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ABSTRACT The vulnerabilities and security issues of industrial Cyber-Physical Systems (CPSs), such
as Intrusion Detection Systems (IDSs), have significantly increased due to the rapid integration of
conventional industrial setups with advanced networking and computing technologies like 5G, software-
defined networking, and artificial intelligence. Coping strategies for such challenges frequently involve
transferring data to a central location, which raises concerns about latency, efficiency, and privacy. To address
these issues, Federated Learning (FL) was developed as a solution to mitigate both the privacy concerns
of organizations and the complexities of networked systems. However, FL-based techniques still have
shortcomings, FedAvg equally weights weak models, risking suboptimal results; FL also faces Membership
Inference privacy attacks. To address these challenges, we propose PPFL-DCS, an FL framework that
incorporates a weighted mechanism for dynamic client selection, accounting for the performance of each
local model and data size of each client in integration with a Neural Transformer System (NTS) that enhances
the system‘s robustness against the MIA attacks. The NTS limits the impact and gains of attackers, thereby
reducing the effectiveness of MIAs. Extensive experiments demonstrate that PPFL-DCS achieves a high
detection accuracy of 97.424% for cyber threats in industrial CPSs, and highlight its efficiency over state-
of-the-art techniques.

INDEX TERMS Industry 4.0, intrusion detection system, federated learning, stacked AutoEncoders, cyber
threats, membership inference attacks, neural transformer, DL, ML.

I. INTRODUCTION
The growing developments in Artificial Intelligence (AI)
and Machine Learning (ML) have revolutionized diverse
industries, such as Consumer Electronics, enabling the
development of powerful predictive models and data-driven
solutions [1], [2]. However, the effectiveness of these
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techniques heavily relies on accessing large-scale and diverse
datasets. Traditional approaches often involve centralized
data collection, raising significant concerns regarding pri-
vacy and ethical issues surrounding data security and
ownership [3].

To address these challenges, a promising paradigm known
as Federated Learning (FL) has emerged. FL enables collab-
orative model training [4] without the need for centralized
data aggregation. Introduced by the Google research team
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in 2016, FL is a distributed framework that simultaneously
achieves data expansion and privacy protection, FL [5],
entities such as companies, factories, consumer devices,
or edge devices with their respective private datasets act as
clients and construct a local model with an identical neural
structure & utilize its private dataset for training. A global
model with a matching neural structure is established on the
cloud central server. The exchange of global and local models
takes place through continuous communication between the
central server andmultiple clients participating in the training
process. Eventually, a high-performing global model is
collectively created to accomplish specific learning tasks [6].
In contrast to Centralized Learning (CL), FL differs in the

way it transfers the deep model itself instead of the local
data of the client. This approach inevitably expands available
data while preventing the original data leakage ensuring
the privacy and security of sensitive information. However,
the traditional FL framework assumes equal contributions
from all participants [7], disregarding variations in data
distributions and the significance of each participant’s data
and output. These limitations could result in suboptimal
performance, particularly when participants possess imbal-
anced datasets or when certain participants contribute more
valuable data [8]. The presence of poor-performing local
models can impact the global model during the FL process,
causing abruptness in their accuracy and hindering rapid
convergence [8].

Furthermore, the FL training process introduces security
issues and vulnerabilities, as the FL server can expose the
model and become a target for various security threats.
Shokri et al. [9] have shown the effectiveness of inference
attacks, specifically Membership Inference Attacks (MIA),
in revealing private information about data owners. These
MIA attacks are capable of determining whether specific
target data was used in training the target model (victim
model) [10]. Rising privacy concerns have led to the creation
of privacy-preserving methods to counter MIA, includ-
ing Differential Privacy (DP) and encryption techniques.
However, implementing these approaches often leads to
federated models with considerable computation overhead
and compromised classification performance. Consequently,
FL necessitates a new solution that offers improved security
and privacy while maintaining good performance.

In response to these challenges, a specialized area called
privacy-preserving FL (PPFL) has emerged which aims
to incorporate differential weighting mechanisms into the
FL process. These methods assign appropriate weights to
the local updates of each participant, taking into account
the significance, utility, and performance of their data.
By leveraging these weights, the FL process becomes
more flexible and adaptive, leading to improved model
performance while maintaining data privacy [11].
Therefore, taking all these issues and solutions into

account, we propose an enhanced FL framework called
PPFL-DCS, which applies a filtering mechanism to identify
local models with subpar accuracy based on predetermined

dynamic thresholds. In this, the aggregated weights of
the local models are calculated based on their detection
performance, and are dynamically adjusted and aggregated
to determine the final weights. This approach ensures that
only high-quality local models contribute significantly to
the global model, enhancing its overall performance and
convergence. Additionally, it works with, the integration of a
Neural Transformer System (NTS), which aims to minimize
security threats, such as MIA, and foster collaborative
improvement in the performance of the global FL model.
The main contributions of this paper are summarized as
follows:

CONTRIBUTIONS
This paper introduces a novel distributed learning-based
approach called PPFL-DCS, that aims to handle reverse
engineering attacks (MIAs) during training while maintain-
ing cost-effectiveness and enhancing stability. Additionally,
the study presents a weighted FL framework, focusing on
each client’s contribution to the FL process. The main
contributions of this paper are summarized as follows:

1) To effectively tackle the challenges arising from hetero-
geneous and non-IID data distributions across clients,
the study introduces a Weighted Federated Framework
enhanced with a Dynamic Client Selection (DCS)
mechanism. This adaptive strategy prioritizes the
inclusion of clients based on the relevance, quality, and
representativeness of their local data. By doing so, the
framework ensures that participants contributing more
informative data have a proportionally greater impact
on the aggregated global model, thereby improving
learning efficiency and overall model accuracy.

