two pipelines, as shown in
Fig. 1, including (1) a pipeline of model deployment and (2) a pipeline
of online forecasting.

4.1. Dataset description

The goal of this work is to determine the best model and use it to
evaluate our system in real time. To develop the offline model, SpO2
and RR (multivariate) time series were extracted minute-by-minute
for 20 ICU patients with chronic diseases, and the data was obtained
from the Medical Information Mart for Intensive Care (MIMIC-III) [47]
database. The extracted patients were aged from 53 to over 80 years,
and the dataset includes 11 female and 9 male patients. Table 2 shows
the database characteristics and some sample entries.

4.2. Problem formulation

Multi-horizon time-series forecasting is vital for real-time patient
monitoring in ICUs, as it enables clinicians to anticipate changes in
a patient’s health over multiple future intervals, supporting proac-
tive decision making. This forecasting provides insights into critical
variables such as heart rate, oxygen saturation, and blood pressure,
which can exhibit complex temporal dependencies and abrupt changes.
Leveraging advanced architectures such as encoder—decoder models
and temporal transformers, which effectively integrate static and time-
varying covariates, can improve interpretability and accuracy in these
scenarios. Accurate predictions empower clinicians to adjust treatments
dynamically, reducing risks and improving patient outcomes. In this
study, we investigate the prediction of univariate and multivariate
time-series data using diverse DL models, including RNNs and trans-
formers, which are well-known models for interpreting time-series data.
A crucial step is the formulation of the dataset as a regression task.
Formulating the dataset as a regression task using different windows
involves defining a structured approach to divide the time-series data
into input-output pairs. The process is described as follows:

(1) Define the look-back window (i.e., input sequence) where a
fixed number of past observations, referred to as the look-back window
(k), is used as input features. This window consists of time-dependent
input features such as observed values, known inputs, and exogenous
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Fig. 1. StreamHealth Multi-Horizon AI (SMHA) framework architecture.

Table 2

Database characteristics and some sample entries.
Patients Age Gender RR mean + std RR min RR max SpO2 mean + std SpO2 min SpO2 max
Training set 69 + 10.95 8F/7M 20.561 + 3.11 9 38 97.85 + 1.15 82 100
Testing set 64 + 4.88 3F/2M 23.017 + 2.23 10 43 97.80 + 0.96 88 100
Patient 1 70 Female 24.45 + 6.06 10 35 97.80 + 2.13 88 100
Patient 2 71 Female 24.95 + 6.80 13 43 99.40 + 0.87 96 100
Patient 3 60 Female 19.21 + 3.69 12 27 96.88 + 2.44 88 100
Patient 4 60 Male 24.76 + 5.17 14 35 98.17 + 2.09 88 100
Patient 5 62 Male 21.69 + 4.49 11 33 96.74 + 2.22 87 100

variables. For example, for a time series y,, the input at time ¢ is defined 1. The clinical justification for prediction horizons (7, 15 and

as:

X =ik Vickats -+ > Vi1l

(2) Define the forecast horizon (i.e., output sequence), denoted
as 7, which specifies the number of steps into the future for which
predictions will be made. The output for the model at time ¢ is the
target value(s) at future time steps:

Y = [Vir1: Vig2s oo s Vigel

As shown in Fig. 2, a sliding window technique creates overlap-
ping input-output pairs throughout the dataset. This ensures that each
time series step is considered for input and output creation. For each
timestamp ¢, an input-output pair is created as:

Input: X, = {[¥;_s Y_k41»---» ¥1_1], covariates for r — k to 1 — 1}

Output: Y, = {.Vx+1a Vig2s oe- »y,+r}

As shown in Fig. 2, we investigate different settings by formulating
the problem as a univariate (i.e., RR or SpO2 alone) and multivariate
(i.e., RR and SpO2 together) multi-horizon time-series forecast with
different input and output window sizes. Different DL models are
evaluated for these different problem settings.

We tested several settings for prediction horizons (i.e., 7, 15 and
25 min) based on different lag windows (i.e., 3, 7 and 15 min).

25 min): This allows the system to provide:

(a

(b

(c

2. The
The

) Short-term prediction (7 min): Immediate forecasting is
critical for detecting acute events such as sudden drops
in SpO2 or rapid changes in RR. These short-term fore-
casts allow swift interventions, such as adjusting oxygen
therapy or administering emergency treatments.

) Mid-term prediction (15 min): A mid-range horizon is
clinically relevant for anticipating trends that may not
require immediate action but indicate the potential for
future instability. For example, a gradual decline in SpO2
or a rising RR trend over 15 min might signal the onset
of hypoxemia or respiratory distress, providing a window
for preemptive measures.

Long-term prediction (25 min): Long-term predictions are

essential for resource planning and proactive patient man-

agement in intensive care units (ICUs). 25 min forecasts
can enable clinicians to assess the effectiveness of ongoing
interventions and adjust care plans proactively.

~

clinical justification for lag windows (3, 7 and 25 min):
selected lag windows reflect the temporal dependencies

necessary for accurate multi-horizon forecasting:

(a

) Short lag (3 min): Captures immediate trends and high-
frequency variations in vital signs, essential for real-time
monitoring and quick adjustments.
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Fig. 2. Problem formulation as a time-series forecasting regression task [25].

(b) Moderate lag (7 min): Balances between capturing short-
term variations and incorporating additional historical
context, providing a robust input for mid-term forecasts.

(c) Long lag (25 min): Includes extensive historical data to
model longer-term patterns and dependencies, enhancing
the accuracy of long-term predictions.

3. The alignment with real-world clinical decision-making: These
intervals are chosen to mirror critical decision-making time-
frames in ICUs, where clinicians rely on continuous monitoring
to make time-sensitive decisions:

(a) Real-time alerts: Short-term predictions (7 min) align
with the need for immediate alerts and intervention.

(b) Trend analysis: Mid-term forecasts (15 min) support trend
analysis, guiding decisions on the escalation of care or
changes in monitoring intensity.

(c) Proactive management: Long-term predictions (25 min)
aid in planning interventions and allocating resources,
such as preparing for potential intubation or transfer to
higher levels of care.

4. The Al significance of these settings is as follows:

(a) The integration of Al-driven models like the TFT en-
sures that these horizons are not arbitrarily selected but
are optimized based on the model’s ability to learn and
predict meaningful temporal dependencies. The model’s
self-attention mechanisms enable dynamic weighting of
lagged inputs, ensuring that the chosen time frames pro-
vide actionable and clinically interpretable predictions.

(b) AI enhances not only the accuracy of these predictions,
but also their utility by aligning with clinical workflows,
supporting continuous monitoring, and reducing the cog-
nitive burden on healthcare providers.

4.3. Pipeline of model deployment

Fig. 3 shows the piplines of developing models to foresacte RR
and Spo2. The main goal of the first pipeline is to obtain the best
model for forecasting RR and SpO2 time series, which is then integrated
with the second pipeline in the data transformation layer to forecast
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RR and SpO2 in real time. We compare the performance of several
DL algorithms with the transformer model. These models are tested
for forecasting univariate multi-horizon (UMH) and multivariate multi-
horizon (MMH) time series. Different experiments are executed to
optimize the many models and test their learning capabilities. Firstly,
the various DL models such as long short-term memory (LSTM), gated
recurrent unit (GRU), bidirectional LSTM (Bi-LSTM), Bi-GRU, and CNN
are used for predicting SpO2 or RR in the UMH setting. Secondly, the
MMH setting is tested using sequence-to-sequence (S2S) models such
as S2S-LSTM and S2S-GRU, and sequence-to-sequence with attention
(S2S-A) models such as S2S-A-BiLSTM and S2S-A-BiGRU. Classical DL
models achieve promising results but have limitations in handling long
sequences. This limitation can be solved using transformer architec-
tures, especially time-series transformers such as the temporal fusion
transformer (TFT).

The TFT model is tested for UMH and MMH tasks, and is compared
with the other classical DL models. All models are trained and tested
using long time-series data for individual patients. Each patient’s data
is split into 80% training data and 20% testing data, and the model is
trained and tested on single-patient data. The TFT achieved superior
results compared to all classical DL models. SpO2 and RR MMH time-
series forecasting are further investigated using a TFT transformer.
To test the model’s generalizability and robustness, a cascaded fine-
tuning approach is used to sequentially and cumulatively fine-tune the
TFT model with a set of patients, and then test it with a different
dataset. To perform this experiment, we collect a dataset of 20 MIMIC-
III patients and divide them into 15 patients for training and five for
testing. The TFT model is fine-tuned 15 times in a cascading way. Then,
the model is tested using the five testing examples. The TFT model
achieves promising generalization results on the unseen data from the
five patients used for testing. A simulated sensor that generates RR and
SpO2 time-series is developed using a Python script, and the data is
then stored in a Kafka topic.

4.3.1. Data pre-processing
Data pre-processing includes two steps: filling in missing values and
normalizing data.

» Filling in missing values: we replace null values using forward
fill, a data imputation technique used to handle missing values in
datasets, particularly time-series data [48].

» Normalizing data: The data is scaled from the original range to
a new range of 0 to 1 to improve and simplify model training.
Python’s MinMaxScaler has been utilized for scaling numbers
to be between 0 and 1. Predicted outcomes are rescaled to the
original range using an inverse_transform function [49] in order
to evaluate the models.

4.3.2. Sequence-to-sequence autoencoder model

Sequence-to-Sequence (S2S) autoencoder models are comprised of
an Encoder, Decoder, RepeatVector and a TimeDistributed layer. They
include one Encoder layer and one Decoder layer. S2S models contain
LSTMs and GRUs that are utilized like Encoders and Decoders [50]. The
input to the models is a sequence of past time steps and the number of
features (RR and Sp02), and the output of the model is a sequence of
future time steps with several features.

The Encoder part consists of various layers. The Encoder’s inputs
module processes sequences of inputs structured as (n_past, n_features),
where n_features is the total of all the features per time step, including
Sp0O2 and RR data, and n_past is the number of time steps that have
previously been taken into consideration. The architecture’s GRU layer
skillfully captures the temporal relationships present in these input
sequences, enabling efficient sequence modeling. To reduce overfitting
during training, a dropout layer is deployed to deliberately avoid
relying too much on specific nodes. After sequence processing, the
Encoder’s states module aggregates the final states, including the LSTM



H. Saleh et al.

Computers in Biology and Medicine 194 (2025) 110406

Single-task |
Data collection

Data
Pre-processing

Splitting dataset Training Models

MIMC-III Filling missing Training LSTM
'J\/J\pAN— e = GRU S
——> n o
Bi-LSTM LR
RR o3
o E ©
> Bi-GRU e bor
A
J\/\v-v./ Normalizing ng CNN
=T data set
Sp02 TCN
TFT
[y
Multi-task |
Data — s
Data collection Pre-processing Splitting dataset Training Models
hMCIT Filling missing -Training Seq2Seq-LSTM
”’\/J\J.AN walues set Seq2Seq-GRU
c
RR Seq2Seg-Attention % 8
-Bi-GRU- g3
| > Bt s E
J\/\,-VJ Seq2Seq- &
SpO2 J Attention-Bi-LSTM
Normalizing est LS
data P
|

Fig. 3. Univariate multi-horizon and multivariate multi-horizon steps.

layer’s hidden and cell states. These combined states function as a
succinct synopsis of the input sequence, and are essential for guiding
further decoding operations in Algorithm 1.

The RepeatVector layer is an essential design component, as it re-
produces the Encoder’s output states over several steps and aligns them
with every step in the output sequence. This technique ensures that
the Encoder provides the Decoder with complete context, improving
prediction accuracy and coherence. Then, the Decoder module’s LSTM
layer analyzes these recurrent Encoder states along with earlier outputs,
using this context to repeatedly predict future outputs while training.
To efficiently combine these predictions, the TimeDistributed dense
layer applies a dense transformation to each time step of the output
sequence. The deployment of this layer makes it easier to generate a
series of output vectors, each of which adds to the overall forecasting
power of the model, as shown in Algorithm 1.

