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 A B S T R A C T

The real-time forecasting of critical physiological indicators in intensive care units (ICUs) is essential for early 
intervention and clinical decision support. This study introduces a novel framework, StreamHealth Multi-
Horizon AI, which has been designed to perform multivariate, multi-horizon time-series forecasting for vital 
signs, specifically for a person’s blood oxygen saturation level (SpO2) and respiratory rate (RR). The framework 
leverages advanced attention-based models, with a particular emphasis on the Temporal Fusion Transformer 
(TFT) and Temporal Convolutional Network (TCN), and we benchmark its performance against classical deep 
learning architectures, including LSTM, GRU, Bi-LSTM, Bi-GRU, CNN, and Sequence-to-Sequence (Seq2Seq) 
models with and without attention mechanisms. Both univariate and multivariate forecasting tasks are explored 
across multiple prediction horizons (i.e., 7, 15 and 25 min), using physiological time-series data from the 
MIMIC-III database. The proposed system incorporates a cascaded fine-tuning strategy, wherein the TFT model 
is sequentially fine-tuned on individual patients’ data, significantly enhancing the model’s generalizability to 
unseen patient profiles. Empirical results demonstrate that the TFT model consistently outperforms baseline 
models across all forecasting settings, achieving lower RMSE and MAE values, and exhibiting superior capacity 
for capturing long-sequence dependencies and temporal feature dynamics.

To validate its applicability in real-time clinical environments, the framework integrates a simulated 
streaming infrastructure using Apache Kafka and Apache Flink, enabling continuous data ingestion, forecasting, 
and visualization of vital signs. This end-to-end deployment underscores the system’s potential for ICU 
monitoring, allowing clinicians to anticipate patient deterioration proactively. In summary, we introduce a 
comprehensive framework that uniquely integrates TFT with cascaded fine-tuning for multivariate, multi-
horizon forecasting of critical ICU indicators. Additionally, we demonstrate a simulation for a real-time 
deployment pipeline using Kafka and Flink, enabling robust and generalizable ICU monitoring in clinical 
settings. As a result, this work has contributed a robust and clinically relevant AI solution for real-time 
healthcare monitoring.
1. Introduction

Blood oxygen saturation (SpO2) and respiratory rate (RR) are 
critical indicators of a patient’s health, particularly in intensive care 
settings [1–3]. For example, chronic obstructive pulmonary disease 
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(COPD) patients can experience fluctuating SpO2 levels, underlining 
the limitations of intermittent measurements (that could miss these 
fluctuations) and the importance of predictive monitoring [4]. The 
continuous monitoring of RR is equally important, particularly for 
patients with COPD, respiratory infections, or asthma, as it helps to 
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detect disease severity and ensure timely interventions. Predicting 
SpO2 and RR simultaneously provides a more complete understand-
ing of respiratory conditions, enabling early detection of breathing 
distress [3].

Integrating artificial intelligence (AI) into healthcare has enabled 
significant advances in both monitoring and predictive capabilities [5]. 
AI techniques, including deep neural (DL) networks and transformer 
models, are being increasingly deployed to analyze complex patterns in 
medical data and to predict vital signs, thereby bringing transformative 
improvements to patient care. These studies have shown promising 
results in anticipating changes in vital signs over time [6–9]. Erion 
et al. [10] applied ML and DL models to predict hypoxemia or non-
hypoxemia using time series data based on different features such as 
demographic data, real-time measurements of vital signs, and labora-
tory results. Bandopadhaya et al. [11] proposed an e-health solution 
that integrates deep learning (DL) models with IoT devices for the 
early detection of problematic SpO2 levels in COVID-19 patients. Priem 
et al. [12], Zhang et al. [13] and Tonmoy et al. [14] applied DL models 
to predict SpO2 using a photoplethysmogram (PPG). Shuzan et al. [15] 
applied machine learning (ML) and DL algorithms as single regression 
models to predict RR and SpO2.

The authors in [16–18] used the Beth Israel Deaconess Medical 
Center (BIDMC) [19] dataset to train and evaluate ML models to 
predict RR and SpO2. Kumar et al. [16] applied different DL models 
such as LSTMs, CNNs, LSTMs with an attention layer, hybrid CNN-
LSTMs, bidirectional-LSTMs (Bi-LSTMs), and Bi-LSTMs with an atten-
tion layer for one-step ahead prediction of RR using 32 s and 64 s 
windowing on the Capnobase and MIMIC-II (via BIDMC) datasets. Lee 
et al. [17] presented a method combining gradient boosting (GB) with 
autocorrelation-based power spectral feature extraction to predict RR 
using the BIDMC dataset.

In multi-horizon forecasting, predictions are provided for multiple 
future horizons or time points rather than just one step ahead as in 
traditional time series forecasting. This can also be applied to univariate 
or multivariate time series [20], and UMH or MMH is used in our 
paper to refer to univariate or multivariate multi-horizon (time series) 
forecasting respectively. Most literature studies, especially in the ICU 
domain, depend on a single input feature and give predictions one step 
into the future [21]. For example, the authors in [16] predicted RR just 
one second into the future, which significantly limits the practical med-
ical utility of their results, as ICU physicians require longer prediction 
horizons to make informed clinical decisions.

Models that can interpret multivariate data and provide multi-
horizon time series forecasting are crucial in sensitive medical domains, 
especially in settings that need real-time monitoring and forecasting, 
such as in ICUs [22]. Real-time processing of time series data is crucial 
for providing timely and accurate decisions for effective interven-
tions. Therefore, combining the capabilities of advanced AI models and 
stream processing can enable real-time ingestion, collection and analy-
sis, and provide timely and accurate decision-making processes [23]. 
To address the challenges mentioned above, we pose the following 
research questions:

1. How can multi-task learning models be designed to accurately 
and simultaneously forecast multiple physiological signals (SpO2 
and RR) over multiple future horizons in real-time ICU environ-
ments?

2. In what ways can transformer-based architectures, specifically 
the Temporal Fusion Transformer (TFT), outperform traditional 
deep learning models in capturing long-term dependencies and 
multivariate dynamics in ICU data?

3. How does the proposed StreamHealth Multi-Horizon AI frame-
work enhance model generalizability and enable practical de-
ployments in intensive care settings through its integration of 
cascaded fine-tuning and real-time streaming infrastructures?
2 
4. How can distributed systems such as data lakes and stream-
ing data architectures improve the real-time processing of time 
series data for healthcare monitoring?

We have found no studies in the literature that have investigated 
these research questions using transformers and time series data in 
ICU settings [24]. MMH time series forecasting is critical in domains 
requiring continuous monitoring and decision-making, particularly in 
sensitive healthcare environments like ICUs. These settings demand 
real-time predictions of multiple physiological indicators such as RR 
and SpO2 to enable proactive interventions and improve patient out-
comes. While classical deep learning models, including GRUs, LSTMs, 
Bi-LSTMs, Bi-GRUs and CNNs, have shown promise in time series 
analysis, they can struggle with capturing long-sequence dependencies 
and inter-variable interactions in multivariate forecasting tasks [16].

Enhancements such as attention mechanisms in sequence-
to-sequence (S2S) architectures (e.g., S2S-LSTM, S2S-GRU) partially 
address these limitations, but have yet to be shown to demonstrate 
robust performance in multi-horizon forecasting within ICU settings. 
Transformer-based models, particularly the Temporal Fusion Trans-
former (TFT) [25], have emerged as a powerful alternative due to their 
ability to model complex temporal relationships and dynamic feature 
selection. Despite their potential, the application of transformer models 
to MMH forecasting in ICUs remains underexplored.

Existing research often focuses on single-variable or short-horizon 
predictions, leaving a significant gap in addressing the unique chal-
lenges posed by ICU datasets, such as those from the MIMIC-III
dataset [17]. These challenges include high-dimensional data, variabil-
ity in physiological signals, and long-term predictions to support critical 
care decisions. This study aims to bridge this gap by comprehensively 
evaluating classical DL models, S2S architectures, and transformer-
based models for MMH time series forecasting in ICUs. Leveraging 
the MIMIC-III dataset, we focus on understanding the performance 
limitations of these models, and highlight the superiority of transform-
ers like TFT in handling long-sequence dependencies, generalizability, 
and real-time forecasting capabilities. By addressing these gaps, this 
research contributes to advancing predictive analytics in healthcare, 
and supports the development of robust, real-time monitoring systems 
tailored to critical care environments.

We have implemented the novel StreamHealth Multi-Horizon AI 
(SMHA) framework to address the essential challenges of multivari-
ate multi-horizon (MMH) real-time healthcare monitoring. This frame-
work is designed to overcome limitations in existing methods, such 
as handling complex multivariate time series data, intermittent mea-
surements, and the need for accurate synchronization across multiple 
variables. By integrating AI with big data streaming technologies, 
SMHA leverages an attention-based encoder–decoder model alongside a 
robust data infrastructure, including a data lake and streaming architec-
ture. This approach enhances predictive accuracy for RR and SpO2 over 
various time horizons, marking a significant advancement in real-time 
healthcare analytics.

The proposed framework also demonstrates the practical implemen-
tation of MMH forecasting by combining multivariate data aggregation 
from IoT devices and sensors with a distributed file system using 
Apache Flink and InfluxDB for efficient time series data handling. 
Grafana further supports the system by enabling real-time analysis and 
visualization of raw and predicted data. This comprehensive integration 
ensures high availability, fault tolerance, and actionable insights, ulti-
mately contributing to proactive healthcare management and decision 
making. By addressing existing gaps and advancing real-time moni-
toring, the SMHA framework paves the way for improved predictive 
analytics in healthcare settings.

The current study investigates in detail the capabilities of time 
series transformers (e.g., TFTs) to be able to learn from multivariate 
time series data, and how they can be used to provide multi-horizon 
predictions that are compared with classical DL models and models 
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with bidirectional, S2S, and attention features. The study explores the 
robustness, generalizability, and stability of these models. In addition, 
the architecture is extended to provide real-time monitoring. The main 
objectives of our paper can therefore be summarized as follows: 

• Introduction of the SMHA Framework: A novel framework has been 
developed for the real-time multivariate multi-horizon forecasting 
of critical ICU indicators such as SpO2 and RR, integrating data 
lakes, streaming data, and Temporal Fusion Transformers.

• Exploration of Transformer Architectures: For the first time, the use 
of advanced transformer models, specifically the TFT, has been 
investigated for MMH forecasting of physiological indicators in 
ICU settings, addressing some of the limitations with classical 
deep learning methods.

• Comparison with Classical Deep Learning Models: Comprehensive 
experiments have been conducted with classical and sequence 
modeling methods, including LSTM, GRU, Bi-LSTM, Bi-GRU,
CNN, S2S, and S2S-Attention, benchmarking their performance 
in both UMH and MMH forecasting tasks.

• Demonstration of TFT Superiority: The TFT model significantly out-
performs classical deep learning approaches in both the UMH and 
MMH tasks, particularly in handling long-sequence dependencies 
and complex temporal dynamics.

• Robust Cascaded Fine-Tuning: A cascaded fine-tuning approach has 
been implemented and validated, demonstrating the generaliz-
ability and robustness of the TFT model using unseen patient data 
from the MIMIC-III dataset.

• Real-Time Forecasting System: A simulated sensor system was de-
veloped, leveraging Python, Kafka, and Apache Flink for real-
time data generation, slicing, and forecasting using S2S-Attention 
models for both SpO2 and RR in parallel.

• Advancing Healthcare Monitoring: This work has contributed to im-
proving healthcare decision-making by enhancing the predictive 
accuracy of real-time ICU monitoring systems.

• Validation on MIMIC-III Dataset: The framework has been vali-
dated using a dataset of 20 patients, demonstrating the feasibility 
and efficacy of the approach on real-world clinical data.

• Generalizable Insights for Physiological Data Modeling: Key chal-
lenges in multivariate time series forecasting were addressed, 
including temporal synchronization and variability, thereby pro-
viding insights applicable to broader physiological and healthcare 
data analytics domains.

• Potential for Broader Adoption: The practical applicability of the 
framework has been highlighted in real-time healthcare monitor-
ing systems, paving the way for future research and deployment 
in clinical settings.

The remainder of this paper is organized as follows. Section 2 
presents the related work. Section 3 presents an overview of big data 
streaming platforms. Section 4 presents the methodology and our ar-
chitecture. Section 5 discusses the experimental results and has an 
associated discussion. Section 6 presents some of the limitations and 
our ideas for future work. Finally, Section 7 concludes the paper.

2. Related work

This section is structured into four subsections to discuss the litera-
ture related to four aspects: predicting SpO2, predicting RR,
transformer-based models, and finally, real-time systems for medical 
applications.

2.1. Predicting SpO2

Various studies have applied ML and DL classification models to 
predict hypoxemia or non-hypoxemia. Erion et al. [10], applied logistic 
regression (LR), XGBoost, a one-dimensional convolutional network 
3 
(1DCNN), and LSTM on a patient’s blood oxygenation data to predict 
hypoxemia or non-hypoxemia using a private dataset that collected 
from an academic medical center’s Anesthesia Information Manage-
ment System (AIMS). This dataset included demographic data (age, 
sex, height, weight), patient information, diagnoses, treatments, and 
observations. Annapragada et al. [26] presented two stages of DL 
models: regression and classification to predict SpO2 and to classify 
SpO2 levels into hypoxemia and non-hypoxemia. For the regression 
stage, SWIFT (SpO2 Waveform ICU Forecasting Technique) used two 
different LSTM architectures for forecasting SpO2 30 min into the 
future. The first deep LSTM architecture consisted of five hidden layers, 
and the second shallow LSTM architecture consisted of two hidden 
layers. Both had batch normalization and an output layer. The two 
models, used to predict the level of SpO2, were evaluated by MSE. 
Then, each time point was classified as hypoxemia and non-hypoxemia 
for the classification stage based on an SpO2 threshold of 92%.

Bandopadhaya et al. [11] proposed an e-health solution that inte-
grates DL models with IoT devices for the early detection of problematic 
SpO2 levels in COVID-19 patients. A time series of SpO2 levels for 
patients was collected via IoT and used to train the encoder–decoder 
LSTM model and predict SpO2 levels. The results showed that the 
encoder–decoder LSTM model recorded the lowest error. More studies 
have applied ML and DL regression models to forecast RR and SpO2, 
and recently, deep learning methods have been used to leverage PPG. 
Shuzan et al. [15] applied different regression models: support vector 
regression (SVR), Gaussian process regression (GPR), ensemble trees, 
linear regression, and decision tree regression (DTR) to forecast RR 
and SpO2 separately using photoplethysmograms (PPG). They applied 
different feature selection (FS) methods using the feature (selection) 
Ranking Library (FSLib) to reduce the dimensionality of the PPG data. 
GPR was chosen as the best ML algorithm for both RR and SpO2, and 
the FS methods FitRGP and ReliefF gave the best performance for RR 
and SpO2, respectively.

Gurvan et al. [12] applied the DL model to predict SpO2 using 
PPG signals collected from the BiOSENCY BORA Band SpO2 Validation 
Study (BORA) dataset. Zhang et al. [13] presented a customized dataset 
collected from wearable sensing of PPG signals that were used to 
monitor SpO2. They then applied linear/nonlinear models to predict 
SpO2, resulting in a low RMSE of 1.8%. Tonmoy et al. [14] applied 
different ML regression methods: logistic regression (LR), decision tree 
regression (DTR), random forest regression (RFR), support vector re-
gression (SVR), and K-neighbors regression to predict SpO2 using a 
private dataset of PPG signals collected using a smartphone. The results 
showed that LR recorded the best performance with the lowest MAE.

Chowdhury et al. [18] proposed the ROSE-Net model inspired by 
DenseNet and ConvMixer and then adapted it for one-dimensional data. 
It included three stages: a projection stage, a convolution stage, and a 
pooling with SpO2 estimation stage. Convolution layers with a patch 
size equal to the stride were used to reduce the representation of a 
single input. The output of each layer was concatenated with all the 
other layers in the convolution layer, which were densely connected. 
Then, the final features were pooled using the Global Average Pooling 
Layer to estimate the SpO2 level. The model was trained on clinical 
PPGs from BIDMC and was tested on the rPPG dataset. These results 
demonstrated the model’s ability to estimate SpO2 levels. As observed, 
most literature studies, especially in the ICU domain, depend on a single 
input feature and can only predict one time step into the future.