2) A key innovation of this work is the introduction
of a Neural Transformer System (NTS), specifically
designed to counter Membership Inference Attacks
(MIA). Unlike conventional methods such as differen-
tial privacy or cryptographic techniques, which often
impose significant computational burdens and degrade
model utility, NTS offers a practical alternative.
It achieves robust privacy protection, making it suitable
for real-world, resource-constrained environments.

3) Beyond privacy preservation, the proposed NTS frame-
work also functions as a data quality enhancement
module. It intelligently mitigates the influence of noisy
or low-quality data, thereby reducing the dependence
on extensive preprocessing steps. This capability
not only simplifies data handling pipelines but also
enhances the overall quality of insights derived from
the federated training process, further amplifying the
utility of the framework in practical deployments.

II. RELATED WORK
Focusing on cyber-physical systems (CPSs), this section
explores one of CPS named Intrusion Detection Systems
(IDS). It presents the existing methodologies and techniques
for providing secure and privacy-preserving IDS.
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FIGURE 1. Architecture of proposed PPFL-DCS framework.

A. CONVENTIONAL ML/DL MODELS
In the context of IoT systems, Ge et al. [12] introduced an IDS
approach using a DLmodel. It utilizes a Feed-forward Neural
Network (FNN) for both binary and multi-class classification
of various attacks, such as reconnaissance, DoS, DDoS, and
information theft attacks. Through experiments, the results
demonstrated that it surpassed the accuracy and training time
achieved by the Support Vector Machine (SVM) in these
classification tasks. In the field of network security, numerous
researchers have developed various detection algorithms and
proposed solutions for network intrusion detection. As an
example, Teng et al. [13] presented an improved genetic
algorithm aimed at optimizing intrusion detection models
utilizing SVM. Their approach incorporated a fitness function
that considered classification accuracy, false alarm rate, and
data feature dimensions. Additionally, Ren et al. [14] built
a weighted Naive Bayes (NB) IDS model that integrated
PSO, rough set theory, and an enhanced PSO algorithm. This
combination significantly enhanced the detection capacity of
the system they developed.

ML and Deep Learning (DL) models offer efficient
detection of attacks by identifying patterns in data. Unlike
handcrafted IDS, these models can adapt better to new
types of attacks. Dong et al. [15] introduced an IDS based
on multivariate correlation analysis and Long Short-Term
Memory (LSTM). MCA algorithm was implemented for
feature selection, and intrusion classification was carried
out using LSTM. Folino et al. [16] proposed an ensemble

model that combined four bases of Deep Neural Network
(DNN) classifiers trained on different sections of data.
The meta-classifier employed the predictions from the base
classifiers, along with the original instance features, to both
train and predict tasks. Through experiments conducted with
two datasets, the proposed ensemble model proved to be
highly effective for streaming IDS.

For DDoS attack detection, Aamir et al. [17] presented
a semisupervised model consisting of two steps. Firstly,
Principal Component Analysis (PCA) was employed to
reduce data and employ feature selection. Then, a clustering
algorithm was applied to label the data based on its clusters.
Subsequently, several supervised models were trained and
applied for attack detection. Experiments indicated that the
RF model outperformed k-Nearest Neighbors (KNN) and
SVM in terms of accuracy. Similarly, Shiomoto et al. [18]
built an IDS utilizing a semi-supervised learning model.
It employs an Adversarial AutoEncoder (AAE) for feature
extraction. Experimental findings showcased the high accu-
racy achieved by their model using the least number of
labeled data, compared to DNNs. However, it’s worth noting
that the results were evaluated on the NSL-KDD dataset,
lacking modern network behaviors as it is an older dataset.

B. FL BASED MODELS
To address privacy concerns in centalized ML and DL model
training, FL emerged as a solution. In the field of IDS,
Nguyen et al. [19] introduced DÏoT, the first FL system for
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detecting compromised IoT devices. The system is composed
of security gateways and IoT security services. The security
gateways utilize Gated Recurrent Unit (GRU) to train local
models. Subsequently, the security service aggregates these
local models to form a global model. FLIDS, proposed by
Friha et al. [20], utilizes FL for cybersecurity in agricultural
IoT networks. FLIDS employs DNNs, Convolutional Neural
Networks (CNN), & Recurrent Neural Network (RNN)
models. Experimental results demonstrate its competitive
performance compared to centralized models.

In the context of Industrial IoT attack detection,
Aouedi et al. [21] proposed FLUIDS, a federated semi-
supervised learning approach. It utilized an AE model
to extract features and reduce dimensions. Followed by
global aggregation, the global encoder was attached to a
neural network layer for fine-tuning and supervised learning.
Experimental results with real datasets demonstrated the
efficacy of FLUIDS compared to centralized DL models.

Guo et al. [22] proposes TFL-DT, a novel trust evaluation
scheme for Federated Learning (FL) in Digital Twin for
Mobile Networks (DTMN). To address limitations in existing
trust mechanisms, such as relying on single-factor evaluations
and coarse-grained trust metrics the authors introduce a
multi-attribute user behavior model that captures trust-related
behavior in a fine-grained and comprehensive way. The trust
value of a user is computed using both direct trust and recom-
mended trust from other virtual twins. The model accounts
for multiple behavioral factors, including interaction out-
comes, time decay, stability, and reliability. Experimental
results demonstrate the scheme’s effectiveness in accurately
assessing trust and detecting malicious users, particularly
those with alternating good/bad behavior patterns. Another
paper by Guo et al. [23] proposes a Lightweight Contribution
Evaluation method for Federated Learning (LCEFL) that
avoids using a server-side test dataset and reduces compu-
tational complexity through model compression. It enables
trusted aggregation by weighting participants based on their
contributions, achieving similar accuracy to Shapley-based
methods while improving convergence speed and model
performance.