4.3.3. Sequence-to-sequence with attention models

The core component of the S2S-A model is an attention-based
Encoder-Decoder architecture that employs either Bi-GRU or Bi-LSTM,
and such models are referred to as either S2S-A-BiLSTM or S2S-A-
BiGRU respectively. It consists of two main parts: the Encoder and
the Decoder, as shown in Algorithm 2. The Encoder part begins by
taking an input sequence of shape (n_past, n_ features), where n_past
represents the number of past time steps, and n_features is the number
of aggregated features per time step (using RR and SpO2). Bi-GRU
processes the input sequence, collecting past and future dependencies,
and concatenating the forward and backward hidden states to create
the final hidden state.

Algorithm 1 Encoder and Decoder process.

1: Encoder process
2: Encoder inputs: (n_past, n_features)

* n_past: Number of time steps in the past.
* n_features: Number of aggregated features for RR and SpO2.

3: GRU layer: Captures temporal dependencies in the input sequences
effectively.

: Dropout layer: Prevent overfitting.

: Encoder states: LSTM layer after processing the input sequence.

: Decoder process

: RepeatVector layer: Repeats the Encoder’s output.

: GRU layer: Processes the repeated Encoder states.

: TimeDistributed dense layer: Applies a dense transformation to
each time step independently.

© 0 N O U A

The GRU output is then subjected to an attention layer, which
computes scores between each Encoder’s and Decoder’s hidden states.
These scores are then normalized using the softmax function, enabling
the model to concentrate on distinct segments of the input sequence.
The Encoder output computes weights for the inputs to prepare for
the Decoder based on this attention mechanism. This creates a context
vector, representing significant portions of the input sequence and
repeating them n_future times via the RepeatVector layer. This repeated
attention output serves as the Decoder’s input. It processes the sequence
using a GRU layer to produce a series of output states. Considering the
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Algorithm 2 Process for S2S-A models.

1: Initializations (n_past,n_features), e;, is the attention score, ;, is the
normalized attention weight

2: Encoder part

: Encoder inputs: (n_past, n_f eatures)

4: Process the input sequence.

w

h, = GRU,(h,_y,x,)
7, = GRU, (B, x,)
5: Concatenate forward and backward hidden states.
hy = (g3 )
6: Apply attention mechanism to the output of the Bi-GRU.
7: Compute attention scores.
e;, = score(s;_y, h,)
8: Normalize the attention weights.
exp(e; ;)
ZrT=1 exp(e; )
9: Calculate weighted inputs based on the attention mechanism.

10: Apply attention weights.
11: Generate a context vector.

Xy =

12:
13:
14:
15:
16:
17:

Repeat the attention output.

Output the context vector.

Decoder part

Takes the previous input from the Encoder.
Applied to the repeated attention output sequence.
Processes the output sequence.

s; = GRU(s;_;, ¥,_1.¢;)

18:
19:
20:

Generate values at each time slot.
Forecast values at a specific time.
Generate the whole output sequence.

0, =W,[s;:¢]1+ b,

P(y;1y;» X) = softmax(o;)

21: End

context vector and hidden states, the Decoder produces a single value
at each time, and the output states added together make up the whole
output sequence.

4.4. Temporal convolutional networks (TCNs)

TCN is a type of neural network architecture designed for sequence
modeling tasks that handle entire sequences in parallel with stable
gradient propagation [51]. A CNN is typically associated with images;
TCNs tweak that robust architecture for sequence modeling tasks using
one-dimensional convolutions that slide over the input sequence [52].
The real power of TCNs lies in how they manage sequence modeling
and time-series forecasting. Its model handles long-term dependencies
and respects the causality of time without suffering from memory
degradation. The combination of dilated convolutions and parallel
processing allows TCNs to outperform traditional methods, while its ar-
chitecture goes deep enough to capture both short-term and long-term
dependencies. At the heart of TCNs is the convolution operation [52].
Specifically, TCNs use dilated convolutions, which can be expressed
mathematically as [53]:

k-1

Yoy =Y f@)-xt—d i)
i=0

where y(¢) is the output at time step #, /(i) is the filter of size k, and x(r—
d -i) is the input sequence. In addition, d represents the dilation factor,

10
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which aims to control the spacing between the filter elements to allow
the network to expand the receptive field exponentially, corresponding
to its depth. Determining the receptive field of a TCN is critical to
determine the scope of the input that can be seen by the network. It
is calculated from [53]:

k-1

R=1+k=1)) f()
i=0

4.4.1. Multi-horizon time-series forecasting using a temporal fusion trans-
former

The Temporal Fusion Transformer (TFT) is a novel deep learning
model designed for interpretable multi-horizon time-series forecasting.
The TFT combines high forecasting accuracy with the ability to provide
detailed insights into the underlying temporal dynamics, making it
a powerful tool for real-world applications in retail, healthcare, and
finance [25]. Fig. 4 presents a high-level architecture of the TFT,
which is explicitly designed to address the challenges of multi-horizon
forecasting by incorporating diverse data sources and providing inter-
pretability. The architecture integrates three main input types: static
covariates, past observed inputs, and a priori known future inputs,
ensuring each input type is handled appropriately to capture its con-
tribution to the forecast. The Variable Selection Networks (VSNs) layer
dynamically identifies the most salient features for each time step,
thus focusing computational effort on relevant inputs. Gated Residual
Networks (GRNs) are used extensively throughout the model to enable
an efficient flow of information while allowing the network to bypass
unnecessary computations. Local time-dependent patterns are captured
through LSTM layers, while multi-head attention layers learn long-
term temporal dependencies across the dataset. Additionally, context
vectors derived from static covariates are integrated at multiple points,
allowing static metadata to condition temporal dynamics effectively.
Prediction intervals are generated using quantile regression, providing
probabilistic forecasts across all horizons. The architecture is modular,
combining interpretable components with high-performing temporal
layers, enabling the integration of robust forecasting and actionable
insights into the model’s behavior.

The TFT achieves superior performance, outperforming existing
benchmarks across datasets with diverse temporal dynamics, including
simple univariate and complex multivariate time series. It enables
dynamic feature selection by employing VSNs to identify and prioritize
relevant input features at each time step, enhancing predictive accuracy
and reducing noise. With Gated Residual Networks (GRNs), the model
dynamically skips unnecessary computations, adapting to datasets of
varying complexity. Moreover, the TFT provides unified input handling
by integrating static metadata, observed historical data, and known
future inputs, ensuring comprehensive modeling for diverse datasets.
Formally, the goal of multi-horizon forecasting is to predict y,,, for
v € {1,2,...,7h.x) based on various input types: static covariates
s € R™s, observed past inputs z,_,., € R™z, and known future inputs
Xi—f:t+ty, € R™*. The predictive model is formulated as:

Ve =S 2 Xk )

where f represents the learnable architecture. The TFT generates prob-
abilistic forecasts for different quantiles ¢ by minimizing the quantile
loss:

QL. ). ) =q(y =P + L =P - y)4
where (x), = max(0,x). The total loss for training is the sum of the

quantile losses across all time steps and quantiles:

Tmax

L@w)= 3 3 ¥ QL i1 —7.1).9)

YERqEQ =1

where Q represents the training dataset and W are the model param-
eters. Gated Residual Networks (GRNs) are a core component of TFTs,
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Fig. 4. Temporal fusion transformer [25].

designed to enable adaptive non-linear processing. Given an input a
and optional context ¢, the GRN computes:

GRN(q, ¢) = LayerNorm(a + GLU(#,))
where:

n =Wy +b,, m =ELUW,a+Wsc+by)

GLUs are used within GRNs to provide selective gating:

GLU(y) = o(Wyy + by) © (W5y + bs)

where ¢ is the sigmoid function, ® denotes element-wise multiplication,
and W and b are learnable parameters. To capture long-term tempo-
ral dependencies, the TFT employs interpretable multi-head attention.
Standard scaled dot-product attention is given by:

T
0K v
Vd
where Q, K, and V are the query, key, and value matrices, and d is the
dimensionality. The interpretable multi-head attention modifies this as:

Attention(Q, K, V) = Softmax(

My
InterpretableAttention(Q, K, V) = L Z Attention(QW ", K Wlé', VW),
L

where W/, W} and W, are learnable weights, and my; is the number of
attention heads. For locality enhancement, the TFT uses an LSTM-based
sequence-to-sequence layer. The output of this layer, with n specifying
the position index, is denoted as:

@@, n) € {(t,—k), ..., B, Tmay)}
The outputs are processed via a gated skip connection:
¢'(t,n) = LayerNorm(¢(t, n) + GLU(¢(t, n)))

To analyze persistent patterns, attention weights are aggregated
across time steps and horizons. The contribution of a feature at time
n is measured by:

T
a(t,n, ) = % Z a(t,n, 1)
=1

where a(7,n,7) is the attention weight for position » at horizon z. To
detect regime shifts, the attention patterns are compared using the
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Bhattacharyya distance:

dp,q)=V1-pp.q)

where:
p(p.q) = Z \/Pjd;
j

For a given time step ¢, the distance metric is computed as:

Tmax

dist(t) = € Z d(a(r), a(t, 7))
T,

max r—|
4.5. The pipeline of online forecasting

The pipeline of online forecasting consists of four main layers, each
of which transfers data to the next layer: data ingestion, data lake,
data transformation, and data visualization. The following is a detailed
discussion of each layer, after some initial comments on streaming data.

 Streaming data resources: Various streaming data sources, such
as wearable sensors, continuously generate data streams contain-
ing physiological variables like SpO2 or RR. These data streams
are ingested into Kafka topics, where they are processed and
aggregated in real time using Apache Flink. Both Kafka and Flink
have previously been discussed in detail.

Data ingestion layer: This layer is the aggregation layer, where
data is aggregated from wearable sensors using batch process-
ing or real-time processing techniques. The data ingestion layer
collects and imports raw physiological data, such as SpO2 and
RR, from various sources. In this framework, a simulated sensor
generates the time-series data, which is then captured by the
Kafka Producer API. The data ingestion layer ensures the seamless
intake of continuous data streams, facilitating the initial step of
data processing and making the data available for subsequent
layers in the system. This layer is critical in ensuring that the data
is efficiently and accurately ingested into the system for real-time
analysis and forecasting.

Data lake layer: A data lake is a centralized repository that saves
significant amounts of raw data in different formats, including
structured, semi-structured, and unstructured data. It provides a
schema-on-read approach to help data remain flexible for data



H. Saleh et al.

ingestion and analysis [54]. The SMHA framework’s data lake
layer is a centralized repository for holding vast amounts of
raw, organized, and unstructured physiological data, including
RR and SpO2. The massive volumes of data gathered from the
data ingestion layer can be efficiently stored, managed, and re-
trieved with this layer. The data lake layer’s scalable and flexible
data architecture supports the subsequent data transformation
and visualization (analysis) processes, enabling robust Al-driven
forecasting and real-time health monitoring.

Data transformation layer: The raw physiological data kept
in the data lake must be processed and transformed into an
organized and analyzable format by the data transformation layer
of the SMHA system. The transformation layer gets the data
ready for Al-driven forecasting by using methods including filter-
ing, aggregation, and standardization. For example, windowing
and stream processing are carried out every three minutes using
Apache Flink. The TFT model is then provided with the altered
data to forecast SpO2 and RR. The transformation layer ensures
that the data is synced, cleaned, and prepared for instant analysis
and display.