2.2. Predicting RR

As mentioned, Kumar et al. [16] have applied different DL models 
(CNN, LSTM, LSTM with an attention layer, a hybrid CNN-LSTM model, 
Bi-LSTM, and Bi-LSTM with an attention layer) in order to be able 
to predict RR one step ahead of time. They used 32- and 64-second 
windowing on the BIDMC (extracted from MIMIC-II) and Capnobase 
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datasets, which include electrocardiograms (ECGs) and PPGs, plus sur-
face electromyogram (sEMG) data that was collected from various 
biosensors. The results showed that Bi-LSTM with an attention layer 
recorded the best performance with the lowest MAE for the one-step 
head prediction of RR. Baker et al. [27] proposed a simple and effective 
respiratory quality index (RQI) scheme to assess the degree of quality of 
each modulation-extracted respiration signal from ECG and PPG data 
extracted from MIMIC-III. They then developed a BiLSTM model for 
estimating RR, which employs calculated RRs and their supplementary 
quality indices as input features. They estimated RR based on 20-, 30-, 
and 60-second segments, and impressive MAE results were shown even 
down to the shortest segment length. The results showed that their 
proposed RQI with a BiLSTM recorded the best results for continuous 
and non-invasive respiratory rate monitoring.

Soojeong et al. [17] presented a method that combined gradient 
boosting (GB) with an autocorrelation function-based power spectral 
feature extraction process to predict RR using the BIDMC dataset, which 
achieved higher stability and accuracy. Their method recorded the best 
performance when compared to LSTMs and SVR. Bian et al. [28] pro-
posed a DL model based on a network architecture (ResNet) to predict 
RR values. PPG time-series data was used to train the model through 
a process that augmented the data with a synthetic PPG dataset to 
overcome the insufficient data problem often encountered in DL. Their 
results showed that the proposed DL model scored the best compared 
to classical methods. Again, most literature studies, especially in the 
ICU domain, depend on a single input feature and predict a single time 
step into the future.

2.3. Transformer-based models

Classical ML and DL models have some limitations in terms of 
long sequence time-series forecasting. Transformer-based models us-
ing attention mechanisms can learn long temporal dependencies [29]. 
TFT is a well-known and powerful transformer-based model for multi-
horizon time-series forecasting [25], which has been used in different 
domains. Li et al. [30] presented a novel model that combined CNNs 
and TFTs to detect Obstructive Sleep Apnea (OSA) using single-lead 
ECG signals. The model used a deep residual shrinkage module, a 
multi-scale convolutional attention (MSCA) module, and a multilayer 
convolution module to extract rich time-frequency features from short 
ECG sequences efficiently.

In an ICU setting, Sun et al. [31] proposed the Static and Multi-
variate Temporal Attentive Fusion Transformer (SMTAFormer) to pre-
dict short-term ICU readmission risks by integrating static and dy-
namic temporal clinical data, using the MIMIC-III dataset to construct 
the Readmission Risk Assessment (RRA) dataset. Leveraging a trans-
former encoder for temporal feature representation and a multi-head 
attention mechanism, SMTAFormer captures intra-correlations among 
multivariate temporal features and inter-correlations with static data.

He et al. [32] proposed TFT-multi, an extension of the Tempo-
ral Fusion Transformer (TFT), designed for simultaneous multivariate 
time-series forecasting of vital sign trajectories in the ICU. Address-
ing the challenges of predicting multiple interconnected variables, 
the model enhanced the original TFT by modifying its input–output 
structure and loss function to handle multivariate data more efficiently. 
Focusing on the healthcare domain, it predicted five vital signs: mean 
arterial blood pressure, pulse, SpO2, temperature, and respiratory rate, 
using data from MIMIC-IV plus an independent institutional dataset. 
These studies highlighted the TFT’s potential in multi-horizon fore-
casting of multivariate ICU features. However, there is a research gap 
in this literature whereby the TFT has not been deeply tested under 
different settings, including single-task, multitask, and cascaded fine-
tuning for improved generalizability. We investigate in much more 
detail the capabilities of TFTs compared with classical DL models to 
predict multivariate outcomes under different training methodologies.
4 
Recent advances in time-series forecasting have introduced models 
such as N-BEATS [33], Informer [34], FEDformer [35], and
Prophet [36]. N-BEATS is a powerful univariate architecture based 
on backward and forward residual links, primarily designed for inter-
pretable univariate forecasting tasks. Prophet, developed by Facebook, 
is widely used for business-oriented seasonal forecasting but is less 
suitable for multivariate, high-frequency, and real-time applications. 
Informer and FEDformer are efficient transformer-based architectures 
optimized for extremely long sequences and massive-scale datasets 
(e.g., weather and traffic), often requiring high computational resources 
and lacking the fine-grained temporal interpretability necessary for 
ICU monitoring. In contrast, TFT explicitly supports multivariate multi-
horizon forecasting, incorporates static and time-varying covariates, 
and provides interpretable outputs, making it well-suited for healthcare 
time-series analysis. Therefore, although we recognize the contribu-
tions of these models, we focused our evaluation on architectures that 
align closely with the clinical forecasting goals of this study.

2.4. Real-time systems for medical applications

Various research studies have used Spark with ML to solve medical 
problems. For example, Nair et al. [37] introduced a real-time system 
for predicting heart disease using a decision tree (DT) and Spark. The 
system was tested using health attributes that were extracted from 
streaming tweets. Then, the DT was applied to predict the health status 
of the user. Abderrahmane et al. [38] developed a real-time system for 
predicting cancer diseases based on Spark and DTs. Firstly, an offline 
model was developed using preprocessing and by analyzing historical 
cancer datasets. Then, the model was integrated with Spark to give 
predictions in real time. Ed-daoudy et al. [39] applied six ML models 
with feature selection methods to develop offline models that were 
also used in real time. Kafka was used to received streaming health 
tweets and they were then ingested into Spark. The Spark Streaming 
extension was used to extract health attributes, and random forest (RF) 
was applied to give predictions in real time.

Ahmed et al. [21] applied various ML models in order to determine 
the best model which could be used to predict heart disease in real 
time. They used univariate and relief feature selection methods with 
DT, SVM, RF and LR applied on the heart disease dataset. Kafka 
was used to read data from Twitter and stream it to Spark. RF was 
then applied to predict heart disease in real time. Farki et al. [40] 
investigated techniques for real-time blood pressure forecasting, and 
integrated ML techniques with real-time streaming data processing sys-
tems like Apache Spark and Kafka. Web-based tools were implemented 
to test the scalability of this technology for remote patient tracking and 
individualized healthcare. Ahmed et al. [41] also investigated a real-
time system for forecasting systolic blood pressure (SBP). They applied 
DL models such as LSTM, Bi-LSTM and GRU on historical time-series BP 
data, in order to determine the best model for forecasting. The Bi-LSTM 
model was found to deliver the best results in predicting near-future 
values for SBP in real time. Simulated sensors were used to generate 
streaming SBP values, which were then sent to a Kafka topic (unit of 
organization). The Spark Streaming extension was then used to read 
this Kafka data in a streaming form, after which sliding window sizes 
were applied to the data, and this was sent to the Bi-LSTM model to 
predict near-future SBP values.

Liang Tan et al. [42] proposed a 5G-enabled real-time monitoring 
for COVID-19 patients using big data platforms and DL models. Firstly, 
they developed CNN and LSTM models for predicting COVID-19 using 
ECG signals. Secondly, 5G was used to send and receive data from wear-
able sensors. After that, the Flink streaming data processing framework 
was applied to access electrocardiogram data.
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Table 1
Comparing literature studies based on highlights and limitations.
 Papers Years Highlights Limitations Datasets  
 Erion, 
Gabriel 
et al. [10]

2017 Applied DL to forecast hypoxemia using just SpO2. Used a 
personalized dataset (AIMS).

Did not cover multi-task transformer models, multivariate multi-horizon forecasting, 
integrating big data platforms with models, or weight optimization using multi-patient 
time-series data.

Private dataset  

 Nair et al. 
[37]

2018 Introduced a real-time system with DT to predict heart 
disease using a structured dataset, Spark and Kafka. Tested 
predictions in real time using health-related attributes 
extracted from streaming tweets.

Used structured datasets, did not use time-series data. Did not cover multi-task 
transformer models, multivariate multi-horizon forecasting, or weight optimization using 
multi-patient time-series data.

MIMIC-III  

 Abderrah-
mane et al. 
[38]

2018 Introduced a real-time system with DT to predict cancer 
disease using a structured dataset, Spark and Kafka. Tested 
predictions in real time using a simulated dataset.

Used structured datasets, did not use time-series data. Did not cover multi-task 
transformer models, multivariate multi-horizon forecasting, or weight optimization using 
multi-patient time-series data.

Structured 
cancer disease 
dataset

 

 Ahmed 
et al. [21]

2020 Introduced a real-time system with ML and feature selection 
methods to predict heart disease using a structured dataset, 
Spark and Kafka.

Used structured datasets, did not use time-series data. Did not cover multi-task 
transformer models, multivariate multi-horizon forecasting, or weight optimization using 
multi-patient time-series data.

Structured heart 
disease dataset

 

 Ahmed 
et al. [41]

2021 Investigated a real-time system for forecasting BP in real 
time using time-series data, based on a DL model, Spark and 
Kafka.

Used only one feature based on time-series data. Did not cover multi-task transformer 
models, multivariate multi-horizon forecasting, or weight optimization using multi-patient 
time-series data.

MIMIC-III  

 Annapragada 
et al. [26]

2021 Forecasted SpO2 using a DL model and time-series data. 
Applied classifications and regressions. Applied DL to the 
prediction of hypoxemic events using SpO2. Proposed their 
SWIFT model to estimate results.

Forecasted SpO2 only. Did not cover multi-task transformer models, multivariate 
multi-horizon forecasting, integrating big data platforms with models, or weight 
optimization using multi-patient time-series data.

Private dataset  

 Baker et al. 
[27]

2021 Respiratory modulation signals were extracted from ECG and 
PPG waveforms to estimate RR. Applied several different 
neural network (NN) structures to predict RR. Developed an 
RQI scheme to assess the results.

Did not cover multi-task transformer models, multivariate multi-horizon forecasting, 
integrating big data platforms with models, or weight optimization using multi-patient 
time-series data.

MIMIC-III  

 Kumar et al. 
[16]

2022 Applied LSTM and GRU DL models to estimate RR and 
breathing patterns. Applied the attention mechanism to 
improve the algorithm’s performance.

Did not explore models for long-period time series. Used multi-second segments from 
the BIDMC dataset. Did not cover multi-task transformer models, multivariate 
multi-horizon forecasting, integrating big data platforms with models, or weight 
optimization using multi-patient time-series data.

BIDMC, a 
subset of 
MIMIC-II

 

 Soojeong 
et al. [17]

2022 Combined GB with an autocorrelation-based power spectrum 
to extract features. Applying ML and DL models to predict 
RR.

Did not explore models for long-period time series. Used multi-second segments from 
the BIDMC dataset. Did not cover multi-task transformer models, multivariate 
multi-horizon forecasting, integrating big data platforms with models, or weight 
optimization using multi-patient time-series data.

Private dataset  

 Zhang, 
Qingxue 
et al. [13]

2022 Forecasted SpO2 using linear/nonlinear models based on 
personalized time-series data.

Did not cover multi-task transformer models, multivariate multi-horizon forecasting, 
integrating big data platforms with models, or weight optimization using multi-patient 
time-series data.

Private dataset  

 Shuzan 
et al. [15]

2023 Applied ML models to estimate RR and SpO2 from PPGs. 
Applied a feature selection approach.

Did not cover multi-task transformer models, multivariate multi-horizon forecasting, 
integrating big data platforms with models, or weight optimization using multi-patient 
time-series data.

BIDMC, a 
subset of 
MIMIC-II

 

 Bandopad-
haya et al. 
[11]

2023 Forecasted SpO2 using an encoder–decoder model based on 
time-series data. Applied model on own dataset.

Did not cover multi-task transformer models, multivariate multi-horizon forecasting, 
integrating big data platforms with models, or weight optimization using multi-patient 
time-series data.

Private dataset  

 Tonmoy 
et al. [14]

2024 Forecasted SpO2 using ML models based on personalized 
time-series data. Applied different pre-processing steps to 
enhance results.

Did not cover multi-task transformer models, multivariate multi-horizon forecasting, 
integrating big data platforms with models, or weight optimization using multi-patient 
time-series data.

Private dataset  

 Chowdhury 
et al. [18]

2024 Proposed ROSE-Net to estimate SpO2 using DL. Included 
three stages: a projection stage, a convolution stage, and a 
pooling with SpO2 estimation stage.

Did not explore models for long-period time series. Used multi-second segments from 
the BIDMC dataset. Did not cover multi-task transformer models, multivariate 
multi-horizon forecasting, integrating big data platforms with models, or weight 
optimization using multi-patient time-series data.

BIDMC, a 
subset of 
MIMIC-II

 

2.5. Gaps in the literature

Table  1 shows a comparison of the research studies related to 
the areas discussed. The comparison highlights some of the gaps in 
the literature as regards physiological signal forecasting in ICU set-
tings. Most prior work has focused on single-task modeling, typically 
addressing either SpO2 or RR independently, without exploiting the 
potential of multitask learning for joint signal forecasting. Furthermore, 
most of these studies were limited to univariate and single-horizon 
time-series predictions, thus overlooking the complex temporal de-
pendencies and interactions between multiple physiological variables 
over varying forecast horizons. Although transformer-based architec-
tures, particularly the Temporal Fusion Transformer (TFT), have shown 
promising performance in other domains, their application remains 
underexplored in healthcare time-series forecasting, with few studies 
addressing their potential for multi-horizon multivariate predictions. 
Additionally, existing research has rarely integrated real-time big data 
infrastructures such as Apache Kafka and Flink with predictive models, 
relying instead on offline processing or structured datasets that are 
not representative of streaming ICU environments. Moreover, none of 
the surveyed approaches adopted patient-level cascaded fine-tuning 
strategies to improve model generalizability. They did not evaluate 
model robustness across heterogeneous patient data from large-scale 
clinical repositories such as MIMIC-III. These limitations collectively 
underscore the novelty and necessity of the proposed StreamHealth 
5 
framework, which uniquely integrates multivariate multi-horizon fore-
casting with attention-based modeling, patient-specific fine-tuning, and 
real-time deployments to advance continuous and clinically relevant 
ICU monitoring.

3. Platforms

This section describes various platforms that we used to develop our 
real-time forecasting framework. It should be noted that integrating 
a machine learning model into a real-time monitoring system has a 
well-known and almost standard approach [37–39,41]. We followed 
the same streaming methodology, but with a different problem setting.

3.1. Apache Kafka

Apache Kafka is an open-source event-streaming system. Event 
streaming captures real-time data from sensors, databases, cloud ser-
vices, and applications to form a stream of events. This stream of events 
can be routed to different applications for storage and processing. 
Kafka is designed to pipe these events from the source to the desired 
location [43]. Kafka has three main capabilities. The first is the most 
basic function: to publish and subscribe to streams of events for writing 
and reading data. The second function is to store data streams for as 
long as is needed. The third is to process streams in real time or in a 
batch format [43]. The Kafka cluster consists of one or more brokers 
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that manage the system’s reading and writing functionality. The cluster 
uses Apache Zookeeper to maintain its state. Events are stored in topics 
(a topic is a category or unit of organization in Kafka), and are stored 
in an append-only sequence. Kafka brokers can hold more than one 
partition for one topic [43].

Kafka has several APIs for exporting and reading data. The Producer 
API allows an application to publish a stream of events on one or 
more Kafka topics. The Consumer API reads one or more topics and 
processes the events they produce. The Streams API allows stream 
processing in real-time or batched processing [43]. This can also be 
used to group topics or perform fundamental transformations, enabling 
the configuration of input and output streams. Kafka also has a Connect 
API, which is used to build and run reusable data connectors to import 
from or export to external applications or systems. Some big data 
systems have also built their own native connectors to Kafka to allow 
for easier transferal of events.

3.2. Apache flink

Apache Flink is an open-source framework developed by the Apache 
Software Foundation for distributed processing of streaming data and 
batch data. It is designed with data streams in mind, and offers a very 
low latency and a high level of fault tolerance. Flink works well for 
both streaming data and big data as it has good scalability in terms 
of performance, and it can be deployed on several systems, including 
YARN, Kubernetes, and Mesos [44]. It includes the following functions:

• Table API is an API that offers both traditional tables, similar 
to those found in SQL, and dynamic tables, which are used for 
representing data streams. This API provides functionality that is 
more or less identical to SQL queries with standard commands 
such as SELECT, JOIN, GROUP BY, etc.

• FlinkML provides a set of scalable ML algorithms and an intuitive 
API. It contains algorithms for supervised learning, unsupervised 
learning, data preprocessing, recommendation, and other utilities.

• DataStream API. This allows users to process data streams and 
work with the data in real time. This is typically not used unless 
it is needed for significant optimization. The stream and batch 
data processing layer is where both bounded and unbounded data 
streams can be processed. This layer contains both the DataStream 
and DataSet APIs. The DataStream API works with real-time data, 
while the DataSet API is for batch processing. Batch processing 
can be specified as a window, either tumbling or sliding, and 
allows for time-based batching.