In another study, Mothukuri et al. [24] introduced an
ensemble FL model for IDS in IoT environments. Local
training of the GRU model for different window sizes was
conducted on the client, and the FL server calculated global
model. An ensemble model (RF) was then applied in the
FL server to enhance classification performance. Similarly,
Attta et al. [25] proposed MV-FLID, an ensemble FL-based
IDS. Three FNN models were developed for different views
(biflow view, packet view, and uniflow view). Predictions
from different models were combined using an ensemble
model (RF) for instance classification.

In the pursuit of enhanced privacy preservation for end-
users, Al et al. [26] introduced a federated mimic learning
approach that combines FL and mimic learning. By lever-
aging NSL-KDD dataset, experiments demonstrated that
the federated mimic learning method achieved an accuracy

of 98%, comparable to centralized DL models. Importantly,
this approach significantly improved the privacy preservation
of user data. It should be noted that the NSL-KDD dataset
may lack modern IoT-based attack scenarios.

Currently, several research studies explore the application
of FL in intrusion detection. For instance, Zhao et al. [27]
introduced MT-DNN-FL, a multitask FL model that
addresses VPN traffic recognition, abnormal traffic detection,
and traffic classification tasks. In Li et al. [28], a federated
DL model was proposed for detecting attacks in industrial
cyber-physical systems. Additionally, secure communication
protocols were designed, ensuring safe model parameter
transfers. Sun et al. [29] presented an adaptive IDS based
on piecewise FL. It allowed multiple participants to share
multiple global models and train similar networks under the
same global model. In Zhao et al. [30], an intelligent intrusion
detection model aided by LSTM was proposed based on FL,
which exhibited higher precision and improved consistency
compared to traditional models. Man et al. [31] introduced
FedACNN for network intrusion detection, which performed
weighted aggregation of local models based on the Euclidean
distance. It helped to reduce the number of rounds by half in
comparison to FedAvg.

C. PRIVACY PRESERVING SOLUTIONS
In order to enhance the security and privacy of user
data in FL [32], various methods are employed, including
differential privacy (DP), data encryption and zero-day
defence frameworks [33]. However, these techniques have
certain drawbacks when directly applied to FL-enabled IDS.
Firstly, encryption-based methods require high computation,
requiring users tomanage encryption keys and performwhole
processes, which can increase time and CPU usage. Secondly,
DP may introduce additional noise to the model parameters,
potentially compromising the overall system performance.
Also, applying the same noise to all clients in FL is unfair
and inefficient due to varying data quantities among clients.

Li et al. [28] presents a novel FL method for iden-
tifying cyber threats in CPSs. It combines a DL-based
intrusion detection model with an FL framework to enable
collaborative model building. It demonstrates high efficacy
in detecting various threats while preserving privacy and
outperforming existing approaches. However, it should be
noted that the scheme utilizes Paillier-based encryption,
which can introduce computational overhead and reduce
speed.

Verma et al. [34] introduced the FL-enabled Deep
Intrusion Detection (FLDID) framework for smart manu-
facturing industries. It addresses the challenge of detecting
cyber threats in complex and heterogeneous environments
through collaborative model building. Privacy preservation is
achieved using Paillier-based encryption, and the framework
utilizes a hybrid model combining CNN, LSTM, & Multi-
Layer Perceptron (MLP). Extensive experiments validate the
effectiveness of FLDID in detecting cyber threats compared
to existing approaches. However, it should be considered that

94228 VOLUME 13, 2025



N. Mehta et al.: PPFL-DCS: PPFL Using Neural Transformer

the use of Paillier encryption may introduce computational
overhead and reduce speed.

Ibrahem et al. [35] proposes a novel, privacy-preserving,
and decentralized aggregation scheme for detecting energy
theft in smart grid Advanced Metering Infrastructure (AMI)
networks using FL. The approach leverages functional
encryption to Enable Detection Stations (ETDSs) to securely
send encrypted local model parameters to an aggregator.
Without requiring a trusted Key Distribution Center (KDC),
the aggregator computes aggregated parameters and updates
the global model without learning individual data, preserving
customer privacy. Extensive experiments demonstrate that the
proposed scheme achieves high detection accuracy with low
computational and communication overhead. Another paper
by Ibrahem et al. [36] introduces FedSafe, a decentralized
and efficient FL framework that enhances privacy using
functional encryption (FE) without relying on a trusted
KDC. FedSafe allows participants to share encrypted model
parameters with an aggregator, enabling secure global model
training without revealing local data. It overcomes the
limitations of existing homomorphic encryption and secure
multi-party computation methods, which suffer from high
overhead. Experimental results on real-world data show that
FedSafe achieves superior privacy, security, scalability, and
performance compared to existing FL privacy-preserving
schemes.

Aouedi et al. [37] proposes F-BIDS, a Federated Blending
model-driven IDS for IoT & Industrial IoT. With the surge
in network traffic and concerns over user privacy, FL is
introduced to enhance attack detection, privacy preservation,
and cost reduction. The F-BIDS framework utilizes Decision
Tree and RF as its base classifiers for generating meta-data,
which is used by a Neural Networks meta-classifier during
federated training. It describes how inference attacks could
be avoided by modifying the data and using that to train in a
federated way. This way, no attacker would be able to access
the original data, thus maintaining privacy.