Data visualization layer: The SMHA framework’s data visualiza-
tion layer is in charge of presenting the predicted physiological
data, such as expected SpO2 and RR values, in an understandable
and user-friendly way. The data visualization layer links to In-
fluxDB, where the projected data is kept, using tools like Grafana
to provide real-time visuals that assist healthcare professionals
in properly monitoring and interpreting the data. The data vi-
sualization layer makes it possible to get precise and valuable
information, which supports proactive healthcare management
and well-informed decision making.

In summary, four key considerations underpin the design of the
deployment pipeline. First, each component — Kafka for data ingestion,
Flink for stream processing, InfluxDB for time series storage, and
Grafana for visualization — was purposefully selected for its critical
role in supporting real-time ICU monitoring, enabling continuous data
flows, ensuring low-latency analytics, and providing an intuitive visu-
alization of vital signs. Second, the system architecture is intentionally
modular and scalable, allowing for flexible adaptation or substitu-
tion with clinical-grade components in future implementations. Third,
the entire deployment operates within a simulated environment using
synthetically streamed MIMIC-III data, which provides a realistic and
controlled benchmark for assessing the system’s responsiveness and
stability before clinical integration. Fourth, this design aligns with the
operational demands of ICU settings, and serves as a foundational
prototype for embedding predictive models into real-time streaming
infrastructures within smart healthcare ecosystems.

Importantly, while the infrastructure may appear sophisticated for
a proof-of-concept study, it is essential to have all of the components to
accurately emulate the streaming dynamics that would be encountered
in real-world settings. The pipeline is not presented as a finalized clin-
ical solution, but rather as a practical and extensible framework with
clear pathways for integration into hospital systems and IoT-enabled
environments. Future work will focus on clinical usability assessments
and the system’s deployment in real-world intensive care contexts.

5. Results and discussion

In this section, we discuss the results from various models for our
two experiments. In Experiment 1 - univariate multi-horizon time-
series forecasting — we test the performance of different models (LSTM,
GRU, Bi-LSTM, Bi-GRU, CNN, TCN, and TFT) for predicting either RR or
SpO2 individually. In Experiment 2 — multivariate multi-horizon time-
series forecasting — we then explore the performance of various models
(S2S-LSTM, S2S-GRU, S2S-A-BiLSTM, S2S-A-BiGRU, TCN, and TFT) for
predicting both RR and SpO2 simultaneously. In each experiment, we
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noticed a significant improvement using the TFT model when compared
with the other models.

5.1. Experimental setup

The dataset contains multivariate time-series data for 20 patients.
This dataset is divided into 15 patients for fine-tuning and five patients
for testing. The DL models are tested under different scenarios, as
shown in Fig. 5. The first setting uses just five testing examples. The
data for a single patient is divided into 80% for training and the remain-
ing 20% for testing, using different lags, 3, 7 and 15 min, to forecast
at 7, 15 and 25 min respectively. Results are collected to analyze the
performance of the testing. In this experiment, each model with initially
random weights is trained independently with each patient. These mod-
els are trained and tested for (1) univariate multi-horizon time-series
forecasting (i.e., predicting RR or Sp0O2) using DL models such as LSTM,
GRU, Bi-LSTM, GR-LSTM, CNN, TCN, and TFT, and (2) multivariate
multi-horizon time-series forecasting (i.e., jointly predicting RR and
Sp02) using sequence-to-sequence models (i.e., S2S-LSTM, S2S-GRU,
S$2S-A-BiLSTM, S2S-A-BiGRU), TCN, and TFT.

The second setting cumulatively fine-tunes every model 15 times,
one for each patient, as shown in Fig. 5. Random initial weights are
used to start with. Then, the model is trained using one patient from
the 15. After that, the resulting weights are used as the new weights
to further fine-tune the model for the second patient. The process
continues in a cascading way until it reaches the 15th patient. The
resulting model is then tested with the testing set of five patients.

The hardware configuration of the experimental platform is an Intel
i7-6700 CPU, the graphics card is an RTX 4090, the memory is 16 GB,
the operating system is Windows 11, and the model is implemented
on Python 11 using Keras version 3.8.0, TensorFlow version 2.19.0,
and PyTorch version 2.5.1+. The results of the RMSE and MAE metrics
are reported because these two metrics are consistent with all reported
results. We adopted the following model parameters: Adam as an
optimizer, MSE as a loss function, a learning rate of 0.03, 30 epochs
with an early stopping patience value of 70, and a batch size of 20.
Other settings are shown in Table 3.

As they are all regression models, they are best evaluated using the
commonly used Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) metrics.

n
1 d\ 2
- (P =y

i=1

RMSE =

n
1
MAE:;Z

i=1
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Y i i

5.2. Experiment 1: Results from the univariate multi-horizon time-series
forecasting models

We carried out different experiments using various numbers of
forecasting minutes (as described earlier) to arrive at the conclusion
that the TFT transformer model achieved the best performance when
compared to other models.

5.2.1. Results for forecasting RR

The analysis of the multi-horizon time-series forecasting results for
five patients reveals a clear dominance of the TFT model across all
forecasting horizons (7, 15 and 25 min), as seen in Tables 4 and
5. Moreover, these tables show the time complexity of each model.
The TFT achieved the best RMSE and MAE values in every scenario,
underscoring its superior ability to model temporal dependencies and
dynamic feature relationships. However, although the TFT achieves
the best error results, it also has the highest time complexity. The
self-attention mechanism in the transformer enables it to focus on
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Cascaded fine tuning with 15 patient’s multivariate time series data
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Patient 1
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Cascaded tuned model testing Predicted RR
and Sp0O2
Fig. 5. Cascaded fine-tuning in the DL model using multi-patient time-series data.
Table 3
Setting of parameters.
Models Parameters Specifications
Number of nodes 160
LSTM Dropout 0.3
Activation function Relu
Number of nodes 160
GRU Dropout 0.3
Activation function Relu
Number of nodes 160
Bi-LSTM Dropout 0.3
Activation function Relu
Number of nodes 160
Bi-GRU Dropout 0.3
Activation function Relu
Filter size 250
Kernel size 4
CNN
Dropout 0.2
Number of nodes 150
Number of nodes in Encoder layer 200
Dropout in Encoder layer 0.2
S$2S-LSTM, S2S-GRU Activation function in Encoder layer Relu
Number of nodes in Decoder layer 200
Dropout in Decoder layer 0.2
Number of nodes in Encoder layer 200
. . Activation function in Encoder layer Relu
S2S-A-BiLSTM, S2S-A-BiGRU
! ? ! Number of nodes in Decoder layer 200
Optimizer Adam
hidden_size 30
attention_head_size 6
TFT Dropout 0.5
hidden_continuous_size 8
Loss function QuantileLoss()
Dropout 0.2
TCN kernel_size 5
Optimizer Adam

relevant segments of the time series, dynamically adapting to the tem-
poral dependencies and feature relationships. This ability is particularly
advantageous in handling the inherent complexities and variances of
medical time-series data, as considered in this study. The following is
a summary of the results with more details on numerical performance.

For Patient 1, with the 7 min setting, the TFT model with an
RMSE of 1.8154 outperformed the Bi-GRU model (RMSE of 1.9536)
and the CNN model (RMSE of 2.0633). The self-attention mechanism
enabled precision for short-term forecasts. As can be seen, TCN achieves
comparable results with an RMSE of 1.7879 and a MAE of 1.2379, but
with lower time complexity than the TFT transformer model. For the
15 min setting, the TFT model with an RMSE of 1.9939 was better than
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both the Bi-GRU (RMSE of 2.0073) and CNN (RMSE of 2.1119) models,
and again for the 25 min scenario, the TFT model (RMSE of 2.0284)
remained the best, while the CNN model (RMSE of 2.2825) was the
worst. Again, with an RMSE of 2.0820 and an MAE of 1.5542, TCN
achieved the second-best results compared with the TFT, and the same
result pattern was achieved for the forecasting at 25 min.

For Patient 2 and the 7 min setting, the TFT model had an RMSE
of 4.3373, which was much better than either the Bi-GRU (RMSE of
5.4816) or CNN (RMSE of 6.1259) models. TCN achieved the second-
best results (RMSE of 5.0356 and MAE of 3.9802) with the lowest time
complexity. For 15 min, the TFT model (RMSE of 5.2232) outperformed
TCN (RMSE of 5.4161), the Bi-LSTM model (RMSE of 5.7750), and the
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Fig. 6. The effect of problem complexity on the results of the TFT transformer model for RR forecasting.

CNN model (RMSE of 6.4177), and for 25 min, the TFT model (RMSE
of 5.5968) excelled, while the CNN mode (RMSE of 6.9583) performed
poorly.

The results of Patient 3 confirmed the superior results of the TFT
transformer model, with TCN as the second-best model. TCN model
achieves the lowest time complexity. For the 7 min experiment, the
TFT transformer model (RMSE of 6.9325) surpassed the TCN (RMSE
of 7.22786), Bi-LSTM (RMSE of 8.2304) and CNN (RMSE of 8.5268)
models, and for 15 min, the TFT transformer (RMSE of 7.3032) sur-
passed TCN (RMSE of 8.2751), Bi-GRU (RMSE of 8.8400) and CNN
(RMSE of 8.8670). Again, TCN achieves the lowest time complexity
compared to other models. For 25 min, the transformer (RMSE of
8.1807) retained superiority, while CNN, with an RMSE of 9.9005,
faltered. TCN achieved the second-best performance with the lowest
time complexity.

Moreover, the TFT transformer still achieved the best results for
Patient 4. For the 7 min experiment, TFT, with an RMSE of 3.3220,
beat TCN (RMSE of 3.4679), Bi-GRU (RMSE of 3.5601) and CNN (RMSE
of 3.6568). For the 15 min setting, TFT with an RMSE of 3.6965 led,
then TCN with an RMSE of 4.0687 came next, followed by CNN with an
RMSE of 4.1738. For 25 min, the TFT transformer model with an RMSE
of 3.8850 surpassed TCN (RMSE of 4.3034), Bi-LSTM (RMSE of 4.1497)
and CNN (RMSE of 4.4112). TCN achieved the lowest time complexity.

Finally, for Patient 5, the TFT model achieved the best RMSE and
MAE for all settings. TCN had the second-best performance and the
lowest time complexity. For the 7 min setting, the transformer with an
RMSE of 3.3319 was better than TCN (RMSE 3.7194), Bi-GRU (RMSE
of 3.9062) and CNN (RMSE of 3.9994). For the 15 min setting, the
TFT model (RMSE of 4.1829) outperformed TCN (RMSE 4.2267), Bi-
LSTM (RMSE of 4.2784) and CNN (RMSE of 4.6441). For the 25 min
setting, the transformer model had an RMSE of 4.4274, while the TCN
model (RMSE 4.6628) and the CNN model (RMSE of 5.3552) performed
worse.

Fig. 6 compares TFT and the next-best model (TCN) for each forecast
setting and for every patient. In summary, TFT achieved the best results
but with high time complexity, and TCN achieved the second-best
results but with the lowest time complexity. The TFT and TCN models
specialize in time-series data analysis. As a result, they achieved the
best results when compared with the other models, such as the CNN-,
LSTM-, and GRU-based models.

As we have seen, the TFT transformer model consistently per-
formed the best for multi-horizon time-series forecasting, leveraging
its self-attention mechanism to dynamically capture both short-term
and long-term dependencies in time-series data, with details in Tables
4 and 5. Its robust performance across all patients and forecasting
horizons highlights its adaptability, accuracy, and efficiency. Even as
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task complexity increases, its ability to maintain low RMSE and MAE
values establishes the TFT as the optimal choice for real-time healthcare
applications, as shown in Fig. 7. Bidirectional models such as the
Bi-GRU and Bi-LSTM were often ranked third, benefiting from their
ability to process forward and backward dependencies. However, their
sequential processing capabilities limit their scalability and precision
when compared to the parallelized operations of the TFT.