3.3. InfluxDB

InfluxDB is a real-time focused database service built with time-
series analytics in mind. InfluxDB is also very scalable, allowing for 
clustering and cloud-based auto-scaling of clusters. InfluxDB is heavily 
optimized for time-series data [45], which tends to be generated in 
small sizes but very quickly. This could be up to as high as mil-
lions of data points per second, which is far too fast for conven-
tional databases. InfluxDB has been developed for high-availability 
data retrieval, fast storage, IoT sensor data, and providing real-time 
analytics [45]. InfluxDB is a time-series database that combines the 
concepts of a database with retention time and policies. InfluxDB’s mea-
surements function acts much like tables do in a relational database, 
and includes tags, fields and associated timestamp values. The tags are 
indexed columns, and fields are not. Each record in the InfluxDB is 
associated with a timestamp in a nanosecond-precision format. This 
timestamp is essential for writing and processing the data in subsequent 
layers [45].
6 
3.4. Grafana

Grafana is an open-source software system that allows services to be 
monitored in a real-time and user-friendly way. It enables querying, vi-
sualization, and alerts on data or application logs. It allows developers 
to create live, easy-to-process dashboards and send live alerts to users. 
Alerts can be distributed using Grafana Alerting, which can go through 
several notifiers, including PagerDuty, SMS, email, and Slack [46].

Dashboards are the main feature of Grafana. Dashboards allow for 
a broad range of data visualizations. A sample dashboard could be 
one used for monitoring Kubernetes clusters. Such a dashboard would 
show many visualization types, including metrics over time between 
locations. It would also give information on any errors, what clusters 
they originate from, and storage availability. Such dashboards are 
designed to make logs as readable and user friendly as possible. Plugins 
allow many data types to be interpreted and various visualizations 
to be shown to users, such as the outcomes of data analyses [46]. 
Grafana allows many frameworks and technologies to be monitored in 
one location. For example, a dashboard could be created for developers 
to ensure correct data flows from various data producers (sensors) to 
data consumers (sinks) [46].

4. Methodology

This section gives details of the dataset description, the problem 
formulation, and the proposed StreamHealth Multi-Horizon AI (SMHA) 
framework. The proposed framework has two pipelines, as shown in 
Fig.  1, including (1) a pipeline of model deployment and (2) a pipeline 
of online forecasting.

4.1. Dataset description

The goal of this work is to determine the best model and use it to 
evaluate our system in real time. To develop the offline model, SpO2 
and RR (multivariate) time series were extracted minute-by-minute 
for 20 ICU patients with chronic diseases, and the data was obtained 
from the Medical Information Mart for Intensive Care (MIMIC-III) [47] 
database. The extracted patients were aged from 53 to over 80 years, 
and the dataset includes 11 female and 9 male patients. Table  2 shows 
the database characteristics and some sample entries. 

4.2. Problem formulation

Multi-horizon time-series forecasting is vital for real-time patient 
monitoring in ICUs, as it enables clinicians to anticipate changes in 
a patient’s health over multiple future intervals, supporting proac-
tive decision making. This forecasting provides insights into critical 
variables such as heart rate, oxygen saturation, and blood pressure, 
which can exhibit complex temporal dependencies and abrupt changes. 
Leveraging advanced architectures such as encoder–decoder models 
and temporal transformers, which effectively integrate static and time-
varying covariates, can improve interpretability and accuracy in these 
scenarios. Accurate predictions empower clinicians to adjust treatments 
dynamically, reducing risks and improving patient outcomes. In this 
study, we investigate the prediction of univariate and multivariate 
time-series data using diverse DL models, including RNNs and trans-
formers, which are well-known models for interpreting time-series data. 
A crucial step is the formulation of the dataset as a regression task. 
Formulating the dataset as a regression task using different windows 
involves defining a structured approach to divide the time-series data 
into input–output pairs. The process is described as follows:

(1) Define the look-back window (i.e., input sequence) where a 
fixed number of past observations, referred to as the look-back window
(𝑘), is used as input features. This window consists of time-dependent 
input features such as observed values, known inputs, and exogenous 
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Fig. 1. StreamHealth Multi-Horizon AI (SMHA) framework architecture.
Table 2
Database characteristics and some sample entries.
 Patients Age Gender RR mean ± std RR min RR max SpO2 mean ± std SpO2 min SpO2 max 
 Training set 69 ± 10.95 8F/7M 20.561 ± 3.11 9 38 97.85 ± 1.15 82 100  
 Testing set 64 ± 4.88 3F/2M 23.017 ± 2.23 10 43 97.80 ± 0.96 88 100  
 Patient 1 70 Female 24.45 ± 6.06 10 35 97.80 ± 2.13 88 100  
 Patient 2 71 Female 24.95 ± 6.80 13 43 99.40 ± 0.87 96 100  
 Patient 3 60 Female 19.21 ± 3.69 12 27 96.88 ± 2.44 88 100  
 Patient 4 60 Male 24.76 ± 5.17 14 35 98.17 ± 2.09 88 100  
 Patient 5 62 Male 21.69 ± 4.49 11 33 96.74 ± 2.22 87 100  
variables. For example, for a time series 𝑦𝑡, the input at time 𝑡 is defined 
as: 

𝑋𝑡 = [𝑦𝑡−𝑘, 𝑦𝑡−𝑘+1,… , 𝑦𝑡−1]

(2) Define the forecast horizon (i.e., output sequence), denoted 
as 𝜏, which specifies the number of steps into the future for which 
predictions will be made. The output for the model at time 𝑡 is the 
target value(s) at future time steps:

𝑌𝑡 = [𝑦𝑡+1, 𝑦𝑡+2,… , 𝑦𝑡+𝜏 ]

As shown in Fig.  2, a sliding window technique creates overlap-
ping input–output pairs throughout the dataset. This ensures that each 
time series step is considered for input and output creation. For each 
timestamp 𝑡, an input–output pair is created as:

Input: 𝑋𝑡 = {[𝑦𝑡−𝑘, 𝑦𝑡−𝑘+1,… , 𝑦𝑡−1], covariates for 𝑡 − 𝑘 to 𝑡 − 1}

Output: 𝑌𝑡 = {𝑦𝑡+1, 𝑦𝑡+2,… , 𝑦𝑡+𝜏}

As shown in Fig.  2, we investigate different settings by formulating 
the problem as a univariate (i.e., RR or SpO2 alone) and multivariate 
(i.e., RR and SpO2 together) multi-horizon time-series forecast with 
different input and output window sizes. Different DL models are 
evaluated for these different problem settings.

We tested several settings for prediction horizons (i.e., 7, 15 and 
25 min) based on different lag windows (i.e., 3, 7 and 15 min).
7 
1. The clinical justification for prediction horizons (7, 15 and 
25 min): This allows the system to provide:

(a) Short-term prediction (7 min): Immediate forecasting is 
critical for detecting acute events such as sudden drops 
in SpO2 or rapid changes in RR. These short-term fore-
casts allow swift interventions, such as adjusting oxygen 
therapy or administering emergency treatments.

(b) Mid-term prediction (15 min): A mid-range horizon is 
clinically relevant for anticipating trends that may not 
require immediate action but indicate the potential for 
future instability. For example, a gradual decline in SpO2 
or a rising RR trend over 15 min might signal the onset 
of hypoxemia or respiratory distress, providing a window 
for preemptive measures.

(c) Long-term prediction (25 min): Long-term predictions are 
essential for resource planning and proactive patient man-
agement in intensive care units (ICUs). 25 min forecasts 
can enable clinicians to assess the effectiveness of ongoing 
interventions and adjust care plans proactively.

2. The clinical justification for lag windows (3, 7 and 25 min): 
The selected lag windows reflect the temporal dependencies 
necessary for accurate multi-horizon forecasting:

(a) Short lag (3 min): Captures immediate trends and high-
frequency variations in vital signs, essential for real-time 
monitoring and quick adjustments.
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Fig. 2. Problem formulation as a time-series forecasting regression task [25].

(b) Moderate lag (7 min): Balances between capturing short-
term variations and incorporating additional historical 
context, providing a robust input for mid-term forecasts.

(c) Long lag (25 min): Includes extensive historical data to 
model longer-term patterns and dependencies, enhancing 
the accuracy of long-term predictions.

3. The alignment with real-world clinical decision-making: These 
intervals are chosen to mirror critical decision-making time-
frames in ICUs, where clinicians rely on continuous monitoring 
to make time-sensitive decisions:

(a) Real-time alerts: Short-term predictions (7 min) align 
with the need for immediate alerts and intervention.

(b) Trend analysis: Mid-term forecasts (15 min) support trend 
analysis, guiding decisions on the escalation of care or 
changes in monitoring intensity.

(c) Proactive management: Long-term predictions (25 min) 
aid in planning interventions and allocating resources, 
such as preparing for potential intubation or transfer to 
higher levels of care.

4. The AI significance of these settings is as follows:

(a) The integration of AI-driven models like the TFT en-
sures that these horizons are not arbitrarily selected but 
are optimized based on the model’s ability to learn and 
predict meaningful temporal dependencies. The model’s 
self-attention mechanisms enable dynamic weighting of 
lagged inputs, ensuring that the chosen time frames pro-
vide actionable and clinically interpretable predictions.

(b) AI enhances not only the accuracy of these predictions, 
but also their utility by aligning with clinical workflows, 
supporting continuous monitoring, and reducing the cog-
nitive burden on healthcare providers.

4.3. Pipeline of model deployment

Fig.  3 shows the piplines of developing models to foresacte RR 
and Spo2. The main goal of the first pipeline is to obtain the best 
model for forecasting RR and SpO2 time series, which is then integrated 
with the second pipeline in the data transformation layer to forecast 
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RR and SpO2 in real time. We compare the performance of several 
DL algorithms with the transformer model. These models are tested 
for forecasting univariate multi-horizon (UMH) and multivariate multi-
horizon (MMH) time series. Different experiments are executed to 
optimize the many models and test their learning capabilities. Firstly, 
the various DL models such as long short-term memory (LSTM), gated 
recurrent unit (GRU), bidirectional LSTM (Bi-LSTM), Bi-GRU, and CNN 
are used for predicting SpO2 or RR in the UMH setting. Secondly, the 
MMH setting is tested using sequence-to-sequence (S2S) models such 
as S2S-LSTM and S2S-GRU, and sequence-to-sequence with attention 
(S2S-A) models such as S2S-A-BiLSTM and S2S-A-BiGRU. Classical DL 
models achieve promising results but have limitations in handling long 
sequences. This limitation can be solved using transformer architec-
tures, especially time-series transformers such as the temporal fusion 
transformer (TFT).

The TFT model is tested for UMH and MMH tasks, and is compared 
with the other classical DL models. All models are trained and tested 
using long time-series data for individual patients. Each patient’s data 
is split into 80% training data and 20% testing data, and the model is 
trained and tested on single-patient data. The TFT achieved superior 
results compared to all classical DL models. SpO2 and RR MMH time-
series forecasting are further investigated using a TFT transformer. 
To test the model’s generalizability and robustness, a cascaded fine-
tuning approach is used to sequentially and cumulatively fine-tune the 
TFT model with a set of patients, and then test it with a different 
dataset. To perform this experiment, we collect a dataset of 20 MIMIC-
III patients and divide them into 15 patients for training and five for 
testing. The TFT model is fine-tuned 15 times in a cascading way. Then, 
the model is tested using the five testing examples. The TFT model 
achieves promising generalization results on the unseen data from the 
five patients used for testing. A simulated sensor that generates RR and 
SpO2 time-series is developed using a Python script, and the data is 
then stored in a Kafka topic. 

4.3.1. Data pre-processing
Data pre-processing includes two steps: filling in missing values and 

normalizing data.

• Filling in missing values: we replace null values using forward 
fill, a data imputation technique used to handle missing values in 
datasets, particularly time-series data [48].

• Normalizing data: The data is scaled from the original range to 
a new range of 0 to 1 to improve and simplify model training. 
Python’s MinMaxScaler has been utilized for scaling numbers 
to be between 0 and 1. Predicted outcomes are rescaled to the 
original range using an inverse_transform function [49] in order 
to evaluate the models.

4.3.2. Sequence-to-sequence autoencoder model
Sequence-to-Sequence (S2S) autoencoder models are comprised of 

an Encoder, Decoder, RepeatVector and a TimeDistributed layer. They 
include one Encoder layer and one Decoder layer. S2S models contain 
LSTMs and GRUs that are utilized like Encoders and Decoders [50]. The 
input to the models is a sequence of past time steps and the number of 
features (RR and SpO2), and the output of the model is a sequence of 
future time steps with several features.

The Encoder part consists of various layers. The Encoder’s inputs 
module processes sequences of inputs structured as (n_past, n_features), 
where n_features is the total of all the features per time step, including 
SpO2 and RR data, and n_past is the number of time steps that have 
previously been taken into consideration. The architecture’s GRU layer 
skillfully captures the temporal relationships present in these input 
sequences, enabling efficient sequence modeling. To reduce overfitting 
during training, a dropout layer is deployed to deliberately avoid 
relying too much on specific nodes. After sequence processing, the 
Encoder’s states module aggregates the final states, including the LSTM 
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Fig. 3. Univariate multi-horizon and multivariate multi-horizon steps.
layer’s hidden and cell states. These combined states function as a 
succinct synopsis of the input sequence, and are essential for guiding 
further decoding operations in Algorithm 1.

The RepeatVector layer is an essential design component, as it re-
produces the Encoder’s output states over several steps and aligns them 
with every step in the output sequence. This technique ensures that 
the Encoder provides the Decoder with complete context, improving 
prediction accuracy and coherence. Then, the Decoder module’s LSTM 
layer analyzes these recurrent Encoder states along with earlier outputs, 
using this context to repeatedly predict future outputs while training. 
To efficiently combine these predictions, the TimeDistributed dense 
layer applies a dense transformation to each time step of the output 
sequence. The deployment of this layer makes it easier to generate a 
series of output vectors, each of which adds to the overall forecasting 
power of the model, as shown in Algorithm 1. 

4.3.3. Sequence-to-sequence with attention models
The core component of the S2S-A model is an attention-based 

Encoder–Decoder architecture that employs either Bi-GRU or Bi-LSTM, 
and such models are referred to as either S2S-A-BiLSTM or S2S-A-
BiGRU respectively. It consists of two main parts: the Encoder and 
the Decoder, as shown in Algorithm 2. The Encoder part begins by 
taking an input sequence of shape (n_past, n_ features), where n_past 
represents the number of past time steps, and n_features is the number 
of aggregated features per time step (using RR and SpO2). Bi-GRU 
processes the input sequence, collecting past and future dependencies, 
and concatenating the forward and backward hidden states to create 
the final hidden state.
9 
Algorithm 1 Encoder and Decoder process.
1: Encoder process
2: Encoder inputs: (𝑛_𝑝𝑎𝑠𝑡, 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

• 𝑛_𝑝𝑎𝑠𝑡: Number of time steps in the past.
• 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: Number of aggregated features for RR and SpO2.

3: GRU layer: Captures temporal dependencies in the input sequences 
effectively.

4: Dropout layer: Prevent overfitting.
5: Encoder states: LSTM layer after processing the input sequence.
6: Decoder process
7: RepeatVector layer: Repeats the Encoder’s output.
8: GRU layer: Processes the repeated Encoder states.
9: TimeDistributed dense layer: Applies a dense transformation to 
each time step independently.

The GRU output is then subjected to an attention layer, which 
computes scores between each Encoder’s and Decoder’s hidden states. 
These scores are then normalized using the softmax function, enabling 
the model to concentrate on distinct segments of the input sequence. 
The Encoder output computes weights for the inputs to prepare for 
the Decoder based on this attention mechanism. This creates a context 
vector, representing significant portions of the input sequence and 
repeating them n_future times via the RepeatVector layer. This repeated 
attention output serves as the Decoder’s input. It processes the sequence 
using a GRU layer to produce a series of output states. Considering the 
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Algorithm 2 Process for S2S-A models.
1: Initializations (𝑛_𝑝𝑎𝑠𝑡, 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), 𝑒𝑖,𝑡 is the attention score, 𝛼𝑖,𝑡 is the 
normalized attention weight

2: Encoder part
3: Encoder inputs: (𝑛_𝑝𝑎𝑠𝑡, 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
4: Process the input sequence.

⃖⃗ℎ𝑡 = GRU𝑓 ( ⃖⃗ℎ𝑡−1, 𝑥𝑡)

⃖⃖ℎ𝑡 = GRU𝑏(⃖⃖ℎ𝑡+1, 𝑥𝑡)
5: Concatenate forward and backward hidden states.

ℎ𝑡 = [ ⃖⃗ℎ𝑡; ⃖⃖ℎ𝑡]

6: Apply attention mechanism to the output of the Bi-GRU.
7: Compute attention scores.

𝑒𝑖,𝑡 = score(𝑠𝑖−1, ℎ𝑡)

8: Normalize the attention weights.