Zhang et al. [38] proposed a similar data-changingmethod-
ology by introducing dummy input to the original model thus
providing privacy. It addresses privacy concerns in FL, where
gradient-based inversion attacks can compromise client data.
Existing perturbation-based privacy methods suffer utility
loss. The proposed SLGP and RLGP pruning-based defense
mechanisms protect privacy efficiently, maintaining model
utility.

III. THEORETICAL BACKGROUND
A. AUTOENCODERS (AE)
An AE is an unsupervised neural network used in making a
tuple from its latent space. It basically transforms the data
from one form to another. Firstly, a tuple is used as input
v(i) ∈ {0, 1}k , which refers to latent space as l(i) ∈ [0, 1]k . The
encoding function, demonstrated by p = {ω, b}, is defined by
Eq. (1)

l(i) = fp(v(i)) = σ (ωv(i) + b) (1)

where σ is a nonlinear activation function such like sigmoid
or tanh, b is a bias vector, and ω is a k*k weight matrix. The
latent representation l(i) ∈ [0, 1]k is then mapped back onto
a reconstructed tuple v(i) ∈ [0, 1]k , in input space (2)

v(i) = gu(t (i)) = σ (ωt (i) + b) (2)

ω of the reverse mapping may be constrained by ω =

ωT ,indicating tied weights [39]. The main aim to train is
to understand the parameters u = {ω, b}, & z = {ω, b}
for reducing average reconstruction error over a set of input
tuples, given by v(1), v(2), . . . . . . . . . , v(s), Eq. (3) & Eq. (4)

(u.z) = argmmaxu.z
1
s

s∑
i=1

ξ (v(i).v(i)) (3)

(u.z) = argmminu.z
1
s

s∑
i=0

ξ (v(i).gz(fu(v(i))) (4)

where ξ is the loss function such that cross-entropy param-
eters u and z can be optimized by stochastic or mini-batch
gradient descent.

B. FedAvg
FedAvg, short for federated averaging, is an FL algorithm that
updates a global model by aggregated local model weights.
FedAvg is performed on the cloud server described in Eq. (5)

ωi =
1
C

C∑
c=1

ωci−1 (5)

IV. METHODOLOGY
A. ARCHITECTURAL OVERVIEW
This section presents the overview of the proposed approach
for intrusion detection in industrial scenarios. It consists of
various components that collaboratively execute to bring the
PPFL-DCS architecture into work as shown in Fig. 1. The
proposed approach enables different industries to train a
collaborative model for intrusion detection without sharing
their personal data.

The proposed approach consists of two main entities i.e.
the clients and the cloud server. A client is a data owner (or
individual industry) involved in a federated process. It has
its own local model, which is trained individually on its
private data. It helps in improving the global model, present
at the cloud server, by sending its validation accuracy and
local model gradients for updating the global model gradients
in weighted order. On the other hand, the cloud server
takes on the responsibility of constructing a comprehensive
FL-enabled IDS through the participation of each industrial
client. Multiple rounds of communication in the cloud
server & the agents are needed to achieve optimal IDS.

B. MODEL ASSUMPTIONS
• Data privacy: It assumes that each participant (client)
in the federated model is committed to preserving the
privacy & confidentiality of their local data during the
training.
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TABLE 1. Notations used.

FIGURE 2. Dynamic client selection workflow in proposed framework
((1) Server shares initial model for training, (2) Client trains and returns
the model weights, accuracy, and data size, (3)-(4) Weighted aggregator
scales and aggregates the weights and saves the performance in storage
for client selection, (5) Weight distributor sends the updated model
weights, (6) Client trains on new model and sends the new weights,
accuracy and data size, (7) Weighted aggregator selects the client with
improvement and depreciation and scale weights accordingly. Next,
steps (3)-(7) are repeated for further rounds).

• Data heterogeneity: It is assumed that the participating
clients have different and diverse datasets that collec-
tively represent a comprehensive view of the problem
domain. This diversity helps in capturing a wide range of
patterns and improving the overall model’s performance

• Computational capacity: Each participating client has
sufficient computational resources for performing local
model training and contributing in FL process without
significant bottlenecks or performance limitations

• Communication reliability: It is assumed that there
is reliable and stable communication infrastructure
between the clients and the central server to exchange
model updates and parameters securely and efficiently

• Trustworthy collaboration: All participants in the
federated model are trustworthy and adhere to the
agreed-upon protocols and rules of collaboration, ensur-
ing the integrity of the overall training process

C. WORKFLOW
The workflow of the system is described using Algo. 1 and
Fig. 2. Initially, every client passes their data through the

NTS to change the data representation and additionally do
the data pre-processing. After passing the data from the NTS
every client is ready to take part in the federated process.
Communication round 1 begins with each client training
their local model (Algo. 2) on neural transformed data and
thereafter sending themodel weights, the validation accuracy,
and the size_of_the dataset to the cloud server. The cloud
server next stores the model’s current performance value
and compares it with the performance value of the previous
round (i!=1), selects the clients with increased performance,
and increases client’s scaling factor. Moreover, it also selects
the client’s with decreased performance and decreases their
scaling factors, α(i)c . Next, the weighted aggregator ϖ
aggregates received local model weights according to Eq. (6)
& (7). Further, the weight distributor distributes the weights
to clients for training. These steps continue until the total
communication round ends.