In contrast, CNNs were consistently ranked as the worst-performing
models across most forecasting horizons and patients. CNNs rely on
convolutional operations, which are less effective in capturing sequen-
tial and temporal dependencies than recurrent and attention-based
models. Their inability to adapt to long-term dependencies, essential
for accurate multi-horizon predictions, likely contributed to their in-
ferior performance. This limitation becomes more pronounced as the
forecasting horizon increases, as seen in the significant degradation
of CNN performance for longer forecasts (e.g., 25 min). The results
of this experiment show a superior and stable performance of the
TFT transformer model when compared with other classical models.
However, all models struggled as the problem became more complex
(i.e., when forecasting for increasing numbers of minutes). Fig. 8
shows the average performance for the different forecasting sizes used,
highlighting a consistent increase in the error rate as the number of
forecasting minutes increased.

5.2.2. Results for forecasting SpO2

An analysis of the SpO2 forecasting results highlights distinct pat-
terns in the performance of the different models across the five patients
and three forecasting horizons (7, 15 and 25 min), with details in
Tables 6 and 7. These tables also show the time complexity of the
different models. This section provides a detailed discussion of these
results, focusing on RMSE as the primary evaluation metric. As shown
in Fig. 9, the TFT transformer model consistently achieved the best per-
formance in terms of minimized errors across all forecasting horizons
and patients, demonstrating its robust capability in accurately modeling
complex temporal dependencies. In addition, TCN achieved the second-
best result for all patients. However, the TFT model had the highest
time complexity in all experiments, while the TCN model had the best
(shortest) times. As a result, different models dominated in terms of the
various evaluation metrics.

For example, in Patient 1, the TFT achieved RMSE values of 1.5518,
1.6198, and 1.7545 for 7-, 15- and 25 min forecasts, respectively. These
values are significantly lower than those of the other models, such
as CNN, which recorded RMSEs of 2.2749, 2.6169, and 2.7346, and
TCN, which recorded RMSEs of 1.6633, 1.7138, and 1.9019 for the
same horizons. This trend underscores the TFT’s ability to effectively
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Fig. 8. Average results of different numbers of forecasting minutes for RR forecasting.

handle multi-horizon forecasting tasks by leveraging its attention mech-
anism to dynamically focus on the most relevant features. Conversely,
CNN consistently underperformed relative to the other models, often
recording the highest RMSE values. For instance, for Patient 2, CNN
had RMSE values of 2.1199, 2.2582, and 2.7019 for the 7-, 15- and
25 min horizons, in contrast to TFT’s significantly lower RMSEs of
1.8758, 1.9824, and 2.1654. The inability of CNNs to capture long-
range dependencies and its reliance on localized convolutions likely
contributed to this inferior performance.

In the 7 min forecasting scenario, the TFT displayed very strong
results across all patients, as can be seen in Tables 6 and 7. For
Patient 3, the TFT achieved an RMSE of 0.4501, beating TCN (0.6728),
GRU (0.6767) and Bi-LSTM (0.7158). This superior performance is
attributed to the TFT’s advanced temporal dynamics modeling, critical
for handling short-horizon forecasts with relatively high variability.
The TCN model often emerged as the second-best performer in short-
horizon forecasts. For Patient 1, TCN recorded an RMSE of 1.6633,
closely trailing behind the TFT but significantly beating CNN (RMSE
of 2.2749). Bi-GRU, on the other hand, achieved lower results than
TFT and TCN. This demonstrated that while Bi-GRU effectively captures
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bidirectional dependencies, its sequential nature limits its efficiency
compared to the parallel processing capabilities of the TFT. The TFT
maintained its lead for the mid-horizon forecasts (15 min). For Patient
4, the TFT achieved an RMSE of 2.3708, defeating TCN (RMSE of
2.4228), Bi-LSTM (RMSE of 2.4903), and CNN (RMSE of 2.6477). The
ability of the TFT to dynamically weigh features and adjust to shift-
ing temporal patterns proved advantageous as the forecasting horizon
extended.

The GRU model consistently performed better than CNN but lagged
behind the TFT, TCN, and Bi-GRU. For instance, in Patient 5, GRU
recorded an RMSE of 2.5806, compared to TFT’s value of 2.2973 and
TCN of 2.50891. This pattern suggests that GRU’s sequential archi-
tecture struggles to compete with the advanced attention mechanisms
of the TFT and TCN in capturing complex temporal relationships. As
the forecasting horizon increased (i.e., to 25 min), the task complexity
intensified, leading to higher RMSE values across all models. Fig. 10
shows the consistent increase in error for the TFT as the problem
complexity increases. Despite this, the TFT demonstrated resilience
and continued to do better than other models. For Patient 5, the TFT
achieved an RMSE of 2.8280, significantly better than TCN (RMSE of
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Table 4
Results of the univariate multi-horizon forecasting for RR.
Patients Forecasting minutes Models RMSE MAE Time

LSTM 1.9898 1.5370 0 min 40 s
GRU 1.9814 1.5297 0 min 41 s
Bi-LSTM 1.9645 1.4966 0 min 40 s
Forecasting 7 minutes Bi-GRU 1.9536 1.4302 0 min 42 s
CNN 2.0633 1.6659 0 min 40 s
TCN 1.7879 1.2379 0 min 20 s
TFT 1.8154 1.4346 0 min 55 s
LSTM 2.1434 1.6521 0 min 50 s
GRU 2.1893 1.7138 0 min 51 s
. Bi-LSTM 2.0349 1.5642 0 min 50 s
Patient 1 Forecasting 15 minutes Bi-GRU 2.0073 1.5345 0 min 51 s
CNN 2.1119 1.6430 0 min 50 s
TCN 2.0820 1.5542 0 min 35 s
TFT 1.9939 1.5710 1 min 10 s

LSTM 2.1269 1.6484 1min5s

GRU 2.2078 1.7120 1min7s

Bi-LSTM 2.0962 1.6255 1 min 5s

Forecasting 25 minutes Bi-GRU 2.0929 1.6214 1min7s

CNN 2.2825 1.7763 1 min 6 s
TCN 2.1804 1.6045 0 min 40 s
TFT 2.0284 1.5608 1 min 20 s
LSTM 5.7495 4.5838 0 min 20 s
GRU 5.5201 4.1846 0 min 20 s
Bi-LSTM 5.4998 4.0006 0 min 25 s
Forecasting 7 minutes Bi-GRU 5.4816 4.0986 0 min 25 s
CNN 6.1259 5.0511 0 min 20 s
TCN 5.0356 3.9802 0 min 10 s
TFT 4.3373 3.1233 0 min 40 s
LSTM 6.1543 5.2518 0 min 40 s
GRU 5.7767 4.7303 0 min 41 s
X Bi-LSTM 5.7750 4.7720 0 min 45 s
Patient 2 Forecasting 15 minutes Bi-GRU 5.8036 4.8202 0 min 40 s
CNN 6.4177 5.5469 0 min 43 s
TCN 5.4161 4.6783 0 min 20 s
TFT 5.2232 4.4946 0 min 55 s
LSTM 6.6448 4.8936 0 min 50 s
GRU 6.2711 4.8572 0 min 51 s
Bi-LSTM 6.3372 5.4823 0 min 50 s
Forecasting 25 minutes Bi-GRU 5.8756 4.8606 0 min 54 s
CNN 6.9583 6.0138 0 min 50 s
TCN 6.0741 4.9245 0 min 30 s
TFT 5.5968 4.6163 1 min 10 s
LSTM 8.2366 6.3994 0 min 15 s
GRU 8.6013 6.7332 0 min 15 s
Bi-LSTM 8.2304 6.4088 0 min 18 s
Forecasting 7 minutes Bi-GRU 8.2777 6.4201 0 min 18 s
CNN 8.5268 6.7213 0 min 16 s
TCN 7.22786 5.9716 0 min 10 s
TFT 6.9325 5.4401 0 min 30 s
LSTM 8.5997 6.6233 0 min 25 s
GRU 9.0176 6.9917 0 min 25 s
. Bi-LSTM 8.7681 6.7618 0 min 30 s
Patient 3 Forecasting 15 minutes Bi-GRU 8.8400 6.8151 0 min 30 s
CNN 8.8670 6.8183 0 min 25 s
TCN 8.2751 6.3957 0 min 15 s
TFT 7.3032 5.8912 0 min 42 s
LSTM 9.3403 7.3078 0 min 40 s
GRU 9.5332 7.3956 0 min 43 s
Bi-LSTM 9.4134 7.3551 0 min 40 s
Forecasting 25 minutes Bi-GRU 9.5735 7.4434 0 min 45 s
CNN 9.9005 7.5853 0 min 40 s
TCN 8.9264 7.3067 0 min 25 s
TFT 8.1807 7.2601 0 min 57 s

3.1067), CNN (RMSE of 3.2497), and GRU (RMSE of 3.3277). This gap
in results highlights the TFT’s robustness in maintaining accuracy for
long-term forecasts, with more details in Tables 6 and 7. The CNN
model consistently ranked as the worst performer for long-horizon
forecasts, as seen with Patient 2 where it recorded an RMSE of 2.7019
compared to TFT’s 2.1654. This underperformance is linked to CNN’s
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inability to effectively model temporal dependencies over extended
time horizons.

As a result of these experiments, we can see that the TFT achieved
the best RMSE values, and TCN was the second-best model, showcasing
their strength in handling temporal complexities through attention
mechanisms. Their performance advantage was most pronounced for
longer horizons, where traditional models such as LSTM and GRU
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Table 5
Continued results of the univariate multi-horizon forecasting for RR.
Patients Forecasting minutes Models RMSE MAE Time

LSTM 3.5945 2.8722 0 min 10 s

GRU 3.5647 2.8519 0 min 23 s

Bi-LSTM 3.6106 2.8591 0 min 20 s

Forecasting 7 minutes Bi-GRU 3.5601 2.8467 0 min 21 s

CNN 3.6568 2.9420 0 min 23 s

TCN 3.4679 2.7571 0 min 13 s
TFT 3.3220 2.6841 0 min 40 s

LSTM 4.0077 3.2274 0 min 35 s

GRU 4.0415 3.2809 0 min 33 s

. Bi-LSTM 4.0594 3.2773 0 min 35 s
Patient 4 Forecasting 15 minutes Bi-GRU 3.9301 3.2156 0 min 35 s
CNN 4.1738 3.3709 0 min 36 s

TCN 4.0687 3.2264 0 min 20 s
TFT 3.6965 2.9463 0 min 50 s

LSTM 4.3382 3.4085 0 min 50 s

GRU 4.3841 3.4438 0 min 52 s

Bi-LSTM 4.1497 3.2845 0 min 50 s

Forecasting 25 minutes Bi-GRU 4.2844 3.3493 0 min 53 s

CNN 4.4112 3.6803 0 min 50 s

TCN 4.3034 3.4081 0 min 35 s

TFT 3.8850 3.1029 1 min5s

LSTM 3.9755 2.8572 0 min 25 s

GRU 3.9659 2.8829 0 min 24 s

Bi-LSTM 3.9228 2.6979 0 min 25 s

Forecasting 7 minutes Bi-GRU 3.9062 2.6252 0 min 27 s

CNN 3.9994 2.8104 0 min 25 s

TCN 3.7194 2.5895 0 min 15 s
TFT 3.3319 2.4883 0 min 35 s

LSTM 4.1753 2.9526 0 min 42 s

GRU 4.5830 3.5630 0 min 41 s

. Bi-LSTM 4.2784 3.1955 0 min 40 s
Patient 5 Forecasting 15 minutes Bi-GRU 4.4755 3.4204 0 min 43 s
CNN 4.6441 3.5513 0 min 42 s