𝛼𝑖,𝑡 =
exp(𝑒𝑖,𝑡)

∑𝑇
𝑡=1 exp(𝑒𝑖,𝑡)

9: Calculate weighted inputs based on the attention mechanism.
10: Apply attention weights.
11: Generate a context vector.

𝑐𝑖 =
𝑇
∑

𝑡=1
𝛼𝑖,𝑡ℎ𝑡

12: Repeat the attention output.
13: Output the context vector.
14: Decoder part
15: Takes the previous input from the Encoder.
16: Applied to the repeated attention output sequence.
17: Processes the output sequence.

𝑠𝑖 = GRU(𝑠𝑖−1, 𝑦𝑖−1, 𝑐𝑖)

18: Generate values at each time slot.
19: Forecast values at a specific time.
20: Generate the whole output sequence.

𝑜𝑖 = 𝑊𝑜[𝑠𝑖; 𝑐𝑖] + 𝑏𝑜

𝑃 (𝑦𝑖|𝑦<𝑖, 𝑋) = softmax(𝑜𝑖)
21: End

context vector and hidden states, the Decoder produces a single value 
at each time, and the output states added together make up the whole 
output sequence.

4.4. Temporal convolutional networks (TCNs)

TCN is a type of neural network architecture designed for sequence 
modeling tasks that handle entire sequences in parallel with stable 
gradient propagation [51]. A CNN is typically associated with images; 
TCNs tweak that robust architecture for sequence modeling tasks using 
one-dimensional convolutions that slide over the input sequence [52]. 
The real power of TCNs lies in how they manage sequence modeling 
and time-series forecasting. Its model handles long-term dependencies 
and respects the causality of time without suffering from memory 
degradation. The combination of dilated convolutions and parallel 
processing allows TCNs to outperform traditional methods, while its ar-
chitecture goes deep enough to capture both short-term and long-term 
dependencies. At the heart of TCNs is the convolution operation [52]. 
Specifically, TCNs use dilated convolutions, which can be expressed 
mathematically as [53]:

𝑦(𝑡) =
𝑘−1
∑

𝑖=0
𝑓 (𝑖) ⋅ 𝑥(𝑡 − 𝑑 ⋅ 𝑖)

where 𝑦(𝑡) is the output at time step 𝑡, 𝑓 (𝑖) is the filter of size 𝑘, and 𝑥(𝑡−
𝑑 ⋅ 𝑖) is the input sequence. In addition, 𝑑 represents the dilation factor, 
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which aims to control the spacing between the filter elements to allow 
the network to expand the receptive field exponentially, corresponding 
to its depth. Determining the receptive field of a TCN is critical to 
determine the scope of the input that can be seen by the network. It 
is calculated from [53]:

𝑅 = 1 + (𝑘 − 1)
𝑘−1
∑

𝑖=0
𝑓 (𝑖)

4.4.1. Multi-horizon time-series forecasting using a temporal fusion trans-
former

The Temporal Fusion Transformer (TFT) is a novel deep learning 
model designed for interpretable multi-horizon time-series forecasting. 
The TFT combines high forecasting accuracy with the ability to provide 
detailed insights into the underlying temporal dynamics, making it 
a powerful tool for real-world applications in retail, healthcare, and 
finance [25]. Fig.  4 presents a high-level architecture of the TFT, 
which is explicitly designed to address the challenges of multi-horizon 
forecasting by incorporating diverse data sources and providing inter-
pretability. The architecture integrates three main input types: static 
covariates, past observed inputs, and a priori known future inputs, 
ensuring each input type is handled appropriately to capture its con-
tribution to the forecast. The Variable Selection Networks (VSNs) layer 
dynamically identifies the most salient features for each time step, 
thus focusing computational effort on relevant inputs. Gated Residual 
Networks (GRNs) are used extensively throughout the model to enable 
an efficient flow of information while allowing the network to bypass 
unnecessary computations. Local time-dependent patterns are captured 
through LSTM layers, while multi-head attention layers learn long-
term temporal dependencies across the dataset. Additionally, context 
vectors derived from static covariates are integrated at multiple points, 
allowing static metadata to condition temporal dynamics effectively. 
Prediction intervals are generated using quantile regression, providing 
probabilistic forecasts across all horizons. The architecture is modular, 
combining interpretable components with high-performing temporal 
layers, enabling the integration of robust forecasting and actionable 
insights into the model’s behavior.

The TFT achieves superior performance, outperforming existing 
benchmarks across datasets with diverse temporal dynamics, including 
simple univariate and complex multivariate time series. It enables 
dynamic feature selection by employing VSNs to identify and prioritize 
relevant input features at each time step, enhancing predictive accuracy 
and reducing noise. With Gated Residual Networks (GRNs), the model 
dynamically skips unnecessary computations, adapting to datasets of 
varying complexity. Moreover, the TFT provides unified input handling 
by integrating static metadata, observed historical data, and known 
future inputs, ensuring comprehensive modeling for diverse datasets. 
Formally, the goal of multi-horizon forecasting is to predict 𝑦𝑡+𝜏 for 
𝜏 ∈ {1, 2,… , 𝜏max} based on various input types: static covariates 
𝑠 ∈ R𝑚𝑠 , observed past inputs 𝑧𝑡−𝑘∶𝑡 ∈ R𝑚𝑧 , and known future inputs 
𝑥𝑡−𝑘∶𝑡+𝜏max ∈ R𝑚𝑥 . The predictive model is formulated as:
𝑦̂𝑡+𝜏 = 𝑓 (𝑠, 𝑧𝑡−𝑘∶𝑡, 𝑥𝑡−𝑘∶𝑡+𝜏 , 𝜏)

where 𝑓 represents the learnable architecture. The TFT generates prob-
abilistic forecasts for different quantiles 𝑞 by minimizing the quantile 
loss:

QL(𝑦, 𝑦̂, 𝑞) = 𝑞(𝑦 − 𝑦̂)+ + (1 − 𝑞)(𝑦̂ − 𝑦)+

where (𝑥)+ = max(0, 𝑥). The total loss for training is the sum of the 
quantile losses across all time steps and quantiles:

𝐿(𝛺,𝑊 ) =
∑

𝑦𝑡∈𝛺

∑

𝑞∈𝑄

𝜏max
∑

𝜏=1
QL(𝑦𝑡, 𝑦̂(𝑞, 𝑡 − 𝜏, 𝜏), 𝑞)

where 𝛺 represents the training dataset and 𝑊  are the model param-
eters. Gated Residual Networks (GRNs) are a core component of TFTs, 



H. Saleh et al. Computers in Biology and Medicine 194 (2025) 110406 
Fig. 4. Temporal fusion transformer [25].
designed to enable adaptive non-linear processing. Given an input 𝑎
and optional context 𝑐, the GRN computes:
GRN(𝑎, 𝑐) = LayerNorm(𝑎 + GLU(𝜂1))

where:

𝜂1 = 𝑊1𝜂2 + 𝑏1, 𝜂2 = ELU(𝑊2𝑎 +𝑊3𝑐 + 𝑏2)

GLUs are used within GRNs to provide selective gating:
GLU(𝛾) = 𝜎(𝑊4𝛾 + 𝑏4)⊙ (𝑊5𝛾 + 𝑏5)

where 𝜎 is the sigmoid function, ⊙ denotes element-wise multiplication, 
and 𝑊  and 𝑏 are learnable parameters. To capture long-term tempo-
ral dependencies, the TFT employs interpretable multi-head attention. 
Standard scaled dot-product attention is given by:

Attention(𝑄,𝐾, 𝑉 ) = Softmax
(

𝑄𝐾𝑇
√

𝑑

)

𝑉

where 𝑄, 𝐾, and 𝑉  are the query, key, and value matrices, and 𝑑 is the 
dimensionality. The interpretable multi-head attention modifies this as:

InterpretableAttention(𝑄,𝐾, 𝑉 ) = 1
𝑚𝐻

𝑚𝐻
∑

ℎ=1
Attention(𝑄𝑊 ℎ

𝑄 , 𝐾𝑊 ℎ
𝐾 , 𝑉 𝑊𝑉 ),

where 𝑊 ℎ
𝑄 , 𝑊 ℎ

𝐾  and 𝑊𝑉  are learnable weights, and 𝑚𝐻  is the number of 
attention heads. For locality enhancement, the TFT uses an LSTM-based 
sequence-to-sequence layer. The output of this layer, with 𝑛 specifying 
the position index, is denoted as:
𝜙(𝑡, 𝑛) ∈ {𝜙(𝑡,−𝑘),… , 𝜙(𝑡, 𝜏max)}

The outputs are processed via a gated skip connection:
𝜙′(𝑡, 𝑛) = LayerNorm(𝜙(𝑡, 𝑛) + GLU(𝜙(𝑡, 𝑛)))

To analyze persistent patterns, attention weights are aggregated 
across time steps and horizons. The contribution of a feature at time 
𝑛 is measured by:

𝛼(𝑡, 𝑛, 𝜏) = 1
𝑇

𝑇
∑

𝑡=1
𝛼(𝑡, 𝑛, 𝜏)

where 𝛼(𝑡, 𝑛, 𝜏) is the attention weight for position 𝑛 at horizon 𝜏. To 
detect regime shifts, the attention patterns are compared using the 
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Bhattacharyya distance:
𝑑(𝑝, 𝑞) =

√

1 − 𝜌(𝑝, 𝑞)

where:

𝜌(𝑝, 𝑞) =
∑

𝑗

√

𝑝𝑗𝑞𝑗

For a given time step 𝑡, the distance metric is computed as:

dist(𝑡) = 1
𝜏max

𝜏max
∑

𝜏=1
𝑑(𝛼(𝜏), 𝛼(𝑡, 𝜏))

4.5. The pipeline of online forecasting

The pipeline of online forecasting consists of four main layers, each 
of which transfers data to the next layer: data ingestion, data lake, 
data transformation, and data visualization. The following is a detailed 
discussion of each layer, after some initial comments on streaming data.

• Streaming data resources: Various streaming data sources, such 
as wearable sensors, continuously generate data streams contain-
ing physiological variables like SpO2 or RR. These data streams 
are ingested into Kafka topics, where they are processed and 
aggregated in real time using Apache Flink. Both Kafka and Flink 
have previously been discussed in detail.

• Data ingestion layer: This layer is the aggregation layer, where 
data is aggregated from wearable sensors using batch process-
ing or real-time processing techniques. The data ingestion layer 
collects and imports raw physiological data, such as SpO2 and 
RR, from various sources. In this framework, a simulated sensor 
generates the time-series data, which is then captured by the 
Kafka Producer API. The data ingestion layer ensures the seamless 
intake of continuous data streams, facilitating the initial step of 
data processing and making the data available for subsequent 
layers in the system. This layer is critical in ensuring that the data 
is efficiently and accurately ingested into the system for real-time 
analysis and forecasting.

• Data lake layer: A data lake is a centralized repository that saves 
significant amounts of raw data in different formats, including 
structured, semi-structured, and unstructured data. It provides a 
schema-on-read approach to help data remain flexible for data 
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ingestion and analysis [54]. The SMHA framework’s data lake 
layer is a centralized repository for holding vast amounts of 
raw, organized, and unstructured physiological data, including 
RR and SpO2. The massive volumes of data gathered from the 
data ingestion layer can be efficiently stored, managed, and re-
trieved with this layer. The data lake layer’s scalable and flexible 
data architecture supports the subsequent data transformation 
and visualization (analysis) processes, enabling robust AI-driven 
forecasting and real-time health monitoring.

• Data transformation layer: The raw physiological data kept 
in the data lake must be processed and transformed into an 
organized and analyzable format by the data transformation layer 
of the SMHA system. The transformation layer gets the data 
ready for AI-driven forecasting by using methods including filter-
ing, aggregation, and standardization. For example, windowing 
and stream processing are carried out every three minutes using 
Apache Flink. The TFT model is then provided with the altered 
data to forecast SpO2 and RR. The transformation layer ensures 
that the data is synced, cleaned, and prepared for instant analysis 
and display.

• Data visualization layer: The SMHA framework’s data visualiza-
tion layer is in charge of presenting the predicted physiological 
data, such as expected SpO2 and RR values, in an understandable 
and user-friendly way. The data visualization layer links to In-
fluxDB, where the projected data is kept, using tools like Grafana 
to provide real-time visuals that assist healthcare professionals 
in properly monitoring and interpreting the data. The data vi-
sualization layer makes it possible to get precise and valuable 
information, which supports proactive healthcare management 
and well-informed decision making.

In summary, four key considerations underpin the design of the 
deployment pipeline. First, each component – Kafka for data ingestion, 
Flink for stream processing, InfluxDB for time series storage, and 
Grafana for visualization – was purposefully selected for its critical 
role in supporting real-time ICU monitoring, enabling continuous data 
flows, ensuring low-latency analytics, and providing an intuitive visu-
alization of vital signs. Second, the system architecture is intentionally 
modular and scalable, allowing for flexible adaptation or substitu-
tion with clinical-grade components in future implementations. Third, 
the entire deployment operates within a simulated environment using 
synthetically streamed MIMIC-III data, which provides a realistic and 
controlled benchmark for assessing the system’s responsiveness and 
stability before clinical integration. Fourth, this design aligns with the 
operational demands of ICU settings, and serves as a foundational 
prototype for embedding predictive models into real-time streaming 
infrastructures within smart healthcare ecosystems.

Importantly, while the infrastructure may appear sophisticated for 
a proof-of-concept study, it is essential to have all of the components to 
accurately emulate the streaming dynamics that would be encountered 
in real-world settings. The pipeline is not presented as a finalized clin-
ical solution, but rather as a practical and extensible framework with 
clear pathways for integration into hospital systems and IoT-enabled 
environments. Future work will focus on clinical usability assessments 
and the system’s deployment in real-world intensive care contexts.

5. Results and discussion

In this section, we discuss the results from various models for our 
two experiments. In Experiment 1 – univariate multi-horizon time-
series forecasting – we test the performance of different models (LSTM, 
GRU, Bi-LSTM, Bi-GRU, CNN, TCN, and TFT) for predicting either RR or 
SpO2 individually. In Experiment 2 – multivariate multi-horizon time-
series forecasting – we then explore the performance of various models 
(S2S-LSTM, S2S-GRU, S2S-A-BiLSTM, S2S-A-BiGRU, TCN, and TFT) for 
predicting both RR and SpO2 simultaneously. In each experiment, we 
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noticed a significant improvement using the TFT model when compared 
with the other models.

5.1. Experimental setup

The dataset contains multivariate time-series data for 20 patients. 
This dataset is divided into 15 patients for fine-tuning and five patients 
for testing. The DL models are tested under different scenarios, as 
shown in Fig.  5. The first setting uses just five testing examples. The 
data for a single patient is divided into 80% for training and the remain-
ing 20% for testing, using different lags, 3, 7 and 15 min, to forecast 
at 7, 15 and 25 min respectively. Results are collected to analyze the 
performance of the testing. In this experiment, each model with initially 
random weights is trained independently with each patient. These mod-
els are trained and tested for (1) univariate multi-horizon time-series 
forecasting (i.e., predicting RR or SpO2) using DL models such as LSTM, 
GRU, Bi-LSTM, GR-LSTM, CNN, TCN, and TFT, and (2) multivariate 
multi-horizon time-series forecasting (i.e., jointly predicting RR and 
SpO2) using sequence-to-sequence models (i.e., S2S-LSTM, S2S-GRU, 
S2S-A-BiLSTM, S2S-A-BiGRU), TCN, and TFT.

The second setting cumulatively fine-tunes every model 15 times, 
one for each patient, as shown in Fig.  5. Random initial weights are 
used to start with. Then, the model is trained using one patient from 
the 15. After that, the resulting weights are used as the new weights 
to further fine-tune the model for the second patient. The process 
continues in a cascading way until it reaches the 15th patient. The 
resulting model is then tested with the testing set of five patients.

The hardware configuration of the experimental platform is an Intel 
i7-6700 CPU, the graphics card is an RTX 4090, the memory is 16 GB, 
the operating system is Windows 11, and the model is implemented 
on Python 11 using Keras version 3.8.0, TensorFlow version 2.19.0, 
and PyTorch version 2.5.1+. The results of the RMSE and MAE metrics 
are reported because these two metrics are consistent with all reported 
results. We adopted the following model parameters: Adam as an 
optimizer, MSE as a loss function, a learning_rate of 0.03, 30 epochs 
with an early stopping patience value of 70, and a batch size of 20. 
Other settings are shown in Table  3.

As they are all regression models, they are best evaluated using the 
commonly used Root Mean Square Error (RMSE) and Mean Absolute 
Error (MAE) metrics.

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦obs𝑖 − 𝑦pred𝑖
)2

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝑦obs𝑖 − 𝑦pred𝑖
|

|

|

5.2. Experiment 1: Results from the univariate multi-horizon time-series 
forecasting models

We carried out different experiments using various numbers of 
forecasting minutes (as described earlier) to arrive at the conclusion 
that the TFT transformer model achieved the best performance when 
compared to other models.