D. PPFL-DCS COMPONENTS
PPFL-DCS is a weighted FL framework designed to revolu-
tionize the idea of privacy and security. It aims to provide
security and privacy for a federated framework without
involving higher computational expenses. It also aims to
include the client’s contribution to the global model by
assigning weights to them in accordance with their validation
accuracy and data size. This in turn helps to reduce the
impact of poorly performing models and class-imbalance
problems within the clients. The components of the proposed
PPFL-DCS framework are the client manager, weight
distributor, server, storage, DL model, NTS, and weighted
aggregator.

• The client manager helps to manage clients. It is respon-
sible for the initial registration and enrollment of clients
into the FL system. This involves authenticating clients,
verifying their eligibility, and collecting necessary
information such as client capabilities, computational
resources, and available datasets.

• The weight distributor has a pivotal role in the
FL process of distributing the aggregated weights to
clients after the aggregation phase. The weights are
typically shared through secure and privacy-preserving
methods to ensure the confidentiality of the model
parameters.
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Algorithm 1 PPFL-DCS Framework

1: Input: Client: Training dataset D(c)
tr = {Xi, yi}, (Xi ∈

X , yi ∈ y), Neural Transformer ℑ, Local model ℓ.
2: Server: Global Model ⅁, Weighted aggregatorϖ
3: Output: Comprehensive PPFL-DCS framework
4: Phase 1: Neural transformer meta-data generation
5: Initialize ℑ with batch size 16, input_dim, lr, encoding

function e, decoding function d , no. of epochs for client
c(i)

6: Normalize the data:
7: X_normalized = X (c)

−min(X (c))
max(X (c))−min(X (c))

.
8: for j in range(no. of stacked layers) do
9: Train the AE ϱ:

10: ℑ(X_normalized (j), d (j)(e(j)(X_normalized (j))))
11: X_normalized (j) = pd.concat

([X_normalized (j),ℑ.predict(X_normalized (j))])
12: end for
13: Phase 2: Weighted federated learning
14: for i in R do
15: At client
16: for c in C do
17: Train the local DL model
18: Send the weights, validation_accuracy, & size of

data to server
19: ϖ.receive(ℓc.get_weights(), val_acc, sc)
20: end for
21: At server
22: total_dataset_size = sum(size of datac)
23: if i == 0 then
24: αi =

1
C , β = 0.1, val_accprev = val_acccurr

25: else
26: for c in C do
27: if val_acccurr ≥ val_accprev then
28: α

(c)
i = α

(c)
i + (α(c)i ∗ β)

29: else if val_acccurr ≤ val_accprev then
30: α

(c)
i = α

(c)
i − (α(c)i ∗ β)

31: end if
32: end for
33: end if
34: αi =

αi
sum(αi)

35: At weighted aggregator
36: for c in C do
37: SW (i)(Wc, sc, total_dataset_size, α

(c)
i )

38: end for
39: Aggregate the weights & distribute
40: SW (i)

new = ϖ (SW (i))
41: SW (i)

new.distribute()
42: ⅁.set_weights(i) = SWnew
43: At client
44: Update the local model weights
45: ℓ.set_weights(SW (i)

new)
46: i← i+ 1
47: end for

• Cloud server acts as a coordinating entity that facilitates
communication and coordination between the clients
and orchestrates the training and aggregation of models.
is responsible for initializing the initial global model
or providing a starting point for the federated training
process and act as a coordination entity.

• Storage (existing at cloud server) is used to save the
performance (validation accuracy), data size, and gradi-
ents of the global model received from the participating
clients during the training iterations. These gradients
are updated global model parameters in accordance
with the local training performed by each client. It is
utilized to store the validation accuracy of each client’s
locally trained model. This info is helpful to evaluate
and compare the performance of the individual clients’
models and could aid in the selection of models for
aggregation or further training.

• The model used for local and global training is designed
using DL techniques. In the proposed approach, the
DL model used is a combination of CNNs, LSTMs,
and MLP networks. The architecture is tailored to the
specific problem domain, attending to the nature of the
data & the desired output.

• The weighted aggregator in PPFL-DCS assigns appro-
priate weights to each client’s model based on two
primary factors: validation accuracy and local data size.
Clients whose models achieve higher validation accu-
racy are considered to have learned more meaningful
and generalizable patterns, and are thus assigned greater
weight. Additionally, clients with larger local datasets
contribute more representative information, and this is
also reflected in the weighting. By combining these
two factors, the aggregator ensures that clients with
both high-quality performance and substantial data have
a stronger influence on the global model. The final
aggregation is performed by computing a weighted
average of the model parameters (or gradients), where
the assigned weights guide the influence of each
client’s contribution. This strategy helps to improve the
robustness and effectiveness of the global model, partic-
ularly in heterogeneous data scenarios, as described in
Eq. (6) & (7)

ωsize_scaled = [ωc.
sc∑
(sc)

]Cc=1 (6)

SWi =
1
C

C∑
c=1

α
(c)
i .ω

(c)
size_scaled (7)

E. NEURAL TRANSFORMER SYSTEM (NTS)
The NTS component is designed as a critical preprocessing
unit within the proposed architecture, primarily aimed at
protecting sensitive input data while retaining its utility for
downstream FL tasks. At the core of NTS lies the use of
Stacked AutoEncoders (SAE), a deep neural architecture
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known for its ability to perform unsupervised feature learning
and dimensionality reduction. The SAE consists of multiple
layers of autoencoders stacked sequentially, where each layer
learns to encode the output of the previous one into a
compressed latent representation. During the training phase,
the encoder-decoder architecture is optimized to minimize
reconstruction error, thereby ensuring that the learned latent
features effectively capture the underlying data patterns.