TCN 4.2267 3.2739 0 min 25 s
TFT 4.1829 2.9645 0 min 55 s

LSTM 4.7255 3.6161 0 min 55 s

GRU 4.7643 3.8436 0 min 50 s

Bi-LSTM 4.9156 3.8888 0 min 55 s

Forecasting 25 minutes Bi-GRU 4.8712 3.6105 0 min 53 s

CNN 5.3552 4.6446 0 min 55 s

TCN 4.6628 3.5588 0 min 35 s
TFT 4.4274 3.4854 1 min 10 s
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Fig. 9. Performance of the TFT transformer model for SpO2 prediction with different patients.

struggled. Regarding model scalability, bidirectional models such as Bi-
GRU and Bi-LSTM performed well, particularly for short- and mid-term
horizons. However, their sequential nature rendered them less effective
than the TFT and TCN for long-term predictions. CNN’s reliance on
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localized convolutions resulted in poor performance across all hori-
zons, especially for longer forecasts where capturing global temporal
relationships is crucial. The TFT is reliable for SpO2 forecasting, with



H. Saleh et al.

Computers in Biology and Medicine 194 (2025) 110406

3: === RMSE MAE  coeeee Expon. (RMSE) — |
]
2 s
1.5 e
1 .......................... |  ERlh I ki
05 | - I
o |l
Tmins 15 25 |7mins 15 s [rmins 15 25 frmims 15 25 [rmims 15 25
mins mins mins mins mins mins mins mins mins mins
Patient3 Patient1 Patient2 Patient4 Patient5

Fig. 10. Effect of the problem complexity on the results of the TFT transformer model for SpO2 predictions.

TCN being the second best model, and CNN consistently had the low-
est RMSE values across all horizons and patient datasets. Temporally
advanced architectures like TFT and TCN that integrate attention mech-
anisms and can handle multi-horizon tasks efficiently are the superior
choice for time-series forecasting in medical applications. Conversely,
CNN demonstrated significant limitations, reinforcing the importance
of selecting models tailored to the temporal dynamics of the data. These
findings validate the potential of the TFT and the TCN in improving
real-time healthcare predictions, providing critical insights for timely
interventions.

5.3. Experiment 2: Results from the multivariate multi-horizon time-series
forecasting models

As shown in Fig. 11, the results for jointly predicting both RR and
SpO2 as multivariate time series over multiple forecasting horizons (7,
15 and 25 min) underscore the robust performance of the TFT model,
with more details in Tables 8 and 9. However, the TFT also had the
highest time complexity. On the other hand, TCN had the second-best
performance compared to TFT, but it had the lowest time complexity.
For the 7 min forecasting period, the TFT model consistently outper-
formed all other models in the short-term forecasting horizon, as seen in
Fig. 12. For Patient 1, the TFT achieved RMSE values of 1.4780 for RR
and 1.5776 for SpO2, significantly lower than the second-best model,
TCN, which recorded RMSEs of 2.2198 and 2.0335 for RR and SpO2,
respectively, and the third-best model, S2S-A-BiGRU, which recorded
RMSEs of 2.4069 for RR and 2.2165 for SpO2. The TFT’s performance
is attributed to its attention mechanism, which allows it to focus on
the most relevant features in the data, capturing short-term temporal
dynamics effectively. Conversely, the S2S-LSTM performed the worst
in this category for most patients. For Patient 3, it recorded RMSEs of
8.2981 for RR and 0.6559 for SpO2, indicating its struggle to adapt to
complex short-term patterns, particularly in the RR series. These results
highlight traditional sequence-to-sequence architectures’ limitations in
handling the task’s multivariate nature within a short horizon. For
15 min forecasting, the TFT model maintained its dominance across
all patients. Patient 2 achieved RMSEs of 3.9396 for RR and 1.2271 for
SpO2, beating S2S-A-BiGRU, which recorded RMSEs of 5.2306 for RR
and 1.8606 for SpO2. It also did better than TCN, which achieved an
RMSE of 4.4838 for RR and 1.6242 for SpO2.

For 15 min, the gap between TFT and the other models grew
narrower when compared to the 7 min forecast, particularly for SpO2,
suggesting that different models, such as S2S-A-BiGRU and S2S-GRU,
began to capture more of the mid-term temporal dynamics, though
not to the extent of TFT. Although not the worst, the performance
of the CNN-based models was consistently suboptimal. For Patient 4,

the CNN recorded RMSEs of 3.5100 for RR and 2.5221 for SpO2,
falling short of capturing the nuanced temporal relationships required
for accurate forecasting, particularly in the multivariate setting. As the
forecasting horizon extended to 25 min, the task complexity increased,
leading to higher RMSE values across all models. Despite this, the TFT
demonstrated remarkable robustness, continuing to deliver superior
performance. For Patient 5, the TFT achieved RMSEs of 3.0673 for
RR and 1.6917 for SpO2, surpassing TCN, which recorded RMSEs of
3.4840 for RR and 1.8928 for SpO2. This resilience underscores TFT’s
ability to manage long-term dependencies effectively. On the other
hand, traditional sequence-to-sequence models such as S2S-LSTM and
S2S-GRU struggled significantly as the horizon lengthened. For Patient
1, S2S-LSTM recorded RMSEs of 6.7062 for RR and 9.8074 for SpO2, in-
dicating its inability to maintain accuracy over extended periods. These
results emphasize the limitations of recurrent architectures without
attention mechanisms in capturing long-term temporal relationships.

As can be seen in Tables 8 and 9, across all horizons, the TFT
consistently delivered the lowest RMSE values, reflecting its ability
to adjust to both short- and long-term dependencies dynamically. In-
corporating attention mechanisms enables the TFT to weigh features
effectively, a critical advantage in multivariate tasks involving RR
and SpO2. TCN was consistently ranked the second-best model for
all patients and all time horizons. The bidirectional GRU models,
particularly S2S-A-BiGRU, were consistently ranked as the third-best
performers. Their ability to capture bidirectional temporal dependen-
cies made them competitive, especially in the 7- and 15 min horizons.
However, their sequential nature limited their scalability for longer
horizons. The CNN models struggled to capture temporal dependencies
effectively, particularly in the RR series. This limitation was most
pronounced in longer horizons, where their performance lagged sig-
nificantly behind attention-based models like the TFT. The increase
in forecasting horizon times highlighted scalability issues in recurrent
models such as S2S-LSTM and S2S-GRU, which exhibited substan-
tial performance degradation as the task complexity grew. This trend
reinforces the importance of models designed to handle both tempo-
ral depth and breadth, as demonstrated by the TFT. The increased
complexity affected the TFT model, as can be seen in Fig. 11.

As a general conclusion, the TFT is the most accurate model for mul-
tivariate multi-horizon forecasting of RR and SpO2 values, achieving
the best RMSE values across all patients and horizons, with full details
in Tables 8 and 9. Its ability to dynamically focus on relevant features
and adapt to temporal complexities makes it the superior choice for
real-time healthcare applications. While models like S2S-A-BiGRU of-
fered competitive performance for shorter horizons, their limitations

18
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Table 6
Results of the univariate multi-horizon forecasting for SpO2.
Patients Forecasting minutes Models RMSE MAE Time
LSTM 2.1791 1.8851 0 min 55 s
GRU 2.1501 1.7700 0 min 54 s
Bi-LSTM 1.7757 1.4873 0 min 55 s
Forecasting 7 minutes Bi-GRU 1.7584 1.4772 0 min 55 s
CNN 2.2749 1.9064 0 min 54 s
TCN 1.6633 1.3879 0 min 30 s
TFT 1.5518 1.2087 1min5s
LSTM 2.2937 1.8840 1 min 10 s
GRU 2.3240 1.9351 1 min 15 s
) Bi-LSTM 1.8651 1.4909 1 min 10 s
Patient 1 Forecasting 15 minutes Bi-GRU 1.7696 1.4122 1 min12s
CNN 2.6169 2.2509 1 min 11 s
TCN 1.7138 1.4216 0 min 45 s
TFT 1.6198 1.2923 1 min 34 s
LSTM 2.1166 1.7386 1 min 35 s
GRU 2.5748 2.2857 1 min 37 s
Bi-LSTM 2.0231 1.6521 1 min 35 s
Forecasting 25 minutes Bi-GRU 1.7925 1.4229 1 min 36 s
CNN 2.7346 2.3324 1 min 35 s
TCN 1.9019 1.5979 0 min 53 s
TFT 1.7545 1.3667 1 min 45 s
LSTM 2.0409 1.5355 0 min 35 s
GRU 2.1513 1.6053 0 min 37 s
Bi-LSTM 2.1772 1.6384 0 min 35 s
Forecasting 7 minutes Bi-GRU 2.1651 1.6185 0 min 38 s
CNN 21199 1.5996 0 min 40 s
TCN 2.0453 1.5009 0 min 20 s
TFT 1.8758 1.3807 0 min 45 s
LSTM 2.2311 1.7748 0 min 50 s
GRU 2.2146 1.7501 0 min 51 s
) Bi-LSTM 2.2328 1.7994 0 min 50 s
Patient 2 Forecasting 15 minutes Bi-GRU 2.2378 1.7835 0 min 54 s
CNN 2.2582 1.7974 0 min 50 s
TCN 2.1358 1.6662 0 min 30 s
TFT 1.9824 1.5393 1min7 s
LSTM 2.4042 2.0097 1min5s
GRU 2.6754 2.2785 1min7s
Bi-LSTM 2.5829 2.3222 1 min 10 s
Forecasting 25 minutes Bi-GRU 2.4980 2.2008 1 min 5s
CNN 2.7019 2.4391 1min7s
TCN 2.5925 2.3655 0 min 45 s
TFT 2.1654 1.7071 1 min 25 s
LSTM 0.6921 0.5268 0 min 25 s
GRU 0.6767 0.4649 0 min 28 s
Bi-LSTM 0.7158 0.5858 0 min 25 s
Forecasting 7 minutes Bi-GRU 0.6830 0.4591 0 min 24 s
CNN 0.7321 0.6174 0 min 20 s
TCN 0.6728 0.4554 0 min 10 s
TFT 0.4501 0.2625 0 min 40 s
LSTM 0.8150 0.7155 0 min 45 s
GRU 0.7288 0.5739 0 min 45 s
X Bi-LSTM 0.7489 0.6206 0 min 40 s
Patient 3 Forecasting 15 minutes Bi-GRU 0.7369 0.5815 0 min 40 s
CNN 0.7190 0.5572 0 min 45 s
TCN 0.7352 0.5632 0 min 25 s
TFT 0.6210 0.3169 1min5s
LSTM 0.7687 0.6504 0 min 55 s
GRU 0.7708 0.6434 0 min 58 s
Bi-LSTM 0.7733 0.6451 0 min 55 s
Forecasting 25 minutes Bi-GRU 0.7935 0.6619 0 min 57 s
CNN 0.8255 0.7216 0 min 54 s
TCN 0.7932 0.6636 0 min 35 s
TFT 0.7285 0.4195 1 min 15 s
became evident for longer-term predictions. Conversely, CNN and tra- for all forecasting tasks. As a result, it can be noticed that TFT achieves
ditional LSTM-based architectures failed to manage this task’s intricate the most stable results compared to other classical S2S or S2S-A models.
temporal and multivariate relationships effectively. These findings val- This leads to the observation that TFT is more generalizable when com-
idate the TFT as a pivotal tool for advancing predictive healthcare pared to the other different models. As a result, in the next experiment,
analytics. we focus on fine-tuning this model and testing it with full time-series
Table 10 shows the standard deviations of different models for datasets.