5.2.1. Results for forecasting RR
The analysis of the multi-horizon time-series forecasting results for 

five patients reveals a clear dominance of the TFT model across all 
forecasting horizons (7, 15 and 25 min), as seen in Tables  4 and
5. Moreover, these tables show the time complexity of each model. 
The TFT achieved the best RMSE and MAE values in every scenario, 
underscoring its superior ability to model temporal dependencies and 
dynamic feature relationships. However, although the TFT achieves 
the best error results, it also has the highest time complexity. The 
self-attention mechanism in the transformer enables it to focus on 
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Fig. 5. Cascaded fine-tuning in the DL model using multi-patient time-series data.
Table 3
Setting of parameters.
 Models Parameters Specifications  
 
LSTM

Number of nodes 160  
 Dropout 0.3  
 Activation function Relu  
 
GRU

Number of nodes 160  
 Dropout 0.3  
 Activation function Relu  
 
Bi-LSTM

Number of nodes 160  
 Dropout 0.3  
 Activation function Relu  
 
Bi-GRU

Number of nodes 160  
 Dropout 0.3  
 Activation function Relu  
 
CNN

Filter size 250  
 Kernel size 4  
 Dropout 0.2  
 Number of nodes 150  
 

S2S-LSTM, S2S-GRU

Number of nodes in Encoder layer 200  
 Dropout in Encoder layer 0.2  
 Activation function in Encoder layer Relu  
 Number of nodes in Decoder layer 200  
 Dropout in Decoder layer 0.2  
 
S2S-A-BiLSTM, S2S-A-BiGRU

Number of nodes in Encoder layer 200  
 Activation function in Encoder layer Relu  
 Number of nodes in Decoder layer 200  
 Optimizer Adam  
 

TFT

hidden_size 30  
 attention_head_size 6  
 Dropout 0.5  
 hidden_continuous_size 8  
 Loss function QuantileLoss() 
 
TCN

Dropout 0.2  
 kernel_size 5  
 Optimizer Adam  
relevant segments of the time series, dynamically adapting to the tem-
poral dependencies and feature relationships. This ability is particularly 
advantageous in handling the inherent complexities and variances of 
medical time-series data, as considered in this study. The following is 
a summary of the results with more details on numerical performance.

For Patient 1, with the 7 min setting, the TFT model with an 
RMSE of 1.8154 outperformed the Bi-GRU model (RMSE of 1.9536) 
and the CNN model (RMSE of 2.0633). The self-attention mechanism 
enabled precision for short-term forecasts. As can be seen, TCN achieves 
comparable results with an RMSE of 1.7879 and a MAE of 1.2379, but 
with lower time complexity than the TFT transformer model. For the 
15 min setting, the TFT model with an RMSE of 1.9939 was better than 
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both the Bi-GRU (RMSE of 2.0073) and CNN (RMSE of 2.1119) models, 
and again for the 25 min scenario, the TFT model (RMSE of 2.0284) 
remained the best, while the CNN model (RMSE of 2.2825) was the 
worst. Again, with an RMSE of 2.0820 and an MAE of 1.5542, TCN 
achieved the second-best results compared with the TFT, and the same 
result pattern was achieved for the forecasting at 25 min.

For Patient 2 and the 7 min setting, the TFT model had an RMSE 
of 4.3373, which was much better than either the Bi-GRU (RMSE of 
5.4816) or CNN (RMSE of 6.1259) models. TCN achieved the second-
best results (RMSE of 5.0356 and MAE of 3.9802) with the lowest time 
complexity. For 15 min, the TFT model (RMSE of 5.2232) outperformed 
TCN (RMSE of 5.4161), the Bi-LSTM model (RMSE of 5.7750), and the 
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Fig. 6. The effect of problem complexity on the results of the TFT transformer model for RR forecasting.
CNN model (RMSE of 6.4177), and for 25 min, the TFT model (RMSE 
of 5.5968) excelled, while the CNN mode (RMSE of 6.9583) performed 
poorly.

The results of Patient 3 confirmed the superior results of the TFT 
transformer model, with TCN as the second-best model. TCN model 
achieves the lowest time complexity. For the 7 min experiment, the 
TFT transformer model (RMSE of 6.9325) surpassed the TCN (RMSE 
of 7.22786), Bi-LSTM (RMSE of 8.2304) and CNN (RMSE of 8.5268) 
models, and for 15 min, the TFT transformer (RMSE of 7.3032) sur-
passed TCN (RMSE of 8.2751), Bi-GRU (RMSE of 8.8400) and CNN 
(RMSE of 8.8670). Again, TCN achieves the lowest time complexity 
compared to other models. For 25 min, the transformer (RMSE of 
8.1807) retained superiority, while CNN, with an RMSE of 9.9005, 
faltered. TCN achieved the second-best performance with the lowest 
time complexity.

Moreover, the TFT transformer still achieved the best results for 
Patient 4. For the 7 min experiment, TFT, with an RMSE of 3.3220, 
beat TCN (RMSE of 3.4679), Bi-GRU (RMSE of 3.5601) and CNN (RMSE 
of 3.6568). For the 15 min setting, TFT with an RMSE of 3.6965 led, 
then TCN with an RMSE of 4.0687 came next, followed by CNN with an 
RMSE of 4.1738. For 25 min, the TFT transformer model with an RMSE 
of 3.8850 surpassed TCN (RMSE of 4.3034), Bi-LSTM (RMSE of 4.1497) 
and CNN (RMSE of 4.4112). TCN achieved the lowest time complexity.

Finally, for Patient 5, the TFT model achieved the best RMSE and 
MAE for all settings. TCN had the second-best performance and the 
lowest time complexity. For the 7 min setting, the transformer with an 
RMSE of 3.3319 was better than TCN (RMSE 3.7194), Bi-GRU (RMSE 
of 3.9062) and CNN (RMSE of 3.9994). For the 15 min setting, the 
TFT model (RMSE of 4.1829) outperformed TCN (RMSE 4.2267), Bi-
LSTM (RMSE of 4.2784) and CNN (RMSE of 4.6441). For the 25 min 
setting, the transformer model had an RMSE of 4.4274, while the TCN 
model (RMSE 4.6628) and the CNN model (RMSE of 5.3552) performed 
worse.

Fig.  6 compares TFT and the next-best model (TCN) for each forecast 
setting and for every patient. In summary, TFT achieved the best results 
but with high time complexity, and TCN achieved the second-best 
results but with the lowest time complexity. The TFT and TCN models 
specialize in time-series data analysis. As a result, they achieved the 
best results when compared with the other models, such as the CNN-, 
LSTM-, and GRU-based models.

As we have seen, the TFT transformer model consistently per-
formed the best for multi-horizon time-series forecasting, leveraging 
its self-attention mechanism to dynamically capture both short-term 
and long-term dependencies in time-series data, with details in Tables 
4 and 5. Its robust performance across all patients and forecasting 
horizons highlights its adaptability, accuracy, and efficiency. Even as 
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task complexity increases, its ability to maintain low RMSE and MAE 
values establishes the TFT as the optimal choice for real-time healthcare 
applications, as shown in Fig.  7. Bidirectional models such as the 
Bi-GRU and Bi-LSTM were often ranked third, benefiting from their 
ability to process forward and backward dependencies. However, their 
sequential processing capabilities limit their scalability and precision 
when compared to the parallelized operations of the TFT.

In contrast, CNNs were consistently ranked as the worst-performing 
models across most forecasting horizons and patients. CNNs rely on 
convolutional operations, which are less effective in capturing sequen-
tial and temporal dependencies than recurrent and attention-based 
models. Their inability to adapt to long-term dependencies, essential 
for accurate multi-horizon predictions, likely contributed to their in-
ferior performance. This limitation becomes more pronounced as the 
forecasting horizon increases, as seen in the significant degradation 
of CNN performance for longer forecasts (e.g., 25 min). The results 
of this experiment show a superior and stable performance of the 
TFT transformer model when compared with other classical models. 
However, all models struggled as the problem became more complex 
(i.e., when forecasting for increasing numbers of minutes). Fig.  8 
shows the average performance for the different forecasting sizes used, 
highlighting a consistent increase in the error rate as the number of 
forecasting minutes increased.

5.2.2. Results for forecasting SpO2
An analysis of the SpO2 forecasting results highlights distinct pat-

terns in the performance of the different models across the five patients 
and three forecasting horizons (7, 15 and 25 min), with details in 
Tables  6 and 7. These tables also show the time complexity of the 
different models. This section provides a detailed discussion of these 
results, focusing on RMSE as the primary evaluation metric. As shown 
in Fig.  9, the TFT transformer model consistently achieved the best per-
formance in terms of minimized errors across all forecasting horizons 
and patients, demonstrating its robust capability in accurately modeling 
complex temporal dependencies. In addition, TCN achieved the second-
best result for all patients. However, the TFT model had the highest 
time complexity in all experiments, while the TCN model had the best 
(shortest) times. As a result, different models dominated in terms of the 
various evaluation metrics.

For example, in Patient 1, the TFT achieved RMSE values of 1.5518, 
1.6198, and 1.7545 for 7-, 15- and 25 min forecasts, respectively. These 
values are significantly lower than those of the other models, such 
as CNN, which recorded RMSEs of 2.2749, 2.6169, and 2.7346, and 
TCN, which recorded RMSEs of 1.6633, 1.7138, and 1.9019 for the 
same horizons. This trend underscores the TFT’s ability to effectively 
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Fig. 7. Effect of the problem complexity on the results of the TFT transformer model for RR predictions.
Fig. 8. Average results of different numbers of forecasting minutes for RR forecasting.
handle multi-horizon forecasting tasks by leveraging its attention mech-
anism to dynamically focus on the most relevant features. Conversely, 
CNN consistently underperformed relative to the other models, often 
recording the highest RMSE values. For instance, for Patient 2, CNN 
had RMSE values of 2.1199, 2.2582, and 2.7019 for the 7-, 15- and 
25 min horizons, in contrast to TFT’s significantly lower RMSEs of 
1.8758, 1.9824, and 2.1654. The inability of CNNs to capture long-
range dependencies and its reliance on localized convolutions likely 
contributed to this inferior performance.

In the 7 min forecasting scenario, the TFT displayed very strong 
results across all patients, as can be seen in Tables  6 and 7. For 
Patient 3, the TFT achieved an RMSE of 0.4501, beating TCN (0.6728), 
GRU (0.6767) and Bi-LSTM (0.7158). This superior performance is 
attributed to the TFT’s advanced temporal dynamics modeling, critical 
for handling short-horizon forecasts with relatively high variability. 
The TCN model often emerged as the second-best performer in short-
horizon forecasts. For Patient 1, TCN recorded an RMSE of 1.6633, 
closely trailing behind the TFT but significantly beating CNN (RMSE 
of 2.2749). Bi-GRU, on the other hand, achieved lower results than 
TFT and TCN. This demonstrated that while Bi-GRU effectively captures 
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bidirectional dependencies, its sequential nature limits its efficiency 
compared to the parallel processing capabilities of the TFT. The TFT 
maintained its lead for the mid-horizon forecasts (15 min). For Patient 
4, the TFT achieved an RMSE of 2.3708, defeating TCN (RMSE of 
2.4228), Bi-LSTM (RMSE of 2.4903), and CNN (RMSE of 2.6477). The 
ability of the TFT to dynamically weigh features and adjust to shift-
ing temporal patterns proved advantageous as the forecasting horizon 
extended.

The GRU model consistently performed better than CNN but lagged 
behind the TFT, TCN, and Bi-GRU. For instance, in Patient 5, GRU 
recorded an RMSE of 2.5806, compared to TFT’s value of 2.2973 and 
TCN of 2.50891. This pattern suggests that GRU’s sequential archi-
tecture struggles to compete with the advanced attention mechanisms 
of the TFT and TCN in capturing complex temporal relationships. As 
the forecasting horizon increased (i.e., to 25 min), the task complexity 
intensified, leading to higher RMSE values across all models. Fig.  10 
shows the consistent increase in error for the TFT as the problem 
complexity increases. Despite this, the TFT demonstrated resilience 
and continued to do better than other models. For Patient 5, the TFT 
achieved an RMSE of 2.8280, significantly better than TCN (RMSE of 
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Table 4
Results of the univariate multi-horizon forecasting for RR.
 Patients Forecasting minutes Models RMSE MAE Time  
 

Patient 1

Forecasting 7 minutes

LSTM 1.9898 1.5370 0 min 40 s  
 GRU 1.9814 1.5297 0 min 41 s  
 Bi-LSTM 1.9645 1.4966 0 min 40 s  
 Bi-GRU 1.9536 1.4302 0 min 42 s  
 CNN 2.0633 1.6659 0 min 40 s  
 TCN 1.7879 1.2379 0 min 20 s  
 TFT 1.8154 1.4346 0 min 55 s 
 

Forecasting 15 minutes

LSTM 2.1434 1.6521 0 min 50 s  
 GRU 2.1893 1.7138 0 min 51 s  
 Bi-LSTM 2.0349 1.5642 0 min 50 s  
 Bi-GRU 2.0073 1.5345 0 min 51 s  
 CNN 2.1119 1.6430 0 min 50 s  
 TCN 2.0820 1.5542 0 min 35 s  
 TFT 1.9939 1.5710 1 min 10 s 
 

Forecasting 25 minutes

LSTM 2.1269 1.6484 1 min 5 s  
 GRU 2.2078 1.7120 1 min 7 s  
 Bi-LSTM 2.0962 1.6255 1 min 5 s  
 Bi-GRU 2.0929 1.6214 1 min 7 s  
 CNN 2.2825 1.7763 1 min 6 s  
 TCN 2.1804 1.6045 0 min 40 s  
 TFT 2.0284 1.5608 1 min 20 s 
 

Patient 2

Forecasting 7 minutes

LSTM 5.7495 4.5838 0 min 20 s  
 GRU 5.5201 4.1846 0 min 20 s  
 Bi-LSTM 5.4998 4.0006 0 min 25 s  
 Bi-GRU 5.4816 4.0986 0 min 25 s  
 CNN 6.1259 5.0511 0 min 20 s  
 TCN 5.0356 3.9802 0 min 10 s  
 TFT 4.3373 3.1233 0 min 40 s 
 

Forecasting 15 minutes

LSTM 6.1543 5.2518 0 min 40 s  
 GRU 5.7767 4.7303 0 min 41 s  
 Bi-LSTM 5.7750 4.7720 0 min 45 s  
 Bi-GRU 5.8036 4.8202 0 min 40 s  
 CNN 6.4177 5.5469 0 min 43 s  
 TCN 5.4161 4.6783 0 min 20 s  
 TFT 5.2232 4.4946 0 min 55 s 
 

Forecasting 25 minutes

LSTM 6.6448 4.8936 0 min 50 s  
 GRU 6.2711 4.8572 0 min 51 s  
 Bi-LSTM 6.3372 5.4823 0 min 50 s  
 Bi-GRU 5.8756 4.8606 0 min 54 s  
 CNN 6.9583 6.0138 0 min 50 s  
 TCN 6.0741 4.9245 0 min 30 s  
 TFT 5.5968 4.6163 1 min 10 s 
 

Patient 3

Forecasting 7 minutes

LSTM 8.2366 6.3994 0 min 15 s  
 GRU 8.6013 6.7332 0 min 15 s  
 Bi-LSTM 8.2304 6.4088 0 min 18 s  
 Bi-GRU 8.2777 6.4201 0 min 18 s  
 CNN 8.5268 6.7213 0 min 16 s  
 TCN 7.22786 5.9716 0 min 10 s  
 TFT 6.9325 5.4401 0 min 30 s 
 

Forecasting 15 minutes

LSTM 8.5997 6.6233 0 min 25 s  
 GRU 9.0176 6.9917 0 min 25 s  
 Bi-LSTM 8.7681 6.7618 0 min 30 s  
 Bi-GRU 8.8400 6.8151 0 min 30 s  
 CNN 8.8670 6.8183 0 min 25 s  
 TCN 8.2751 6.3957 0 min 15 s  
 TFT 7.3032 5.8912 0 min 42 s 
 

Forecasting 25 minutes

LSTM 9.3403 7.3078 0 min 40 s  
 GRU 9.5332 7.3956 0 min 43 s  
 Bi-LSTM 9.4134 7.3551 0 min 40 s  
 Bi-GRU 9.5735 7.4434 0 min 45 s  
 CNN 9.9005 7.5853 0 min 40 s  
 TCN 8.9264 7.3067 0 min 25 s  
 TFT 8.1807 7.2601 0 min 57 s 
3.1067), CNN (RMSE of 3.2497), and GRU (RMSE of 3.3277). This gap 
in results highlights the TFT’s robustness in maintaining accuracy for 
long-term forecasts, with more details in Tables  6 and 7. The CNN 
model consistently ranked as the worst performer for long-horizon 
forecasts, as seen with Patient 2 where it recorded an RMSE of 2.7019 
compared to TFT’s 2.1654. This underperformance is linked to CNN’s 
16 
inability to effectively model temporal dependencies over extended 
time horizons.