The output from the final encoder layer of the SAE is
treated as a transformed representation or metadata of the
original input. This transformation process serves a dual pur-
pose: it obfuscates the original form of the input, thus acting
as a privacy-preserving shield, and simultaneously enhances
feature abstraction for improved learning. Importantly, this
transformed data cannot be easily reverted to its original form,
which helps mitigate the risk of MIAs and other privacy
threats commonly associated with FL systems.

The conceptual foundation of NTS is inspired by the work
of Zhang et al. [38], where the authors employed a RF model
to generate metadata that could be used in an FL framework
to defend against MIAs. Building on this idea, our approach
replaces the traditional model with a neural mechanism, SAE,
that is more adaptive and capable of capturing non-linear
correlations within high-dimensional data. By placing the
SAE-based NTS module at the initial stage of the data
processing pipeline, the FL system benefits from both robust
feature extraction and enhanced privacy guarantees.

Figure 3 provides a schematic illustration of the SAE
architecture used in the NTS module. It includes multiple
encoding and decoding layers, with the encoded latent space
acting as the transformed output. This output is then fed
into the FL pipeline for subsequent training or inference
tasks. By decoupling the raw input from the learning model,
NTS ensures that sensitive attributes remain concealed,
thereby aligning with the privacy-preserving goals of the
framework.

The SAE is a semi-supervised model utilizing AEs
interconnected in a layered fashion [40]. The hth layer AE
is exemplified. In Eq. (8), the output oh of the hidden layer
is obtained by mapping the input data oh − 1, representing
the encoding method. Subsequently, the decoding method in
Eq. (9) generates a reconstructed feature. The reconstruction
error, expressed in Eq. (10), is leveraged to minimize the
disparity between the output and input, enhancing the SAE‘s
performance.

oh = σ (ωh,eoh−1, bh,e) (8)

oh−1 = σ (ωh,doh, bh,d ) (9)

ξ =

N∑
j=1

||ojh−1 − o
j
h−1||

2

2N
(10)

where ωh,e and bh,e represent the weight matrix and bias
matrix of the encoder respectively. ωh,d & bh,d denotes
weights and bias matrix of the decoder, respectively, and σ
denotes the activation function.

To prevent overfitting, the traditional method incorporates
a sparse term KL divergence into the loss function [41]. The
specific expressions for this regularization are depicted in Eq.
(11) and (12).

KL(ψ ||ψ) = ψ log
ψ

ψh
+ (1− ψ)log

(1− ψ)

(1− ψh)
(11)

ψh =
1
N

N∑
j=1

oh(x j) (12)

where ψh represents the average activation value of hth

hidden layer, and ψ is sparse parameter. Considering a layer
of AE as an anecdote, the parameter ωh,e could be calculated
using below:

∂(ξ )
∂(ωh,e)

=
∂(ξ )

∂(σ (ωh,doh + bh,d )
∗
∂(σ (ωh,d + bh,d )
∂(ωh,doh + bh,d )

∗

∂(ωh,doh + bh,d )
∂(σ (ωh,dx + bh,e

∗
∂(σ (ωh,ex + bh,e)
∂(ωh,ex + bh,e)

∗

∂(ωh,ex + bh,e)
∂(ωh,e)

Algorithm 2 Local Model Training

Input:η,
∮
1,

∮
2,≺, ξ, κ, ω

(c)
i−1, c,

(c)
tr

Output: Trained ℓc
Initialize

1: if (i == 1):
Initialize ω using suitable initialization methods

2: Initialize first & second moment variables p = 0 & q = 0
respectively

3: Create batches of D(c)
tr of batch size size_of(κ)

4: Set the model parameters ω(j)
c ← ω

(j−1)
c

where j= round
Train

5: do{
6: for b in κ

Compute δ← 1
ω
(j)
c
ξ

Update biased first & second moment estimates
respectively

p←
∮
1 .p+ (1−

∮
1)δ

q←
∮
2 .q+ (1−

∮
2)δ

2

Compute the bias-corrected first & second moment
respectively

p← p
1−

∮ e
1

q← q
1−

∮ e
2

Update model parameters
ω
(j)
c ← ω

(j)
c − η

p
√
q+≺

end
}while(until ξ converges)

7: return trained ℓc

The above observation indicates that as the layers increase,
updated values will decay exponentially when several gradi-
ents, each less than 1, are compounded [42]. The sigmoid is
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FIGURE 3. Architecture of neural transformer system.

TABLE 2. Training data distribution of clients.

a typical saturation activation function, having a maximum
derivative value of 0.25. Consequently, as number of layers
grows, the gradient of ωh,e approaches 0, leading to a halt in
network parameter updates. This vanishing gradient problem
results in limited classification performance as gradients
diminish after successive derivatives, causing the loss to
plateau during training without further reduction.

V. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
The proposed PPFL-DCS framework was developed in
Python using TensorFlow 2.13, and the global model was
designed using the Keras 2.13 API. The implementation and
evaluation of the proposed framework were conducted using
Python 3.10.11 on a MacBook Pro equipped with an Apple
M1 Pro chip, featuring an 8-core CPU and an 8-core GPU,
a 16GB-core Neural engine, and a 1TB SSD. Additionally,
the FL model is run with a setup of lr as 0.01, Momentum
(0.9), decay (0.01), and loss function (binary cross-entropy)

TABLE 3. DL model description.

with XIIoTID dataset [43]. Table 2 describes the dataset
distribution for multiple client systems.