different forecasting tasks. TFT has the lowest standard deviation values

19



H. Saleh et al. Computers in Biology and Medicine 194 (2025) 110406

Table 7
Continued results of the univariate multi-horizon forecasting for SpO2.
Patients Forecasting minutes Models RMSE MAE Time

LSTM 2.4826 1.7990 0 min 28 s

GRU 2.4271 1.8025 0 min 27 s

Bi-LSTM 2.4176 1.7748 0 min 25 s

Forecasting 7 minutes Bi-GRU 2.4504 1.8482 0 min 25 s

CNN 2.4878 1.9360 0 min 26 s

TCN 2.3428 1.8048 0 min 15 s
TFT 2.2823 1.7631 0 min 40 s

LSTM 2.5521 1.6456 0 min 43 s

GRU 2.5477 1.6622 0 min 42 s

. Bi-LSTM 2.4903 1.7427 0 min 45 s
Patient 4 Forecasting 15 minutes Bi-GRU 2.5754 1.7004 0 min 45 s
CNN 2.6477 1.8987 0 min 36 s

TCN 2.4228 1.7093 0 min 25 s
TFT 2.3708 1.6129 0 min 57 s

LSTM 2.8485 2.3616 0 min 55 s

GRU 2.8310 2.3542 0 min 55 s

Bi-LSTM 2.7147 2.2476 0 min 54 s

Forecasting 25 minutes Bi-GRU 2.7701 2.2839 0 min 55 s

CNN 2.8518 2.3657 0 min 58 s

TCN 2.6778 2.2074 0 min 30 s

TFT 2.4781 1.9014 1 min 8 s

LSTM 2.2331 1.5531 0 min 30 s

GRU 2.2113 1.5792 0 min 32 s

Bi-LSTM 2.2877 1.6502 0 min 30 s

Forecasting 7 minutes Bi-GRU 2.2583 1.5672 0 min 33 s

CNN 2.2461 1.6488 0 min 30 s

TCN 2.2866 1.6448 0 min 20 s
TFT 2.0088 1.3526 0 min 45 s

LSTM 2.6495 1.7065 0 min 45 s

GRU 2.5806 1.6878 0 min 44 s

. Bi-LSTM 2.5532 1.6561 0 min 45 s
Patient 5 Forecasting 15 minutes Bi-GRU 25336 1.6715 0 min 44 s
CNN 2.6495 1.7065 0 min 45 s

TCN 2.50891 1.6211 0 min 28 s
TFT 2.2973 1.5230 0 min 57 s

LSTM 3.1822 2.5404 0 min 60 s

GRU 3.3277 2.7279 0 min 58 s

Bi-LSTM 3.3319 2.7883 0 min 60 s

Forecasting 25 minutes Bi-GRU 3.2791 2.7278 0 min 57 s

CNN 3.2497 2.6720 0 min 60 s

TCN 3.1067 2.5387 0 min 35 s

TFT 2.8280 2.2784 1min5s
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2
1 ‘
o I I I o Wik MR

7mins 15 mins 25mins| 7 mins 15 mins 25 mins| 7 mins 15 mins 25 mins| 7 mins 15 mins 25 mins| 7 mins 15 mins 25 mins
Patient1 Patient2 Patient3 Patient4 Patient5

Fig. 11. Results of the TFT model for the multivariate multi-horizon task.
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Fig. 12. Comparison of the TFT and TCN models for multivariate multi-horizon predictions across different patients.

To illustrate the quality of the predicted values of SpO2 and RR
versus real values in the multivariate multi-horizon task, which is more
complex than for the univariate single task models, Fig. 13 presents a
comparative visualization of the predicted values generated by the TFT
and TCN models against the actual ground truth values for a 7 min
multi-horizon forecasting window. This figure clearly illustrates that
the TFT model is closely aligned with the ground truth across both
SpO2 and RR signals, and this demonstrates the model’s superior ca-
pability in accurately capturing short-term fluctuations and underlying
trends in physiological signals. The TFT’s attention-based architecture
allows it to dynamically capture subtle temporal variations and in-
terdependencies between the multivariate inputs, particularly during
periods of rapid signal change or transient fluctuations. In contrast, the
TCN model tends to either over-smooth or lag during abrupt transi-
tions, indicating its limited adaptability to high-frequency variations in
physiological dynamics. Despite TCN’s strengths in modeling general
trends, its predictions exhibit notable discrepancies at signal peaks
and troughs. These results underscore the TFT’s superior temporal
sensitivity and predictive precision over short-term horizons, making it
more clinically reliable for early warnings in ICU monitoring scenarios.
The consistent approximation to real values across different patients
and signals shows the model’s robustness, stability, and capacity for
generalized representation under the proposed cascaded fine-tuning
strategy.

Fig. 14 compares the performance of TFT and TCN for a 15 min
prediction horizon, again relative to the ground truth for both physi-
ological variables. As the forecasting window extends, the distinction
between the two models becomes more pronounced. The TFT con-
tinues demonstrating strong predictive fidelity, preserving the signal
morphology and trend directionality even over the longer horizon.
The multi-head attention aspect of the model allows it to maintain
contextual relevance over extended time steps. Conversely, the TCN
model shows increased deviation from the ground truth, particularly
in forecasting delayed trends and signal reversals. The limitations of
fixed receptive fields and the absence of dynamic attention mechanisms
in the TCN model become more evident in this setting. While TCN
can approximate the general shape of the time series, its inability
to model long-term dependencies with sufficient granularity leads to
performance degradation. These findings affirm that TFT is more robust
and effective than TCN in delivering accurate, reliable, multi-horizon
forecasts for critical care variables.
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5.4. Experiment 3: Results of the cascaded fine-tuning

Cascaded fine-tuning of the TFT is used as a robust approach
for improving the generalizability and performance of the model for
multivariate multi-horizon time-series forecasting of both RR and SpO2
values. The models are tuned using data from 15 patients and are then
tested using the full time series for five different patients. As shown in
Table 11, despite the increased complexity of this generalization task,
where the model was sequentially fine-tuned with 15 patient datasets
and tested on unseen data from five patients, the TFT achieved the best
RMSE values across all forecasting horizons.

For short-term (7 min) forecasts, the TFT demonstrated robust
performance, achieving RMSE values of 2.5278 and 2.1320 for RR and
SpO2 respectively for Patient 1 (comparable to the previous single-
patient settings with RMSEs of 1.4780 and 1.5776 for RR and Sp0O2),
and RMSE values of 6.3006 and 1.1872 for RR and SpO2 respectively
for Patient 3. For mid-term (15 min) predictions, the TFT maintained
strong performance with RMSE values of 3.0571 and 3.0035 for RR
and SpO2 for Patient 1, and 6.9273 and 1.2622 for Patient 3, while
for long-term (25 min) forecasts, the model achieved RMSEs of 3.6328
and 3.3786 for RR and SpO2 for Patient 1, and 7.2340 and 1.5670
for Patient 3. The TFT’s ability to manage long-term dependencies
while maintaining accuracy highlights its robustness, particularly in
unseen patient data, with small RMSE gaps between cascaded fine-
tuning and single-patient training. For instance, for Patient 5 at a 7 min
forecast, the TFT achieved RMSEs of 3.5019 (RR) and 1.7368 (Sp0O2)
under cascaded fine-tuning, compared to 2.4194 (RR) and 1.0604
(Sp02) in single-patient training, illustrating that cascaded fine-tuning
achieves a balance between performance and generalizability. The
model’s performance in SpO2 forecasting is particularly noteworthy,
with RMSEs consistently lower than for RR, such as in the 7 min
forecast where SpO2 RMSE values ranged between 1.1872 and 2.1320
across all patients, highlighting the TFT’s capability to capture rela-
tively stable SpO2 dynamics compared to the more variable RR signals.
While cascaded fine-tuning presents increased challenges due to its
focus on generalization, the TFT’s sequential adaptation to diverse data
patterns enhances its robustness and potential for real-time healthcare
monitoring, where patient-specific training may not be feasible. These
findings validate the TFT as a scalable and generalizable tool for real-
time patient monitoring, achieving strong performance metrics despite
the complexity of multivariate multi-horizon forecasting tasks, and
demonstrating its critical role in predictive healthcare analytics.
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Table 8
Results of the multivariate multi-horizon time-series forecasting models.
Patients Forecasting minutes Model RR SpO2 Time
RMSE MAE RMSE MAE
S2S-LSTM 5.5770 5.1597 8.3750 8.1240 1 min 10 s
S2S-GRU 3.4825 3.0027 3.4868 3.1259 1 min 15 s
Forecasting 7 minutes SZS-A-B%LSTM 4.3638 4.0595 5.1057 4.8469 1 min 15 s
S2S-A-BiGRU 2.4069 1.9250 2.2165 1.8220 1 min 12 s
TCN 2.2198 1.6029 2.0335 1.6293 0 min 45 s
TFT 1.4780 1.1171 1.5776 0.9699 1 min 40 s
S2S-LSTM 6.1582 6.6752 9.0949 8.8188 1 min 30 s
S2S-GRU 4.8751 4.4165 4.1339 3.745 1 min 35 s
Patient 1 Forecasting 15 minutes S2S-A-BiLSTM 5.6078 5.2333 6.016 5.7511 1 min 32 s
S2S-A-BiGRU 3.5796 2.7305 2.9987 2.5403 1 min 31 s
TCN 2.6287 2.2631 2.9019 2.4110 0 min 55 s
TFT 1.6058 1.2332 2.7737 2.1730 1 min 55 s
S2S-LSTM 6.7062 6.172 9.8074 9.5064 1 min 40 s
S2S-GRU 4.6713 4.1666 6.1856 5.8770 1 min 42 s
Forecasting 25 minutes SZS-A-B%LSTM 5.4694 5.9803 8.3051 8.0245 1 min 41 s
S2S-A-BiGRU 2.6478 2.1627 3.7597 3.4095 1 min 40 s
TCN 2.46552 2.0296 3.3884 2.9162 0 min 60 s
TFT 1.9724 1.6479 2.9873 2.2301 2min5s
S2S-LSTM 5.3750 3.5515 1.9619 1.4863 0 min 50 s
S2S-GRU 5.2537 3.3974 1.9983 1.5161 0 min 54 s
Forecasting 7 minutes SZS-A-B?LSTM 5.3924 3.5320 1.9557 1.4998 1 m?n 5s
S2S-A-BiGRU 4.4362 3.1341 1.7795 1.4063 1 min 5s
TCN 3.9257 2.9257 1.5450 1.2082 0 min 40 s
TFT 3.7830 2.7510 1.1865 0.8837 1 min 20 s
S2S-LSTM 5.4181 3.7494 2.0894 1.5974 1min5s
S2S-GRU 5.6487 3.6957 2.0238 1.5097 1min7s
Patient 2 Forecasting 15 minutes S2S-A-BiLSTM 5.5369 3.7758 2.0015 1.4977 1 min 25 s
S2S-A-BiGRU 5.2306 3.2901 1.8606 1.3854 1 min25 s
TCN 4.4838 3.0905 1.6242 1.12474 0 min 50 s
TFT 3.9396 2.8365 1.2271 0.9498 1 min 30 s
S2S-LSTM 5.9264 4.5052 2.5835 2.1128 1 min 15 s
S2S-GRU 6.1330 4.9386 2.1434 1.6587 1 minl7 s
Forecasting 25 minutes SZS-A-B?LSTM 5.3560 3.6684 1.9808 1.4998 1 m?n 38 s
S2S-A-BiGRU 5.0926 3.6616 1.9722 1.4901 1 min 35 s
TCN 5.0123 3.5120 1.8309 1.3701 0 min 55 s
TFT 4.6854 3.4482 1.3809 1.0894 1 min 45 s
S2S-LSTM 8.2981 6.3413 0.6559 0.3841 0 min 47 s
S2S-GRU 8.1163 6.2675 0.6479 0.3766 0 min 42 s
Forecasting 7 minutes SZS-A-B?LSTM 8.1500 6.3326 0.6406 0.3593 0 m?n 58 s
S2S-A-BiGRU 6.6927 5.2571 0.5603 0.3424 0 min 55 s
TCN 6.2665 4.9301 0.5235 0.3257 0 min 20 s
TFT 5.7043 4.3780 0.5003 0.2872 0 min 60 s
S2S-LSTM 8.7048 6.7639 0.6792 0.3986 0 min 60 s
S2S-GRU 8.4319 6.4997 0.6472 0.3862 0 min 58 s
Patient 3 . . S2S-A-BiLSTM 8.3162 6.4196 0.6935 0.3770 1 min 15 s
Forecasting 15 minutes $25-A-BiGRU 7.3585 5.6338 0.5644 0.3406 1 min 13 s
TCN 6.5046 5.2624 0.5693 0.3474 0 min 35 s
TFT 6.2357 4.7773 0.5377 0.3103 1 min 25 s
S2S-LSTM 8.9502 6.8962 1.154 0.7309 1 min 40 s
S2S-GRU 8.5620 6.5808 1.1495 0.6639 1 min 38 s
Forecasting 25 minutes SZS-A-B?LSTM 8.3721 6.4139 0.9320 0.5749 1 m?n 55 s
S2S-A-BiGRU 7.0485 5.3828 0.6876 0.4220 1 min 53 s
TCN 6.6802 5.27960 0.6965 0.4173 0 min 45 s
TFT 6.3717 4.7875 0.7275 0.4703 1 min 45 s