As a result of these experiments, we can see that the TFT achieved 
the best RMSE values, and TCN was the second-best model, showcasing 
their strength in handling temporal complexities through attention 
mechanisms. Their performance advantage was most pronounced for 
longer horizons, where traditional models such as LSTM and GRU 
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Table 5
Continued results of the univariate multi-horizon forecasting for RR.
 Patients Forecasting minutes Models RMSE MAE Time  
 

Patient 4

Forecasting 7 minutes

LSTM 3.5945 2.8722 0 min 10 s  
 GRU 3.5647 2.8519 0 min 23 s  
 Bi-LSTM 3.6106 2.8591 0 min 20 s  
 Bi-GRU 3.5601 2.8467 0 min 21 s  
 CNN 3.6568 2.9420 0 min 23 s  
 TCN 3.4679 2.7571 0 min 13 s  
 TFT 3.3220 2.6841 0 min 40 s 
 

Forecasting 15 minutes

LSTM 4.0077 3.2274 0 min 35 s  
 GRU 4.0415 3.2809 0 min 33 s  
 Bi-LSTM 4.0594 3.2773 0 min 35 s  
 Bi-GRU 3.9301 3.2156 0 min 35 s  
 CNN 4.1738 3.3709 0 min 36 s  
 TCN 4.0687 3.2264 0 min 20 s  
 TFT 3.6965 2.9463 0 min 50 s 
 

Forecasting 25 minutes

LSTM 4.3382 3.4085 0 min 50 s  
 GRU 4.3841 3.4438 0 min 52 s  
 Bi-LSTM 4.1497 3.2845 0 min 50 s  
 Bi-GRU 4.2844 3.3493 0 min 53 s  
 CNN 4.4112 3.6803 0 min 50 s  
 TCN 4.3034 3.4081 0 min 35 s  
 TFT 3.8850 3.1029 1 min 5 s  
 

Patient 5

Forecasting 7 minutes

LSTM 3.9755 2.8572 0 min 25 s  
 GRU 3.9659 2.8829 0 min 24 s  
 Bi-LSTM 3.9228 2.6979 0 min 25 s  
 Bi-GRU 3.9062 2.6252 0 min 27 s  
 CNN 3.9994 2.8104 0 min 25 s  
 TCN 3.7194 2.5895 0 min 15 s  
 TFT 3.3319 2.4883 0 min 35 s 
 

Forecasting 15 minutes

LSTM 4.1753 2.9526 0 min 42 s  
 GRU 4.5830 3.5630 0 min 41 s  
 Bi-LSTM 4.2784 3.1955 0 min 40 s  
 Bi-GRU 4.4755 3.4204 0 min 43 s  
 CNN 4.6441 3.5513 0 min 42 s  
 TCN 4.2267 3.2739 0 min 25 s  
 TFT 4.1829 2.9645 0 min 55 s 
 

Forecasting 25 minutes

LSTM 4.7255 3.6161 0 min 55 s  
 GRU 4.7643 3.8436 0 min 50 s  
 Bi-LSTM 4.9156 3.8888 0 min 55 s  
 Bi-GRU 4.8712 3.6105 0 min 53 s  
 CNN 5.3552 4.6446 0 min 55 s  
 TCN 4.6628 3.5588 0 min 35 s  
 TFT 4.4274 3.4854 1 min 10 s 
Fig. 9. Performance of the TFT transformer model for SpO2 prediction with different patients.
struggled. Regarding model scalability, bidirectional models such as Bi-
GRU and Bi-LSTM performed well, particularly for short- and mid-term 
horizons. However, their sequential nature rendered them less effective 
than the TFT and TCN for long-term predictions. CNN’s reliance on 
17 
localized convolutions resulted in poor performance across all hori-
zons, especially for longer forecasts where capturing global temporal 
relationships is crucial. The TFT is reliable for SpO2 forecasting, with 
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Fig. 10. Effect of the problem complexity on the results of the TFT transformer model for SpO2 predictions.
TCN being the second best model, and CNN consistently had the low-
est RMSE values across all horizons and patient datasets. Temporally 
advanced architectures like TFT and TCN that integrate attention mech-
anisms and can handle multi-horizon tasks efficiently are the superior 
choice for time-series forecasting in medical applications. Conversely, 
CNN demonstrated significant limitations, reinforcing the importance 
of selecting models tailored to the temporal dynamics of the data. These 
findings validate the potential of the TFT and the TCN in improving 
real-time healthcare predictions, providing critical insights for timely 
interventions.

5.3. Experiment 2: Results from the multivariate multi-horizon time-series 
forecasting models

As shown in Fig.  11, the results for jointly predicting both RR and 
SpO2 as multivariate time series over multiple forecasting horizons (7, 
15 and 25 min) underscore the robust performance of the TFT model, 
with more details in Tables  8 and 9. However, the TFT also had the 
highest time complexity. On the other hand, TCN had the second-best 
performance compared to TFT, but it had the lowest time complexity. 
For the 7 min forecasting period, the TFT model consistently outper-
formed all other models in the short-term forecasting horizon, as seen in 
Fig.  12. For Patient 1, the TFT achieved RMSE values of 1.4780 for RR 
and 1.5776 for SpO2, significantly lower than the second-best model, 
TCN, which recorded RMSEs of 2.2198 and 2.0335 for RR and SpO2, 
respectively, and the third-best model, S2S-A-BiGRU, which recorded 
RMSEs of 2.4069 for RR and 2.2165 for SpO2. The TFT’s performance 
is attributed to its attention mechanism, which allows it to focus on 
the most relevant features in the data, capturing short-term temporal 
dynamics effectively. Conversely, the S2S-LSTM performed the worst 
in this category for most patients. For Patient 3, it recorded RMSEs of 
8.2981 for RR and 0.6559 for SpO2, indicating its struggle to adapt to 
complex short-term patterns, particularly in the RR series. These results 
highlight traditional sequence-to-sequence architectures’ limitations in 
handling the task’s multivariate nature within a short horizon. For 
15 min forecasting, the TFT model maintained its dominance across 
all patients. Patient 2 achieved RMSEs of 3.9396 for RR and 1.2271 for 
SpO2, beating S2S-A-BiGRU, which recorded RMSEs of 5.2306 for RR 
and 1.8606 for SpO2. It also did better than TCN, which achieved an 
RMSE of 4.4838 for RR and 1.6242 for SpO2.

For 15 min, the gap between TFT and the other models grew 
narrower when compared to the 7 min forecast, particularly for SpO2, 
suggesting that different models, such as S2S-A-BiGRU and S2S-GRU, 
began to capture more of the mid-term temporal dynamics, though 
not to the extent of TFT. Although not the worst, the performance 
of the CNN-based models was consistently suboptimal. For Patient 4, 
18 
the CNN recorded RMSEs of 3.5100 for RR and 2.5221 for SpO2, 
falling short of capturing the nuanced temporal relationships required 
for accurate forecasting, particularly in the multivariate setting. As the 
forecasting horizon extended to 25 min, the task complexity increased, 
leading to higher RMSE values across all models. Despite this, the TFT 
demonstrated remarkable robustness, continuing to deliver superior 
performance. For Patient 5, the TFT achieved RMSEs of 3.0673 for 
RR and 1.6917 for SpO2, surpassing TCN, which recorded RMSEs of 
3.4840 for RR and 1.8928 for SpO2. This resilience underscores TFT’s 
ability to manage long-term dependencies effectively. On the other 
hand, traditional sequence-to-sequence models such as S2S-LSTM and 
S2S-GRU struggled significantly as the horizon lengthened. For Patient 
1, S2S-LSTM recorded RMSEs of 6.7062 for RR and 9.8074 for SpO2, in-
dicating its inability to maintain accuracy over extended periods. These 
results emphasize the limitations of recurrent architectures without 
attention mechanisms in capturing long-term temporal relationships.

As can be seen in Tables  8 and 9, across all horizons, the TFT 
consistently delivered the lowest RMSE values, reflecting its ability 
to adjust to both short- and long-term dependencies dynamically. In-
corporating attention mechanisms enables the TFT to weigh features 
effectively, a critical advantage in multivariate tasks involving RR 
and SpO2. TCN was consistently ranked the second-best model for 
all patients and all time horizons. The bidirectional GRU models, 
particularly S2S-A-BiGRU, were consistently ranked as the third-best 
performers. Their ability to capture bidirectional temporal dependen-
cies made them competitive, especially in the 7- and 15 min horizons. 
However, their sequential nature limited their scalability for longer 
horizons. The CNN models struggled to capture temporal dependencies 
effectively, particularly in the RR series. This limitation was most 
pronounced in longer horizons, where their performance lagged sig-
nificantly behind attention-based models like the TFT. The increase 
in forecasting horizon times highlighted scalability issues in recurrent 
models such as S2S-LSTM and S2S-GRU, which exhibited substan-
tial performance degradation as the task complexity grew. This trend 
reinforces the importance of models designed to handle both tempo-
ral depth and breadth, as demonstrated by the TFT. The increased 
complexity affected the TFT model, as can be seen in Fig.  11.

As a general conclusion, the TFT is the most accurate model for mul-
tivariate multi-horizon forecasting of RR and SpO2 values, achieving 
the best RMSE values across all patients and horizons, with full details 
in Tables  8 and 9. Its ability to dynamically focus on relevant features 
and adapt to temporal complexities makes it the superior choice for 
real-time healthcare applications. While models like S2S-A-BiGRU of-
fered competitive performance for shorter horizons, their limitations 
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Table 6
Results of the univariate multi-horizon forecasting for SpO2.
 Patients Forecasting minutes Models RMSE MAE Time  
 

Patient 1

Forecasting 7 minutes

LSTM 2.1791 1.8851 0 min 55 s  
 GRU 2.1501 1.7700 0 min 54 s  
 Bi-LSTM 1.7757 1.4873 0 min 55 s  
 Bi-GRU 1.7584 1.4772 0 min 55 s  
 CNN 2.2749 1.9064 0 min 54 s  
 TCN 1.6633 1.3879 0 min 30 s  
 TFT 1.5518 1.2087 1 min 5 s  
 

Forecasting 15 minutes

LSTM 2.2937 1.8840 1 min 10 s  
 GRU 2.3240 1.9351 1 min 15 s  
 Bi-LSTM 1.8651 1.4909 1 min 10 s  
 Bi-GRU 1.7696 1.4122 1 min 12 s  
 CNN 2.6169 2.2509 1 min 11 s  
 TCN 1.7138 1.4216 0 min 45 s  
 TFT 1.6198 1.2923 1 min 34 s 
 

Forecasting 25 minutes

LSTM 2.1166 1.7386 1 min 35 s  
 GRU 2.5748 2.2857 1 min 37 s  
 Bi-LSTM 2.0231 1.6521 1 min 35 s  
 Bi-GRU 1.7925 1.4229 1 min 36 s  
 CNN 2.7346 2.3324 1 min 35 s  
 TCN 1.9019 1.5979 0 min 53 s  
 TFT 1.7545 1.3667 1 min 45 s 
 

Patient 2

Forecasting 7 minutes

LSTM 2.0409 1.5355 0 min 35 s  
 GRU 2.1513 1.6053 0 min 37 s  
 Bi-LSTM 2.1772 1.6384 0 min 35 s  
 Bi-GRU 2.1651 1.6185 0 min 38 s  
 CNN 2.1199 1.5996 0 min 40 s  
 TCN 2.0453 1.5009 0 min 20 s  
 TFT 1.8758 1.3807 0 min 45 s 
 

Forecasting 15 minutes

LSTM 2.2311 1.7748 0 min 50 s  
 GRU 2.2146 1.7501 0 min 51 s  
 Bi-LSTM 2.2328 1.7994 0 min 50 s  
 Bi-GRU 2.2378 1.7835 0 min 54 s  
 CNN 2.2582 1.7974 0 min 50 s  
 TCN 2.1358 1.6662 0 min 30 s  
 TFT 1.9824 1.5393 1 min 7 s  
 

Forecasting 25 minutes

LSTM 2.4042 2.0097 1 min 5 s  
 GRU 2.6754 2.2785 1 min 7 s  
 Bi-LSTM 2.5829 2.3222 1 min 10 s  
 Bi-GRU 2.4980 2.2008 1 min 5 s  
 CNN 2.7019 2.4391 1 min 7 s  
 TCN 2.5925 2.3655 0 min 45 s  
 TFT 2.1654 1.7071 1 min 25 s 
 

Patient 3

Forecasting 7 minutes

LSTM 0.6921 0.5268 0 min 25 s  
 GRU 0.6767 0.4649 0 min 28 s  
 Bi-LSTM 0.7158 0.5858 0 min 25 s  
 Bi-GRU 0.6830 0.4591 0 min 24 s  
 CNN 0.7321 0.6174 0 min 20 s  
 TCN 0.6728 0.4554 0 min 10 s  
 TFT 0.4501 0.2625 0 min 40 s 
 

Forecasting 15 minutes

LSTM 0.8150 0.7155 0 min 45 s  
 GRU 0.7288 0.5739 0 min 45 s  
 Bi-LSTM 0.7489 0.6206 0 min 40 s  
 Bi-GRU 0.7369 0.5815 0 min 40 s  
 CNN 0.7190 0.5572 0 min 45 s  
 TCN 0.7352 0.5632 0 min 25 s  
 TFT 0.6210 0.3169 1 min 5 s  
 

Forecasting 25 minutes

LSTM 0.7687 0.6504 0 min 55 s  
 GRU 0.7708 0.6434 0 min 58 s  
 Bi-LSTM 0.7733 0.6451 0 min 55 s  
 Bi-GRU 0.7935 0.6619 0 min 57 s  
 CNN 0.8255 0.7216 0 min 54 s  
 TCN 0.7932 0.6636 0 min 35 s  
 TFT 0.7285 0.4195 1 min 15 s 
became evident for longer-term predictions. Conversely, CNN and tra-
ditional LSTM-based architectures failed to manage this task’s intricate 
temporal and multivariate relationships effectively. These findings val-
idate the TFT as a pivotal tool for advancing predictive healthcare 
analytics.

Table  10 shows the standard deviations of different models for 
different forecasting tasks. TFT has the lowest standard deviation values 
19 
for all forecasting tasks. As a result, it can be noticed that TFT achieves 
the most stable results compared to other classical S2S or S2S-A models. 
This leads to the observation that TFT is more generalizable when com-
pared to the other different models. As a result, in the next experiment, 
we focus on fine-tuning this model and testing it with full time-series 
datasets.
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Table 7
Continued results of the univariate multi-horizon forecasting for SpO2.
 Patients Forecasting minutes Models RMSE MAE Time  
 

Patient 4

Forecasting 7 minutes

LSTM 2.4826 1.7990 0 min 28 s  
 GRU 2.4271 1.8025 0 min 27 s  
 Bi-LSTM 2.4176 1.7748 0 min 25 s  
 Bi-GRU 2.4504 1.8482 0 min 25 s  
 CNN 2.4878 1.9360 0 min 26 s  
 TCN 2.3428 1.8048 0 min 15 s  
 TFT 2.2823 1.7631 0 min 40 s 
 

Forecasting 15 minutes

LSTM 2.5521 1.6456 0 min 43 s  
 GRU 2.5477 1.6622 0 min 42 s  
 Bi-LSTM 2.4903 1.7427 0 min 45 s  
 Bi-GRU 2.5754 1.7004 0 min 45 s  
 CNN 2.6477 1.8987 0 min 36 s  
 TCN 2.4228 1.7093 0 min 25 s  
 TFT 2.3708 1.6129 0 min 57 s 
 

Forecasting 25 minutes

LSTM 2.8485 2.3616 0 min 55 s  
 GRU 2.8310 2.3542 0 min 55 s  
 Bi-LSTM 2.7147 2.2476 0 min 54 s  
 Bi-GRU 2.7701 2.2839 0 min 55 s  
 CNN 2.8518 2.3657 0 min 58 s  
 TCN 2.6778 2.2074 0 min 30 s  
 TFT 2.4781 1.9014 1 min 8 s  
 

Patient 5

Forecasting 7 minutes

LSTM 2.2331 1.5531 0 min 30 s  
 GRU 2.2113 1.5792 0 min 32 s  
 Bi-LSTM 2.2877 1.6502 0 min 30 s  
 Bi-GRU 2.2583 1.5672 0 min 33 s  
 CNN 2.2461 1.6488 0 min 30 s  
 TCN 2.2866 1.6448 0 min 20 s  
 TFT 2.0088 1.3526 0 min 45 s 
 

Forecasting 15 minutes

LSTM 2.6495 1.7065 0 min 45 s  
 GRU 2.5806 1.6878 0 min 44 s  
 Bi-LSTM 2.5532 1.6561 0 min 45 s  
 Bi-GRU 2.5336 1.6715 0 min 44 s  
 CNN 2.6495 1.7065 0 min 45 s  
 TCN 2.50891 1.6211 0 min 28 s  
 TFT 2.2973 1.5230 0 min 57 s 
 

Forecasting 25 minutes

LSTM 3.1822 2.5404 0 min 60 s  
 GRU 3.3277 2.7279 0 min 58 s  
 Bi-LSTM 3.3319 2.7883 0 min 60 s  
 Bi-GRU 3.2791 2.7278 0 min 57 s  
 CNN 3.2497 2.6720 0 min 60 s  
 TCN 3.1067 2.5387 0 min 35 s  
 TFT 2.8280 2.2784 1 min 5 s  
Fig. 11. Results of the TFT model for the multivariate multi-horizon task.
20 
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Fig. 12. Comparison of the TFT and TCN models for multivariate multi-horizon predictions across different patients.
To illustrate the quality of the predicted values of SpO2 and RR 
versus real values in the multivariate multi-horizon task, which is more 
complex than for the univariate single task models, Fig.  13 presents a 
comparative visualization of the predicted values generated by the TFT 
and TCN models against the actual ground truth values for a 7 min 
multi-horizon forecasting window. This figure clearly illustrates that 
the TFT model is closely aligned with the ground truth across both 
SpO2 and RR signals, and this demonstrates the model’s superior ca-
pability in accurately capturing short-term fluctuations and underlying 
trends in physiological signals. The TFT’s attention-based architecture 
allows it to dynamically capture subtle temporal variations and in-
terdependencies between the multivariate inputs, particularly during 
periods of rapid signal change or transient fluctuations. In contrast, the 
TCN model tends to either over-smooth or lag during abrupt transi-
tions, indicating its limited adaptability to high-frequency variations in 
physiological dynamics. Despite TCN’s strengths in modeling general 
trends, its predictions exhibit notable discrepancies at signal peaks 
and troughs. These results underscore the TFT’s superior temporal 
sensitivity and predictive precision over short-term horizons, making it 
more clinically reliable for early warnings in ICU monitoring scenarios. 
The consistent approximation to real values across different patients 
and signals shows the model’s robustness, stability, and capacity for 
generalized representation under the proposed cascaded fine-tuning 
strategy.