B. SOLUTION EVALUATION CONSIDERATION
To validate our solution, we conducted tests on an IDS, with a
primary focus on network intrusion detection. The evaluation
compares the performance of our PPFL-DCS against state-
of-the-art techniques and various proposed scenarios. The
aim is to assess the efficacy of our approach to identify
and detect network intrusions and minimize the impact of
MIA, ultimately contributing to the improvement of intrusion
detection capabilities in the case of multiple models with
variable performance.

Table 3 describes the hybrid DL global model architecture
design. These parameters were chosen by using multiple
random testing values and selecting the best out of all, giving
the highest global model accuracy. The approach employed
in this study utilizes a combination of CNNs & LSTMs to
formulate a global intrusion detection model. The model
consists of a CNN unit that generates features, which are
then fed sequentially into an LSTM layer to capture time
series patterns over different time steps. By leveraging the
temporal patterns in past connection records, the present
network connection record can be categorized effectively.
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Finally, an MLP layer is employed to obtain the desired
output.

C. PERFORMANCE METRICS
The performance is measured upon various factors like
accuracy, precision, recall, and F1-score. Here:
p: Number of attack requests correctly identified as attack
q: Number of normal samples correctly identified as normal
r: Number of normal requests incorrectly identified as attack
s: Number of attack requests incorrectly identified as normal

Accuracy =
(p+ q)

(p+ q+ r + s)
(13)

Recall =
p

(p+ s)
(14)

Precision =
p

(p+ r)
(15)

F1− score =
2p2

2p2 + pr + ps
(16)

D. RESULTS ANALYSIS
This section analyzes and compares the efficacy of the PPFL-
DCS framework in different scenarios using metrics such as
accuracy, precision, recall,f1-score, AUC, and loss [2].

1) NTS ANALYSIS
Table 4 describes the NTSwith various configurations& their
performances. The models are evaluated using metrics like
learning rate, regularizationmethod, batch size, and accuracy.

It consists of five unique models, each described by its
architectural features. The first model, with ‘‘2 encoder
layers + 1 bottleneck + 2 decoder layers,’’ serves as the
baseline, having the highest accuracy of 87.9%. It employs
a learning rate of 0.001 and applies L1 regularization with
a batch size of 16. Results show that models with more
encoder layers perform relatively poorer than the baseline.
L1 regularization boosts performance compared to L2. Batch
sizes and learning rates also influence accuracy.

TABLE 4. Comparison of SAEs in NTS system.

2) PPFL-DCS MODEL ANALYSIS
This section presents the overall analysis of the proposed
PPFL-DCS model assessed for different clients (2, 5, 10,

15, 20) over a range of communication rounds (2, 5, 10, 15,
20, 25, 30) as described in Table 5.

It is observed that with 2 clients as the communication
rounds increase, the accuracy steadily improves, reaching
97.1930% in just 2 rounds and 97.5170% after 25 rounds.
Similarly, the loss decreases from 0.5286 to 0.5207 over
the same rounds. The F1-score, precision, recall, and AUC
also exhibit similar trends, showing consistent improve-
ment as the communication rounds progress. Analysis of
subsequent sections of the table with 5, 10, 15, and
20 clients demonstrate that the metrics tend to improve as
more communication rounds are executed, indicating that
additional rounds contribute to better convergence and model
refinement. The table’s detailed breakdown allows for a
granular understanding of how different client configurations
and communication rounds impact the model’s performance.

This table also aims to provide details of the time
requirements of FL process under different configurations,
considering the number of clients and communication rounds.
It is observed that the total time increases as the communica-
tion rounds progress. For instance, with just 2 communication
rounds, the total time taken is 246.2918 seconds, while
with 30 communication rounds, the total time extends to
3050.4598 seconds. This indicates that the FL process
requires more time to converge and refine the model as the
rounds increase. A similar trend of increasing time with more
communication rounds is observed in This observation is in
line with the distributed nature of FL, where multiple clients
participate in training, leading to increased communication
overhead and computation time.

3) IMPACT OF EPOCHS PER CLIENT ON GLOBAL MODEL
This section presents a comparison of model performance
in an FL scenario with 2 clients with varying numbers of
epochs. Table 6 evaluates different combinations of epochs
per client and communication rounds to study their impact on
various performance metrics indicated in it and the time taken
for various epochs in Figure 4. The experiment indicated
that the proposed model achieves high accuracy across all
scenarios, ranging from 97.3% to 97.3810%. The loss values
are relatively low, with the minimum being 0.5217 whereas

FIGURE 4. Time consumption of epochs per client in PPFL-DCS model for
2 clients.
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TABLE 5. PPFL-DCS model analysis using various parameters.

TABLE 6. Performance evaluation of PPFL-DCS with multiple epochs per
client using 2 clients.

F1-score ranges from 97.2148 to 97.2891 and the precision
ranges from 97.5861% to 98.0142% with recall varying
from 96.5746% to 96.8462%. AUC, which represents the
area under the receiver operating characteristic (ROC) curve,
is exceptionally high for all scenarios, with values ranging
from 99.4675% to 99.4948%. It highlights that increasing
epochs per client does not necessarily leads significant
improvements in the performance metrics.