5.5. Prototype system for multivariate multi-horizon forecasting using
streams of RR and SpO2 data

The results from the multivariate multi-horizon experiment showed
that forecasting 7 min ahead using the TFT recorded the best perfor-
mance in terms of the smallest RMSE and MAE values. Our prototype
system used this optimal setup (the best transformer model for the same
forecasting horizon), predicting RR and SpO2 in parallel and in real-
time 7 min into the future using the TFT applied to the past 3 min of
data.
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In our system, the first step was to implement a simulated sensor
using a Python script in order to generate time-series data for both RR
and SpO2, and then send this streaming data to the storage zone to be
stored in a Kafka topic. The Kafka Producer API collects data from the
simulated sensor and saves it in the topic. A Flink consumer retrieves
data from the topic using stream processing. Flink, a robust stream
processing framework for complex computations, uses windowing to
slice the retrieved data. The sliding window is defined according to the
predefined interval (3 min) along the session. The session boundary
covers all aggregated data, after which the aggregated data for both
RR and SpO2 is sent to the TFT model in order to forecast RR and
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Table 9
Continued results of the multivariate multi-horizon time-series forecasting models.
Patients Forecasting minutes Model RR SpO2 Time
RMSE MAE RMSE MAE
S2S-LSTM 3.5305 2.8385 2.4429 1.9599 0 min 37 s
$2S-GRU 3.5543 2.8468 2.3678 1.7798 0 min 36 s
Forecasting 7 minutes SZS-A-B?LSTM 3.4460 2.7023 2.4702 1.8398 0 m%n 46 s
S2S-A-BiGRU 3.3922 2.6609 2.3200 1.6580 0 min 46 s
TCN 3.1612 2.4350 1.8936 1.4364 0 min 35 s
TFT 2.8726 2.1320 1.3983 1.0251 0 min 50 s
S2S-LSTM 3.9215 3.1218 2.5215 1.9394 0 min 50 s
$2S5-GRU 3.5100 2.8273 2.5221 2.0232 0 min 55 s
Patient 4 Forecasting 15 minutes SZS-A—B?LSTM 3.4778 2.7903 2.5828 2.0670 0 m%n 60 s
S2S-A-BiGRU 3.2368 2.6710 2.3358 1.7517 0 min 57s
TCN 3.1425 2.5541 2.1196 1.3551 0 min 45 s
TFT 2.9506 2.2740 1.4856 1.0029 1min 5s
S2S-LSTM 4.3687 3.4560 3.0974 2.4871 1 min 10 s
$2S5-GRU 3.9970 3.2022 2.6101 2.0246 1 min 15 s
Forecasting 25 minutes SZS-A—B?LSTM 3.7032 2.9639 2.6681 2.1293 1 m%n 25s
$2S-A-BiGRU 3.6443 2.9393 2.3468 1.7653 1 min 28 s
TCN 3.4813 2.7876 2.3026 1.8263 0 min 55 s
TFT 3.3647 2.5176 1.9076 1.5006 1 min 40 s
S2S-LSTM 3.6247 2.3058 2.1958 1.4331 0 min 35 s
S2S-GRU 3.5737 2.2749 2.2666 1.4822 0 min 36 s
Forecasting 7 minutes SZS-A—B?LSTM 3.5737 2.2989 2.1551 1.3900 0 m?n 46 s
$2S-A-BiGRU 2.6105 1.9415 1.3462 0.9757 0 min 45 s
TCN 2.6727 1.7805 1.3560 0.9833 0 min 25 s
TFT 2.4194 1.3957 1.0604 0.6963 0 min 50 s
S2S-LSTM 4.2103 2.8055 2.2547 1.5778 0 min 45 s
$2S-GRU 4.0247 2.8753 2.0867 1.4438 0 min 47 s
Patient 5 Forecasting 15 minutes SZS-A—B?LSTM 3.8397 2.5267 1.9616 1.3740 0 m?n 56 s
$2S-A-BiGRU 3.4041 2.2769 1.7544 1.1724 0 min 55 s
TCN 3.2344 2.4918 1.5933 1.0887 0 min 40 s
TFT 2.8726 2.1320 1.3134 0.9222 1 min 5s
S2S-LSTM 4.6894 3.4581 2.6314 1.6592 1 min 6s
$2S-GRU 4.5176 3.2982 2.2200 1.5184 1 min 10 s
Forecasting 25 minutes SZS-A—B?LSTM 4.5829 3.2671 2.3094 1.6464 1 m?n 25s
$2S-A-BiGRU 3.5367 2.7371 1.8435 1.4734 1 min 25 s
TCN 3.4840 2.4433 1.8928 1.5947 0 min 60 s
TFT 3.0673 2.3470 1.6917 1.1952 1 min 30 s

Table 10
Standard deviations for the multivariate multi-horizon models.
Forecasting minutes Models Multivariate multi-horizon
RR Sp02
STD_RMSE STD_MAE STD_RMSE STD_MAE
S2S-LSTM 1.9369 1.67626 3.0141 3.0986
S2S-GRU 1.9996 1.5674 1.0157 0.9826
Forecasting 7 minutes $2S-A-BiLSTM 1.9319 1.5819 1.6322 1.6914
J $2S-A-BiGRU 1.7490 1.3695 0.7187 0.5951
TCN 1.5938 1.3358 0.5940 0.5041
TFT 1.6031 1.2992 0.4110 0.2985
S2S-LSTM 1.9169 1.9439 3.3018 3.3782
S2S-GRU 1.9327 1.5112 1.2514 1.2288
Forecasting 15 minutes $2S-A-BiLSTM 1.9160 1.6544 2.003 2.0691
€ $2S-A-BiGRU 1.7556 1.3426 0.8949 0.8048
TCN 1.55796 1.2287 0.8510 0.7440
TFT 1.7290 1.3207 0.8143 0.6772
S2S-LSTM 1.8374 1.5750 3.4064 3.5313
S2S-GRU 1.8478 1.3912 1.9346 2.034
Forecasting 25 minutes $2S-A-BiLSTM 1.7564 1.6137 2.9052 2.988
€ $2S-A-BiGRU 1.7234 1.2429 1.1056 1.0787
TCN 1.05019316 1.2277 0.72087 0.6853
TFT 1.6897 1.2114 0.8276 0.6420
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Table 11
Results of the cascaded fine-tuning.
Forecasting minutes Patients RR SpO2
RMSE MAE RMSE MAE
Patient 1 2.5278 2.1245 2.1320 1.7445
Patient 2 4.3087 3.3868 1.8297 1.2666
Forecasting 7 minutes Patient 3 6.3006 4.9625 1.1872 0.9616
Patient 4 3.2345 2.5658 1.7096 1.5114
Patient 5 3.5019 2.8819 1.7368 1.3400
Patient 1 3.0571 2.4251 3.0035 2.3423
Patient 2 4.9959 4.0095 2.0508 1.5686
Forecasting 15 minutes Patient 3 6.9273 5.5321 1.2622 1.0859
Patient 4 3.3502 2.6799 2.5278 2.1245
Patient 5 3.8494 2.9177 2.1033 1.7138
Patient 1 3.6328 3.0129 3.3786 2.7452
Patient 2 5.4209 4.3608 2.1542 1.5749
Forecasting 25 minutes Patient 3 7.2340 6.1150 1.5670 1.1272
Patient 4 4.2720 4.0663 2.6781 2.0690
Patient 5 4.0859 3.2310 2.2427 1.6919

SpO2 values 7 min ahead of time. Then, this data is stored in InfluxDB,
designed to handle high-frequency data efficiently. InfluxDB indexes
and stores the time-series data, facilitating easy retrieval. To carry out
analyses and visualizations, we send the predicted and aggregated data
to the Grafana platform. Grafana offers effective monitoring, analysis,
and visualization tools, allowing us to gain valuable insights from the
data.

5.6. Comparison with literature studies

It is challenging to compare results across various studies in the
literature due to differences in sample sizes, signal lengths, data dis-
tributions, and other factors. Despite these challenges, we compare our
work with related studies as shown in Table 12, based on methodolo-
gies, time-series approaches, classification/regression, regression (fore-
casting features), multivariate multi-horizon capabilities, transformer
models, real-time analysis, datasets, and results.

Authors such as Kumar et al. [16], Lee et al. [17], and Chowdhury
et al. [18] used the BIDMC dataset to train and evaluate their models.
This dataset provides 8 min of data per patient, a relatively short dura-
tion for assessing model performance. These studies primarily predicted
SpO2 or RR over short periods, such as one-second steps, with 30-
and 60-second input windows in [18]. Erion et al. [10] applied LSTM
models to predict hypoxemia using the AIMS dataset, achieving an
AUPRC of 23.139 and an AUROC of 86.571, focusing on classification
problems. Annapragada et al. [26] proposed their own SWIFT system
to address classification problems. Shuzan et al. [15] tackled regression
problems using the PPG dataset, achieving an RMSE of 1.41 for RR
and an RMSE of 0.98 for SpO2. Bandopadhaya et al. [11] employed
an encoder—decoder LSTM model with sensor-collected data, reporting
an MAE of 1.29 and an RMSE of 1.51. For SpO2 prediction, Priem
et al. [12] used deep learning with the BORA dataset, recording an
RMSE of 4.4. Similarly, Zhang et al. [13] applied linear and nonlin-
ear methods with their dataset, achieving an RMSE of 1.8. Tonmoy
et al. [14] used linear regression with their dataset and reported
an MAE of 0.845. Kumar et al. [16] applied a Bi-LSTM model with
attention mechanisms using the BIDMC dataset, achieving an MAE of
0.70 for a one-step prediction. Soojeong et al. [17] employed gradient
boosting (GB) with BIDMC, reporting an MAE of 1.94. Baker et al. [27]
applied RQI with BiLSTM using the MIMIC-III dataset and recorded an
MAE of 0.821. Finally, Bian et al. used ResNet and reported an MAE of
2.5.