Fig.  14 compares the performance of TFT and TCN for a 15 min 
prediction horizon, again relative to the ground truth for both physi-
ological variables. As the forecasting window extends, the distinction 
between the two models becomes more pronounced. The TFT con-
tinues demonstrating strong predictive fidelity, preserving the signal 
morphology and trend directionality even over the longer horizon. 
The multi-head attention aspect of the model allows it to maintain 
contextual relevance over extended time steps. Conversely, the TCN 
model shows increased deviation from the ground truth, particularly 
in forecasting delayed trends and signal reversals. The limitations of 
fixed receptive fields and the absence of dynamic attention mechanisms 
in the TCN model become more evident in this setting. While TCN 
can approximate the general shape of the time series, its inability 
to model long-term dependencies with sufficient granularity leads to 
performance degradation. These findings affirm that TFT is more robust 
and effective than TCN in delivering accurate, reliable, multi-horizon 
forecasts for critical care variables.
21 
5.4. Experiment 3: Results of the cascaded fine-tuning

Cascaded fine-tuning of the TFT is used as a robust approach 
for improving the generalizability and performance of the model for 
multivariate multi-horizon time-series forecasting of both RR and SpO2 
values. The models are tuned using data from 15 patients and are then 
tested using the full time series for five different patients. As shown in 
Table  11, despite the increased complexity of this generalization task, 
where the model was sequentially fine-tuned with 15 patient datasets 
and tested on unseen data from five patients, the TFT achieved the best 
RMSE values across all forecasting horizons.

For short-term (7 min) forecasts, the TFT demonstrated robust 
performance, achieving RMSE values of 2.5278 and 2.1320 for RR and 
SpO2 respectively for Patient 1 (comparable to the previous single-
patient settings with RMSEs of 1.4780 and 1.5776 for RR and SpO2), 
and RMSE values of 6.3006 and 1.1872 for RR and SpO2 respectively 
for Patient 3. For mid-term (15 min) predictions, the TFT maintained 
strong performance with RMSE values of 3.0571 and 3.0035 for RR 
and SpO2 for Patient 1, and 6.9273 and 1.2622 for Patient 3, while 
for long-term (25 min) forecasts, the model achieved RMSEs of 3.6328 
and 3.3786 for RR and SpO2 for Patient 1, and 7.2340 and 1.5670 
for Patient 3. The TFT’s ability to manage long-term dependencies 
while maintaining accuracy highlights its robustness, particularly in 
unseen patient data, with small RMSE gaps between cascaded fine-
tuning and single-patient training. For instance, for Patient 5 at a 7 min 
forecast, the TFT achieved RMSEs of 3.5019 (RR) and 1.7368 (SpO2) 
under cascaded fine-tuning, compared to 2.4194 (RR) and 1.0604 
(SpO2) in single-patient training, illustrating that cascaded fine-tuning 
achieves a balance between performance and generalizability. The 
model’s performance in SpO2 forecasting is particularly noteworthy, 
with RMSEs consistently lower than for RR, such as in the 7 min 
forecast where SpO2 RMSE values ranged between 1.1872 and 2.1320 
across all patients, highlighting the TFT’s capability to capture rela-
tively stable SpO2 dynamics compared to the more variable RR signals. 
While cascaded fine-tuning presents increased challenges due to its 
focus on generalization, the TFT’s sequential adaptation to diverse data 
patterns enhances its robustness and potential for real-time healthcare 
monitoring, where patient-specific training may not be feasible. These 
findings validate the TFT as a scalable and generalizable tool for real-
time patient monitoring, achieving strong performance metrics despite 
the complexity of multivariate multi-horizon forecasting tasks, and 
demonstrating its critical role in predictive healthcare analytics.
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Table 8
Results of the multivariate multi-horizon time-series forecasting models.
 Patients Forecasting minutes Model RR SpO2 Time  
 RMSE MAE RMSE MAE  
 

Patient 1

Forecasting 7 minutes

S2S-LSTM 5.5770 5.1597 8.3750 8.1240 1 min 10 s  
 S2S-GRU 3.4825 3.0027 3.4868 3.1259 1 min 15 s  
 S2S-A-BiLSTM 4.3638 4.0595 5.1057 4.8469 1 min 15 s  
 S2S-A-BiGRU 2.4069 1.9250 2.2165 1.8220 1 min 12 s  
 TCN 2.2198 1.6029 2.0335 1.6293 0 min 45 s  
 TFT 1.4780 1.1171 1.5776 0.9699 1 min 40 s 
 

Forecasting 15 minutes

S2S-LSTM 6.1582 6.6752 9.0949 8.8188 1 min 30 s  
 S2S-GRU 4.8751 4.4165 4.1339 3.745 1 min 35 s  
 S2S-A-BiLSTM 5.6078 5.2333 6.016 5.7511 1 min 32 s  
 S2S-A-BiGRU 3.5796 2.7305 2.9987 2.5403 1 min 31 s  
 TCN 2.6287 2.2631 2.9019 2.4110 0 min 55 s  
 TFT 1.6058 1.2332 2.7737 2.1730 1 min 55 s 
 

Forecasting 25 minutes

S2S-LSTM 6.7062 6.172 9.8074 9.5064 1 min 40 s  
 S2S-GRU 4.6713 4.1666 6.1856 5.8770 1 min 42 s  
 S2S-A-BiLSTM 5.4694 5.9803 8.3051 8.0245 1 min 41 s  
 S2S-A-BiGRU 2.6478 2.1627 3.7597 3.4095 1 min 40 s  
 TCN 2.46552 2.0296 3.3884 2.9162 0 min 60 s  
 TFT 1.9724 1.6479 2.9873 2.2301 2 min 5 s  
 

Patient 2

Forecasting 7 minutes

S2S-LSTM 5.3750 3.5515 1.9619 1.4863 0 min 50 s  
 S2S-GRU 5.2537 3.3974 1.9983 1.5161 0 min 54 s  
 S2S-A-BiLSTM 5.3924 3.5320 1.9557 1.4998 1 min 5 s  
 S2S-A-BiGRU 4.4362 3.1341 1.7795 1.4063 1 min 5 s  
 TCN 3.9257 2.9257 1.5450 1.2082 0 min 40 s  
 TFT 3.7830 2.7510 1.1865 0.8837 1 min 20 s 
 

Forecasting 15 minutes

S2S-LSTM 5.4181 3.7494 2.0894 1.5974 1 min 5 s  
 S2S-GRU 5.6487 3.6957 2.0238 1.5097 1 min 7 s  
 S2S-A-BiLSTM 5.5369 3.7758 2.0015 1.4977 1 min 25 s  
 S2S-A-BiGRU 5.2306 3.2901 1.8606 1.3854 1 min25 s  
 TCN 4.4838 3.0905 1.6242 1.12474 0 min 50 s  
 TFT 3.9396 2.8365 1.2271 0.9498 1 min 30 s 
 

Forecasting 25 minutes

S2S-LSTM 5.9264 4.5052 2.5835 2.1128 1 min 15 s  
 S2S-GRU 6.1330 4.9386 2.1434 1.6587 1 min17 s  
 S2S-A-BiLSTM 5.3560 3.6684 1.9808 1.4998 1 min 38 s  
 S2S-A-BiGRU 5.0926 3.6616 1.9722 1.4901 1 min 35 s  
 TCN 5.0123 3.5120 1.8309 1.3701 0 min 55 s  
 TFT 4.6854 3.4482 1.3809 1.0894 1 min 45 s 
 

Patient 3

Forecasting 7 minutes

S2S-LSTM 8.2981 6.3413 0.6559 0.3841 0 min 47 s  
 S2S-GRU 8.1163 6.2675 0.6479 0.3766 0 min 42 s  
 S2S-A-BiLSTM 8.1500 6.3326 0.6406 0.3593 0 min 58 s  
 S2S-A-BiGRU 6.6927 5.2571 0.5603 0.3424 0 min 55 s  
 TCN 6.2665 4.9301 0.5235 0.3257 0 min 20 s  
 TFT 5.7043 4.3780 0.5003 0.2872 0 min 60 s 
 

Forecasting 15 minutes

S2S-LSTM 8.7048 6.7639 0.6792 0.3986 0 min 60 s  
 S2S-GRU 8.4319 6.4997 0.6472 0.3862 0 min 58 s  
 S2S-A-BiLSTM 8.3162 6.4196 0.6935 0.3770 1 min 15 s  
 S2S-A-BiGRU 7.3585 5.6338 0.5644 0.3406 1 min 13 s  
 TCN 6.5046 5.2624 0.5693 0.3474 0 min 35 s  
 TFT 6.2357 4.7773 0.5377 0.3103 1 min 25 s 
 

Forecasting 25 minutes

S2S-LSTM 8.9502 6.8962 1.154 0.7309 1 min 40 s  
 S2S-GRU 8.5620 6.5808 1.1495 0.6639 1 min 38 s  
 S2S-A-BiLSTM 8.3721 6.4139 0.9320 0.5749 1 min 55 s  
 S2S-A-BiGRU 7.0485 5.3828 0.6876 0.4220 1 min 53 s  
 TCN 6.6802 5.27960 0.6965 0.4173 0 min 45 s  
 TFT 6.3717 4.7875 0.7275 0.4703 1 min 45 s 
5.5. Prototype system for multivariate multi-horizon forecasting using
streams of RR and SpO2 data

The results from the multivariate multi-horizon experiment showed 
that forecasting 7 min ahead using the TFT recorded the best perfor-
mance in terms of the smallest RMSE and MAE values. Our prototype 
system used this optimal setup (the best transformer model for the same 
forecasting horizon), predicting RR and SpO2 in parallel and in real-
time 7 min into the future using the TFT applied to the past 3 min of 
data.
22 
In our system, the first step was to implement a simulated sensor 
using a Python script in order to generate time-series data for both RR 
and SpO2, and then send this streaming data to the storage zone to be 
stored in a Kafka topic. The Kafka Producer API collects data from the 
simulated sensor and saves it in the topic. A Flink consumer retrieves 
data from the topic using stream processing. Flink, a robust stream 
processing framework for complex computations, uses windowing to 
slice the retrieved data. The sliding window is defined according to the 
predefined interval (3 min) along the session. The session boundary 
covers all aggregated data, after which the aggregated data for both 
RR and SpO2 is sent to the TFT model in order to forecast RR and 
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Table 9
Continued results of the multivariate multi-horizon time-series forecasting models.
 Patients Forecasting minutes Model RR SpO2 Time  
 RMSE MAE RMSE MAE  
 

Patient 4

Forecasting 7 minutes

S2S-LSTM 3.5305 2.8385 2.4429 1.9599 0 min 37 s  
 S2S-GRU 3.5543 2.8468 2.3678 1.7798 0 min 36 s  
 S2S-A-BiLSTM 3.4460 2.7023 2.4702 1.8398 0 min 46 s  
 S2S-A-BiGRU 3.3922 2.6609 2.3200 1.6580 0 min 46 s  
 TCN 3.1612 2.4350 1.8936 1.4364 0 min 35 s  
 TFT 2.8726 2.1320 1.3983 1.0251 0 min 50 s 
 

Forecasting 15 minutes

S2S-LSTM 3.9215 3.1218 2.5215 1.9394 0 min 50 s  
 S2S-GRU 3.5100 2.8273 2.5221 2.0232 0 min 55 s  
 S2S-A-BiLSTM 3.4778 2.7903 2.5828 2.0670 0 min 60 s  
 S2S-A-BiGRU 3.2368 2.6710 2.3358 1.7517 0 min 57s  
 TCN 3.1425 2.5541 2.1196 1.3551 0 min 45 s  
 TFT 2.9506 2.2740 1.4856 1.0029 1 min 5 s  
 

Forecasting 25 minutes

S2S-LSTM 4.3687 3.4560 3.0974 2.4871 1 min 10 s  
 S2S-GRU 3.9970 3.2022 2.6101 2.0246 1 min 15 s  
 S2S-A-BiLSTM 3.7032 2.9639 2.6681 2.1293 1 min 25 s  
 S2S-A-BiGRU 3.6443 2.9393 2.3468 1.7653 1 min 28 s  
 TCN 3.4813 2.7876 2.3026 1.8263 0 min 55 s  
 TFT 3.3647 2.5176 1.9076 1.5006 1 min 40 s 
 

Patient 5

Forecasting 7 minutes

S2S-LSTM 3.6247 2.3058 2.1958 1.4331 0 min 35 s  
 S2S-GRU 3.5737 2.2749 2.2666 1.4822 0 min 36 s  
 S2S-A-BiLSTM 3.5737 2.2989 2.1551 1.3900 0 min 46 s  
 S2S-A-BiGRU 2.6105 1.9415 1.3462 0.9757 0 min 45 s  
 TCN 2.6727 1.7805 1.3560 0.9833 0 min 25 s  
 TFT 2.4194 1.3957 1.0604 0.6963 0 min 50 s 
 

Forecasting 15 minutes

S2S-LSTM 4.2103 2.8055 2.2547 1.5778 0 min 45 s  
 S2S-GRU 4.0247 2.8753 2.0867 1.4438 0 min 47 s  
 S2S-A-BiLSTM 3.8397 2.5267 1.9616 1.3740 0 min 56 s  
 S2S-A-BiGRU 3.4041 2.2769 1.7544 1.1724 0 min 55 s  
 TCN 3.2344 2.4918 1.5933 1.0887 0 min 40 s  
 TFT 2.8726 2.1320 1.3134 0.9222 1 min 5 s  
 

Forecasting 25 minutes

S2S-LSTM 4.6894 3.4581 2.6314 1.6592 1 min 6 s  
 S2S-GRU 4.5176 3.2982 2.2200 1.5184 1 min 10 s  
 S2S-A-BiLSTM 4.5829 3.2671 2.3094 1.6464 1 min 25 s  
 S2S-A-BiGRU 3.5367 2.7371 1.8435 1.4734 1 min 25 s  
 TCN 3.4840 2.4433 1.8928 1.5947 0 min 60 s  
 TFT 3.0673 2.3470 1.6917 1.1952 1 min 30 s 
Table 10
Standard deviations for the multivariate multi-horizon models. 
 Forecasting minutes Models Multivariate multi-horizon
 RR SpO2

 STD_RMSE STD_MAE STD_RMSE STD_MAE 
 

Forecasting 7 minutes

S2S-LSTM 1.9369 1.67626 3.0141 3.0986  
 S2S-GRU 1.9996 1.5674 1.0157 0.9826  
 S2S-A-BiLSTM 1.9319 1.5819 1.6322 1.6914  
 S2S-A-BiGRU 1.7490 1.3695 0.7187 0.5951  
 TCN 1.5938 1.3358 0.5940 0.5041  
 TFT 1.6031 1.2992 0.4110 0.2985  
 