4) COMPARISON OF PROPOSED PPFL-DCS WITH OTHER DL
TECHNIQUES IN FL SCENARIO
Figure 5 presents a comprehensive comparison of the PPFL-
DCS with several other DL models used in FL-based

TABLE 7. Comparison of PPFL-DCS with existing state-of-the-art
techniques.

scenarios along with Figure 6 describing the loss metrics
of each model. The models used for comparison in the
FL scenario are MLP, CNN, GRU, GRU + MLP, CNN +
MLP, and CNN GRU + MLP (Parallel Combination of
Convolutional Neural Network and Gated Recurrent Unit
with Multi-Layer Perceptron). Results indicate that the
proposed work outperforms all other models across all
performance metrics. It achieves the highest accuracy of
97.424%, indicating the model’s ability to make accurate
predictions. The loss value is significantly low at 0.525667,
demonstrating the model’s efficiency in minimizing errors
during training and validation. The precision of the proposed
work is also the highest at 98.8014% with F1-score at
97.31357% showcasing the model’s balanced performance
in terms of true positives and false positives. Moreover, the
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recall of the proposed work is commendable at 95.8698%,
indicating its ability to correctly identify positive instances
from the actual ones. The AUC value is the highest among
all models at 99.38936%. In comparison, the other models,
including MLP, CNN, GRU, and their various combinations,
achieve relatively lower performance across the metrics.
While some models like CNN and CNN+MLP demonstrate
reasonable performance, they still fall short compared to the
proposed work.

It establishes the superiority of the proposed solution
design for intrusion detection. Its exceptional performance
positions it as a promising choice for enhancing cybersecurity
in smart manufacturing systems and other industrial applica-
tions. The proposed model’s ability to achieve high accuracy,
precision, recall, and AUC makes it a robust solution for
detecting cyber threats and ensuring the security of critical
systems within the industry.

FIGURE 5. Comparison of proposed PPFL-DCS with other DL techniques
in FL scenario.

FIGURE 6. Loss comparison of proposed PPFL-DCS with other DL
techniques in FL scenario.

5) COMPARISON OF PROPOSED PPFL-DCS WITH EXISTING
STATE-OF-THE-ART TECHNIQUES
Table 7 presents a comparative analysis of PPFL-DCS
with two other techniques, namely WEIGHTED [44] and
DEEPFED [28]. The proposed technique achieves the highest
accuracy of 97.6010%, showcasing its ability to make
accurate predictions in intrusion detection. Moreover, the
precision of the proposed technique is remarkably high at
98.9036%, implying its ability to correctly identify positive

instances from the total instances predicted as positive.
The recall, or sensitivity, is also excellent at 96.1361%,
indicating the model’s ability to correctly identify positive
instances from the actual instances. In comparison, the
other techniques, WEIGHTED and DEEPFED, exhibit lower
performance across various metrics. WEIGHTED achieves
an accuracy of 92.2700%, while DEEPFED attains an
accuracy of 95.9760%. Both techniques have higher loss
values, indicating less efficient error minimization during
training. Furthermore, DEEPFED’s F1-score of 5.7580%
raises concerns about its ability to maintain a balance
between precision and recall. This suggests that DEEPFED
may be biased towards certain classes and might struggle
with distinguishing between positive and negative instances
effectively. The precision and recall values for WEIGHTED
and DEEPFED are also lower compared to the proposed
technique, indicating their limitations in correctly identifying
positive instances and their sensitivity to true positive
rates. Overall, the results from Table 7 emphasize the
superiority of the PPFL-DCS for intrusion detection over
WEIGHTED and DEEPFED. The proposed technique’s
exceptional performance in terms of accuracy, precision,
recall, and AUC makes it a promising and reliable choice
for detecting cyber threats in smart manufacturing and other
critical systems making it a robust solution for ensuring the
security and integrity of industrial networks and safeguarding
against potential cyberattacks.

6) COMPARISON OF PROPOSED WORK WITH ML
TECHNIQUES IN CENTRALIZED SCENARIOS
Figure 7 compares the accuracy of differentmodels, including
SVM, LR, KNN, and Decision Tree (DT) in centralized
settings with the proposed model. Among the models,
DT achieved the highest accuracy of 99.04%, followed by
KNN with an accuracy of 98.47%. The SVM and LR
models achieved lower accuracies of 92.27% and 91.48%,
respectively. However, the proposed model achieves an
accuracy of 97.42%, lower than theDT’s andKNN’s achieved
accuracy, it still stands as a better IDS when compared in
terms of privacy and data security. In comparison to the FL,
the centralized setting may achieve better results but it falls

FIGURE 7. Comparison of PPFL-DCS model with ML classifiers in
centralized scenario.
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short of providing privacy, facing high computation overhead.
Thus, PPFL-DCS could be held accountable for providing
more secure IDS than any centralized setting.

VI. CONCLUSION AND FUTURE WORK
This research introduces PPFL-DCS federated deep learning
scheme to address cybersecurity challenges in consumer
electronics. Combining a federated weighted framework with
Neural Transformer, the proposed model provides data pri-
vacy while enabling distributed collaborative model creation
for industrial clients and additionally protecting them from
MIAs. Extensive trials show PPFL-DCS’s high accuracy
97.424% in identifying cyber threats to industrial CPSs,
surpassing other techniques like WEIGHTED 92.270% and
DEEPFED 95.976%. The weight enhancement technique
improves security and performance by dynamically updating
model weights, mitigating the risk of including deficient
models. PPFL-DCS represents a significant advancement in
secure FL for combating evolving cyberattacks in industries
while also ensuring data privacy and accuracy. In future work,
we plan to explore the integration of self-learning capabilities
into the global model to enhance its robustness against
poisoning and adversarial attacks. Additionally, we aim
to conduct a comprehensive quantitative evaluation of the
NTS to assess its impact on training time and resource
usage, thereby gaining deeper insights into its computational
efficiency. Furthermore, we intend to extend our security
evaluation to encompass a broader range of adversarial
threats, including model poisoning attacks, backdoor attacks,
and inference based attacks beyond MIA, to ensure a more
holistic understanding of the system’s resilience.
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