In this study, we proposed a real-time monitoring system for an ICU
patient’s vital signs based on the TFT temporal transformer model. The
model achieved promising results in terms of the RMSE and MAE. The
metrics we reported, RMSE and MAE, provide quantitative measures of
model accuracy. However, their interpretation in the context of clinical
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applications is indeed critical to understanding the practical benefits of
our approach.

These metrics can be translated into clinical significance. RMSE
reflects the standard deviation of prediction errors. A lower RMSE
indicates that the predicted values are closer to the observed mea-
surements, which is crucial for maintaining the reliability of patient
monitoring. For example, an RMSE of 1.8 in terms of predicting RR
translates to a deviation of less than two breaths per minute, a clinically
acceptable range for early intervention. MAE provides the average
magnitude of errors without considering their direction. For SpO2, an
MAE of 1.5 suggests that the predicted values are, on average, within
1.5% of the actual measurements. This level of precision ensures timely
detection of critical events.

The resulting system can impact the outcome of an ICU patient’s
monitoring process. The improved accuracy of attention-based models
minimizes false alarms and missed critical events, directly impacting
patient safety by enabling precise and timely alerts for abnormal trends
in RR and SpO2. Accurate multi-horizon predictions provide clinicians
with actionable foresight, allowing for proactive interventions. For
example, a consistent prediction that SpO2 falls below 90% would
prompt adjustments in oxygen therapy to prevent hypoxemia. High-
fidelity predictions align with clinical guidelines, reducing the need
for constant manual verification of vital sign trends, and allowing
healthcare professionals to focus on critical tasks. The deployment
of our proposed TFT model in ICUs can transform patient care by
integrating accurate predictions into decision-making systems, leading
to better resource allocation and patient management. The cascading
fine-tuning approach ensures that our model generalizes well to un-
seen patient data, further increasing its applicability in diverse clinical
environments.

6. Limitations and future work

Our study presents a significant advancement at the intersection of
the medical and Al domains by proposing a robust real-time patient
monitoring and forecasting framework. Integrating TFTs and cascaded
fine-tuning ensures highly accurate predictions of critical physiological
indicators such as SpO2 and RR. These contributions enhance clinical
decision-making and demonstrate the potential of Al to address com-
plex temporal dynamics in healthcare data. Additionally, the system’s
real-time data processing and multi-horizon forecasting capabilities
align with real-world clinical workflows, making it a valuable tool for
intensive care units (ICUs).

Despite these contributions, several limitations remain, paving the
way for future research directions.

1. Integrating federated learning can enhance data privacy and
facilitate collaboration across healthcare institutions without
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Fig. 13. SpO2 and RR real versus predicted values over time for the two best models TFT and TCN, for five patients 7 min in advance.
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Fig. 14. SpO2 and RR real versus predicted values over time for the two best models TFT and TCN, for five patients 15 min in advance.
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Table 12

Comparison with literature studies.

Computers in Biology and Medicine 194 (2025) 110406

Papers Years Methods Timeseries  Classification, Regression Real-Time  Multivariate Transformer Dataset Results
Regression (Features for multi-horizon
forecasts)
Erion, Gabriel, et al. 2017 LSTM Yes Classification No No No No AIMS AU-PRC=23.139
[10] AU-ROC=86.571
Annapragada et al. 2021 SWIFT Yes Classification Sp02 No No No -
126]
Bandopadhaya et al. 2023 Encoder-Decoder LSTM Yes Regression SpO2 No No No Oown MAPE=1.56
[11] MAE=1.29
RMSE=1.51
Priem, Gurvan et al. 2020 DL Yes Regression Sp02 No No No BORA RMSE=4.4
12
Zhang, Qingxue et al. 2022 Linear/Nonlinear Models Yes Regression Sp0O2 No No No Own RMSE=1.8
[13]
Tonmoy et al. 2024 LR Yes Regression Sp02 No No No Own MAE=0.845
[14]
Chowdhury et al. 2024 ROSE-Net Yes Regression Sp0O2 No No No BIDMC MAE=1.20
[18] RMSE=1.86
Kumar et al. 2022 Bi-LSTM Yes Regression RR No No No BIDMC MAE=0.70
[16] with Attention
Baker et al. 2021 RQI with BiLSTM Yes Regression RR No No No PPG MAE=0.821
[27]
Soojeong et al. 2022 GB Yes Regression RR No No No BIDMC MAE=1.94
07
Bian et al. 2020 ResNet Yes Regression RR No No No PPG MAE=2.5
[28]
Shuzan et al. 2023 GPR with FSLib Yes Regression SpO2 or RR No No No PPG RR (RMSE=1.41, MAE=0.89)
[15] SpO2 (RMSE=0.98, MAE=0.57)
Our work 2025 TFT Yes Regression SpO2 and RR Yes Yes Yes MIMIC-IIT RR (RMSE=1.4780, MAE=1.1171)
SpO2 (RMSE=1.5776,
MSE=0.9699)
sharing sensitive patient data. Different federated learning ar- 6. Incorporating explainable AI (XAI) algorithms will enhance
chitectures [55] can be explored to select the most suitable one model transparency, helping clinicians understand the predic-
for real-time monitoring in the sensitive ICU domain. tions and trust the system’s outputs. Although the TFT model
2. Further innovations in time-series forecasting algorithms can provides inherent interpretability through attention mechanisms
improve the handling of long-sequence dependencies and irreg- and variable selection networks, this study did not visualize or
ular sampling, addressing challenges inherent in multivariate quantify these interpretive elements. Future work will incorpo-
time-series data such as missing values, multimodal data, data rate attention heat maps and feature importance visualizations
balancing, and data bias [56]. to illustrate better which input variables influence predictions
3. Its applicability in real-world healthcare contexts would require at different time horizons. These interpretability components

additional validation to ensure seamless integration with clinical
workflows, analyzing any practical deployment challenges, and
tackling interoperability challenges inherent in environments
where many different healthcare systems are deployed [57].
Our real-time forecasting pipeline has only been validated in
a simulated environment with MIMIC-III streaming data. An
external validation of the model using other ICU time-series
data will be handled in a future study. The model’s performance
in live clinical infrastructures remains untested, with various
constraints to be considered, including network latency, sensor
failures, and integration with electronic health record (EHR)
systems. Future efforts should involve deployment in hospital
testbeds, assessing system performance under real clinical loads,
data irregularities, and infrastructure variability.

4. Addressing the time complexity of system deployment through

optimization techniques or lightweight models can make the sys-
tem more accessible for resource-constrained settings.
Transformer-based models, including TFTs, can be computa-
tionally intensive and may not be suitable for deployment in
resource-constrained environments like edge devices or rural
clinics with poor connectivity. Exploration of model compression
techniques such as pruning, knowledge distillation, or quantiza-
tion may enable lightweight deployment without compromising
predictive performance.

. External validation using diverse datasets from different health-

care institutions can improve the model’s generalizability and
robustness.
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are essential for clinician-facing transparency and will support
more informed and trustworthy deployment in real-time critical
care settings. In addition, future work could incorporate model-
agnostic interpretability techniques (e.g., SHAP and LIME) and
collaborations with clinicians to validate the decision pathways
of the model in real-time settings.

. The current implementation does not explicitly address the se-

curity and privacy challenges of streaming and storing sensitive
patient data in real-time systems. In clinical environments, any
Al-powered monitoring system must comply with strict data
protection regulations such as HIPAA (USA) or GDPR (EU), par-
ticularly when integrating with cloud platforms, IoT devices, or
third-party analytics tools. Future research should explore secure
data transmission protocols (e.g., TLS, end-to-end encryption),
privacy-preserving machine learning techniques (e.g., federated
learning, differential privacy), and role-based access controls to
ensure compliance with regulatory frameworks.

. Patient conditions can change rapidly in ICU settings, potentially

causing model drift if the underlying data distribution shifts.
The current framework does not include mechanisms for online
learning or dynamic adaptation. Future research could imple-
ment continual learning or adaptive retraining mechanisms that
respond to detected concept drift or patient deterioration events,
ensuring sustained model relevance.

. The proposed model has not been evaluated under noisy, in-

complete, or adversarial data conditions, which are common
in real-world clinical monitoring scenarios. Robustness testing
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under missing data, sensor dropout, and adversarial input con-
ditions is necessary to ensure the reliability and trustworthiness
of forecasts.

While the selection of prediction horizons (7, 15, and 25 min)
was informed by literature, no formal user studies or clinician
feedback were integrated into this research phase. As a result,
the model’s alignment with real-world clinical decision-making
workflows still needs to be validated. Getting feedback from
ICU clinicians is critical to validate and improve the model’s
applicability in a real environment. Future research includes
structured consultations with ICU clinicians and usability test-
ing to refine prediction intervals and interface design based
on clinical priorities and operational constraints. In addition,
a notable strength of the proposed framework is its modular
and extensible architecture, which facilitates incremental inte-
gration into clinical environments. While the current study was
conducted in a simulated setting, each system component, from
data ingestion to visualization, can be independently adapted
or replaced to align with existing hospital infrastructures and
regulatory requirements. Future research focuses on progres-
sively embedding the framework into real-world ICU workflows,
emphasizing compliance with clinical standards for deployment
in smart healthcare settings. Moreover, our study did not fully
account for real-world ICU challenges such as asynchronous
data arrival, sensor noise, missing values, and device integra-
tion issues. These factors are critical for evaluating any clinical
deployment’s robustness and fault tolerance. Future work will
focus on testing the proposed framework under more realistic
conditions, including asynchronous data ingestion, signal noise
augmentation, and potential integration with edge-computing
hardware or clinical telemetry systems to validate performance
under real-world constraints.

Finally, establishing a direct connection to hospital EHRs will en-
able seamless data flow, fostering real-time, actionable insights
directly within existing healthcare infrastructures. By addressing
these limitations, future research can improve our framework’s
quality, scalability, and real-world applicability, further bridg-
ing the gap between cutting-edge Al innovations and practical
clinical implementations.

10.

11.

7. Conclusion

This study introduced a real-time forecasting framework,
StreamHealth Multi-Horizon Al, for multivariate multi-horizon predic-
tion of critical ICU markers, SpO2 and RR, using the MIMIC-III dataset.
The Temporal Fusion Transformer (TFT) demonstrated superior per-
formance over classical and Seq2Seq-based deep learning models in
univariate and multivariate settings. The cascaded fine-tuning strategy
improved the model’s generalizability to unseen patient data, a key
advantage in heterogeneous clinical contexts.

Comprehensive experiments demonstrated the superior perfor-
mance of TFT over classical methods such as LSTM, GRU, Bi-LSTM,
TCN, and CNN on various forecast horizons. The cascaded fine-tuning
approach further validated the robustness and generalizability of the
TFT, achieving consistent accuracy when tested on unseen patient data
from the MIMIC-III dataset. Additionally, integrating streaming tech-
nologies, such as Apache Kafka and Apache Flink, enabled real-time
data ingestion and processing. At the same time, the visualization capa-
bilities provided by Grafana ensured actionable insights for clinicians.
However, the framework assumed idealized data conditions and did not
yet address deployment constraints such as concept drift, asynchronous
measurements, or integration with clinical systems. Various limitations
related to dataset scope, model interpretability, and system scalability
will be covered in future studies.
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This work marks a critical step toward enhancing real-time ICU
monitoring systems, facilitating proactive decision-making, and im-
proving patient outcomes. By addressing key challenges in multivariate
forecasting and demonstrating scalability and accuracy, the proposed
framework paves the way for broader adoption in clinical applications
and future research in predictive healthcare analytics. The chosen ICU
setting is not an isolated case: the model applies to any other medical
environment that collects temporal multivariate data and needs real-
time decisions. However, the ICU environment was a perfect example
for this work because medical markers are being continuously collected
from sensors, and timely decisions are critical.
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