Forecasting 15 minutes

S2S-LSTM 1.9169 1.9439 3.3018 3.3782  
 S2S-GRU 1.9327 1.5112 1.2514 1.2288  
 S2S-A-BiLSTM 1.9160 1.6544 2.003 2.0691  
 S2S-A-BiGRU 1.7556 1.3426 0.8949 0.8048  
 TCN 1.55796 1.2287 0.8510 0.7440  
 TFT 1.7290 1.3207 0.8143 0.6772  
 

Forecasting 25 minutes

S2S-LSTM 1.8374 1.5750 3.4064 3.5313  
 S2S-GRU 1.8478 1.3912 1.9346 2.034  
 S2S-A-BiLSTM 1.7564 1.6137 2.9052 2.988  
 S2S-A-BiGRU 1.7234 1.2429 1.1056 1.0787  
 TCN 1.05019316 1.2277 0.72087 0.6853  
 TFT 1.6897 1.2114 0.8276 0.6420  
23 
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Table 11
Results of the cascaded fine-tuning.
 Forecasting minutes Patients RR SpO2

 RMSE MAE RMSE MAE  
 

Forecasting 7 minutes

Patient 1 2.5278 2.1245 2.1320 1.7445 
 Patient 2 4.3087 3.3868 1.8297 1.2666 
 Patient 3 6.3006 4.9625 1.1872 0.9616 
 Patient 4 3.2345 2.5658 1.7096 1.5114 
 Patient 5 3.5019 2.8819 1.7368 1.3400 
 

Forecasting 15 minutes

Patient 1 3.0571 2.4251 3.0035 2.3423 
 Patient 2 4.9959 4.0095 2.0508 1.5686 
 Patient 3 6.9273 5.5321 1.2622 1.0859 
 Patient 4 3.3502 2.6799 2.5278 2.1245 
 Patient 5 3.8494 2.9177 2.1033 1.7138 
 

Forecasting 25 minutes

Patient 1 3.6328 3.0129 3.3786 2.7452 
 Patient 2 5.4209 4.3608 2.1542 1.5749 
 Patient 3 7.2340 6.1150 1.5670 1.1272 
 Patient 4 4.2720 4.0663 2.6781 2.0690 
 Patient 5 4.0859 3.2310 2.2427 1.6919 
SpO2 values 7 min ahead of time. Then, this data is stored in InfluxDB, 
designed to handle high-frequency data efficiently. InfluxDB indexes 
and stores the time-series data, facilitating easy retrieval. To carry out 
analyses and visualizations, we send the predicted and aggregated data 
to the Grafana platform. Grafana offers effective monitoring, analysis, 
and visualization tools, allowing us to gain valuable insights from the 
data.

5.6. Comparison with literature studies

It is challenging to compare results across various studies in the 
literature due to differences in sample sizes, signal lengths, data dis-
tributions, and other factors. Despite these challenges, we compare our 
work with related studies as shown in Table  12, based on methodolo-
gies, time-series approaches, classification/regression, regression (fore-
casting features), multivariate multi-horizon capabilities, transformer 
models, real-time analysis, datasets, and results.

Authors such as Kumar et al. [16], Lee et al. [17], and Chowdhury 
et al. [18] used the BIDMC dataset to train and evaluate their models. 
This dataset provides 8 min of data per patient, a relatively short dura-
tion for assessing model performance. These studies primarily predicted 
SpO2 or RR over short periods, such as one-second steps, with 30- 
and 60-second input windows in [18]. Erion et al. [10] applied LSTM 
models to predict hypoxemia using the AIMS dataset, achieving an 
AUPRC of 23.139 and an AUROC of 86.571, focusing on classification 
problems. Annapragada et al. [26] proposed their own SWIFT system 
to address classification problems. Shuzan et al. [15] tackled regression 
problems using the PPG dataset, achieving an RMSE of 1.41 for RR 
and an RMSE of 0.98 for SpO2. Bandopadhaya et al. [11] employed 
an encoder–decoder LSTM model with sensor-collected data, reporting 
an MAE of 1.29 and an RMSE of 1.51. For SpO2 prediction, Priem 
et al. [12] used deep learning with the BORA dataset, recording an 
RMSE of 4.4. Similarly, Zhang et al. [13] applied linear and nonlin-
ear methods with their dataset, achieving an RMSE of 1.8. Tonmoy 
et al. [14] used linear regression with their dataset and reported 
an MAE of 0.845. Kumar et al. [16] applied a Bi-LSTM model with 
attention mechanisms using the BIDMC dataset, achieving an MAE of 
0.70 for a one-step prediction. Soojeong et al. [17] employed gradient 
boosting (GB) with BIDMC, reporting an MAE of 1.94. Baker et al. [27] 
applied RQI with BiLSTM using the MIMIC-III dataset and recorded an 
MAE of 0.821. Finally, Bian et al. used ResNet and reported an MAE of 
2.5.

In this study, we proposed a real-time monitoring system for an ICU 
patient’s vital signs based on the TFT temporal transformer model. The 
model achieved promising results in terms of the RMSE and MAE. The 
metrics we reported, RMSE and MAE, provide quantitative measures of 
model accuracy. However, their interpretation in the context of clinical 
24 
applications is indeed critical to understanding the practical benefits of 
our approach.

These metrics can be translated into clinical significance. RMSE 
reflects the standard deviation of prediction errors. A lower RMSE 
indicates that the predicted values are closer to the observed mea-
surements, which is crucial for maintaining the reliability of patient 
monitoring. For example, an RMSE of 1.8 in terms of predicting RR 
translates to a deviation of less than two breaths per minute, a clinically 
acceptable range for early intervention. MAE provides the average 
magnitude of errors without considering their direction. For SpO2, an 
MAE of 1.5 suggests that the predicted values are, on average, within 
1.5% of the actual measurements. This level of precision ensures timely 
detection of critical events.

The resulting system can impact the outcome of an ICU patient’s 
monitoring process. The improved accuracy of attention-based models 
minimizes false alarms and missed critical events, directly impacting 
patient safety by enabling precise and timely alerts for abnormal trends 
in RR and SpO2. Accurate multi-horizon predictions provide clinicians 
with actionable foresight, allowing for proactive interventions. For 
example, a consistent prediction that SpO2 falls below 90% would 
prompt adjustments in oxygen therapy to prevent hypoxemia. High-
fidelity predictions align with clinical guidelines, reducing the need 
for constant manual verification of vital sign trends, and allowing 
healthcare professionals to focus on critical tasks. The deployment 
of our proposed TFT model in ICUs can transform patient care by 
integrating accurate predictions into decision-making systems, leading 
to better resource allocation and patient management. The cascading 
fine-tuning approach ensures that our model generalizes well to un-
seen patient data, further increasing its applicability in diverse clinical 
environments.

6. Limitations and future work

Our study presents a significant advancement at the intersection of 
the medical and AI domains by proposing a robust real-time patient 
monitoring and forecasting framework. Integrating TFTs and cascaded 
fine-tuning ensures highly accurate predictions of critical physiological 
indicators such as SpO2 and RR. These contributions enhance clinical 
decision-making and demonstrate the potential of AI to address com-
plex temporal dynamics in healthcare data. Additionally, the system’s 
real-time data processing and multi-horizon forecasting capabilities 
align with real-world clinical workflows, making it a valuable tool for 
intensive care units (ICUs).

Despite these contributions, several limitations remain, paving the 
way for future research directions.

1. Integrating federated learning can enhance data privacy and 
facilitate collaboration across healthcare institutions without 
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Fig. 13. SpO2 and RR real versus predicted values over time for the two best models TFT and TCN, for five patients 7 min in advance.
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Fig. 14. SpO2 and RR real versus predicted values over time for the two best models TFT and TCN, for five patients 15 min in advance.
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Table 12
Comparison with literature studies.
 Papers Years Methods Timeseries Classification,

Regression
Regression
(Features for
forecasts)

Real-Time Multivariate
multi-horizon

Transformer Dataset Results  

 Erion, Gabriel, et al.
[10]

2017 LSTM Yes Classification No No No No AIMS AU-PRC=23.139
AU-ROC=86.571

 

 Annapragada et al.
[26]

2021 SWIFT Yes Classification SpO2 No No No –  

 Bandopadhaya et al.
[11]

2023 Encoder–Decoder LSTM Yes Regression SpO2 No No No Own MAPE=1.56
MAE=1.29
RMSE=1.51

 

 Priem, Gurvan et al.
[12]

2020 DL Yes Regression SpO2 No No No BORA RMSE=4.4  

 Zhang, Qingxue et al.
[13]

2022 Linear/Nonlinear Models Yes Regression SpO2 No No No Own RMSE=1.8  

 Tonmoy et al.
[14]

2024 LR Yes Regression SpO2 No No No Own MAE=0.845  

 Chowdhury et al.
[18]

2024 ROSE-Net Yes Regression SpO2 No No No BIDMC MAE=1.20
RMSE=1.86

 

 Kumar et al.
[16]

2022 Bi-LSTM
with Attention

Yes Regression RR No No No BIDMC MAE=0.70  

 Baker et al.
[27]

2021 RQI with BiLSTM Yes Regression RR No No No PPG MAE=0.821  

 Soojeong et al.
[17]

2022 GB Yes Regression RR No No No BIDMC MAE=1.94  

 Bian et al.
[28]

2020 ResNet Yes Regression RR No No No PPG MAE=2.5  

 Shuzan et al.
[15]

2023 GPR with FSLib Yes Regression SpO2 or RR No No No PPG RR (RMSE=1.41, MAE=0.89)
SpO2 (RMSE=0.98, MAE=0.57)

 

 Our work 2025 TFT Yes Regression SpO2 and RR Yes Yes Yes MIMIC-III RR (RMSE=1.4780, MAE=1.1171)
SpO2 (RMSE=1.5776, 
MSE=0.9699)

 

sharing sensitive patient data. Different federated learning ar-
chitectures [55] can be explored to select the most suitable one 
for real-time monitoring in the sensitive ICU domain.

2. Further innovations in time-series forecasting algorithms can 
improve the handling of long-sequence dependencies and irreg-
ular sampling, addressing challenges inherent in multivariate 
time-series data such as missing values, multimodal data, data 
balancing, and data bias [56].

3. Its applicability in real-world healthcare contexts would require 
additional validation to ensure seamless integration with clinical 
workflows, analyzing any practical deployment challenges, and 
tackling interoperability challenges inherent in environments 
where many different healthcare systems are deployed [57]. 
Our real-time forecasting pipeline has only been validated in 
a simulated environment with MIMIC-III streaming data. An 
external validation of the model using other ICU time-series 
data will be handled in a future study. The model’s performance 
in live clinical infrastructures remains untested, with various 
constraints to be considered, including network latency, sensor 
failures, and integration with electronic health record (EHR) 
systems. Future efforts should involve deployment in hospital 
testbeds, assessing system performance under real clinical loads, 
data irregularities, and infrastructure variability.

4. Addressing the time complexity of system deployment through 
optimization techniques or lightweight models can make the sys-
tem more accessible for resource-constrained settings.
Transformer-based models, including TFTs, can be computa-
tionally intensive and may not be suitable for deployment in 
resource-constrained environments like edge devices or rural 
clinics with poor connectivity. Exploration of model compression 
techniques such as pruning, knowledge distillation, or quantiza-
tion may enable lightweight deployment without compromising 
predictive performance.

5. External validation using diverse datasets from different health-
care institutions can improve the model’s generalizability and 
robustness.
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6. Incorporating explainable AI (XAI) algorithms will enhance
model transparency, helping clinicians understand the predic-
tions and trust the system’s outputs. Although the TFT model 
provides inherent interpretability through attention mechanisms 
and variable selection networks, this study did not visualize or 
quantify these interpretive elements. Future work will incorpo-
rate attention heat maps and feature importance visualizations 
to illustrate better which input variables influence predictions 
at different time horizons. These interpretability components 
are essential for clinician-facing transparency and will support 
more informed and trustworthy deployment in real-time critical 
care settings. In addition, future work could incorporate model-
agnostic interpretability techniques (e.g., SHAP and LIME) and 
collaborations with clinicians to validate the decision pathways 
of the model in real-time settings.

7. The current implementation does not explicitly address the se-
curity and privacy challenges of streaming and storing sensitive 
patient data in real-time systems. In clinical environments, any 
AI-powered monitoring system must comply with strict data 
protection regulations such as HIPAA (USA) or GDPR (EU), par-
ticularly when integrating with cloud platforms, IoT devices, or 
third-party analytics tools. Future research should explore secure 
data transmission protocols (e.g., TLS, end-to-end encryption), 
privacy-preserving machine learning techniques (e.g., federated 
learning, differential privacy), and role-based access controls to 
ensure compliance with regulatory frameworks.

8. Patient conditions can change rapidly in ICU settings, potentially 
causing model drift if the underlying data distribution shifts. 
The current framework does not include mechanisms for online 
learning or dynamic adaptation. Future research could imple-
ment continual learning or adaptive retraining mechanisms that 
respond to detected concept drift or patient deterioration events, 
ensuring sustained model relevance.

9. The proposed model has not been evaluated under noisy, in-
complete, or adversarial data conditions, which are common 
in real-world clinical monitoring scenarios. Robustness testing 
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under missing data, sensor dropout, and adversarial input con-
ditions is necessary to ensure the reliability and trustworthiness 
of forecasts.

10. While the selection of prediction horizons (7, 15, and 25 min) 
was informed by literature, no formal user studies or clinician 
feedback were integrated into this research phase. As a result, 
the model’s alignment with real-world clinical decision-making 
workflows still needs to be validated. Getting feedback from 
ICU clinicians is critical to validate and improve the model’s 
applicability in a real environment. Future research includes 
structured consultations with ICU clinicians and usability test-
ing to refine prediction intervals and interface design based 
on clinical priorities and operational constraints. In addition, 
a notable strength of the proposed framework is its modular 
and extensible architecture, which facilitates incremental inte-
gration into clinical environments. While the current study was 
conducted in a simulated setting, each system component, from 
data ingestion to visualization, can be independently adapted 
or replaced to align with existing hospital infrastructures and 
regulatory requirements. Future research focuses on progres-
sively embedding the framework into real-world ICU workflows, 
emphasizing compliance with clinical standards for deployment 
in smart healthcare settings. Moreover, our study did not fully 
account for real-world ICU challenges such as asynchronous 
data arrival, sensor noise, missing values, and device integra-
tion issues. These factors are critical for evaluating any clinical 
deployment’s robustness and fault tolerance. Future work will 
focus on testing the proposed framework under more realistic 
conditions, including asynchronous data ingestion, signal noise 
augmentation, and potential integration with edge-computing 
hardware or clinical telemetry systems to validate performance 
under real-world constraints.

11. Finally, establishing a direct connection to hospital EHRs will en-
able seamless data flow, fostering real-time, actionable insights 
directly within existing healthcare infrastructures. By addressing 
these limitations, future research can improve our framework’s 
quality, scalability, and real-world applicability, further bridg-
ing the gap between cutting-edge AI innovations and practical 
clinical implementations.

7. Conclusion

This study introduced a real-time forecasting framework,
StreamHealth Multi-Horizon AI, for multivariate multi-horizon predic-
tion of critical ICU markers, SpO2 and RR, using the MIMIC-III dataset. 
The Temporal Fusion Transformer (TFT) demonstrated superior per-
formance over classical and Seq2Seq-based deep learning models in 
univariate and multivariate settings. The cascaded fine-tuning strategy 
improved the model’s generalizability to unseen patient data, a key 
advantage in heterogeneous clinical contexts.

Comprehensive experiments demonstrated the superior perfor-
mance of TFT over classical methods such as LSTM, GRU, Bi-LSTM, 
TCN, and CNN on various forecast horizons. The cascaded fine-tuning 
approach further validated the robustness and generalizability of the 
TFT, achieving consistent accuracy when tested on unseen patient data 
from the MIMIC-III dataset. Additionally, integrating streaming tech-
nologies, such as Apache Kafka and Apache Flink, enabled real-time 
data ingestion and processing. At the same time, the visualization capa-
bilities provided by Grafana ensured actionable insights for clinicians. 
However, the framework assumed idealized data conditions and did not 
yet address deployment constraints such as concept drift, asynchronous 
measurements, or integration with clinical systems. Various limitations 
related to dataset scope, model interpretability, and system scalability 
will be covered in future studies.
28 
This work marks a critical step toward enhancing real-time ICU 
monitoring systems, facilitating proactive decision-making, and im-
proving patient outcomes. By addressing key challenges in multivariate 
forecasting and demonstrating scalability and accuracy, the proposed 
framework paves the way for broader adoption in clinical applications 
and future research in predictive healthcare analytics. The chosen ICU 
setting is not an isolated case: the model applies to any other medical 
environment that collects temporal multivariate data and needs real-
time decisions. However, the ICU environment was a perfect example 
for this work because medical markers are being continuously collected 
from sensors, and timely decisions are critical.
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