
Towards Empowering Ubiquitous Computing as a
Service with Blockchain Capabilities for Sustainable
Manufacturing, Agriculture, Cities, and Buildings

1st Mirco Soderi
Data Science Institute
University of Galway

Galway, Ireland
mirco.soderi@universityofgalway.ie

2nd John Gerard Breslin
Data Science Institute
University of Galway

Galway, Ireland
john.breslin@universityofgalway.ie

Abstract—Pervasive computing, or ubiquitous computing, in-
tegrates connectivity functionalities into objects so that they
can interact with one another and perform automated tasks
with minimal human effort. Although concerns have been raised
regarding material and energy consumption, as well as radia-
tions, ubiquitous computing can positively impact environmental
sustainability through process optimisations in manufacturing,
agriculture, and city management. This work extends our soft-
ware framework for Ubiquitous Computing as a Service. The
framework uses containerisation, low-code platforms, modularity,
parallel computing, MQTT, and API to support the creation,
configuration, operation, and modification of remote software.
In this work, some degree of blockchain integration is added,
which makes it possible to ingest Blockchain transactions in
real-time, and to submit new transactions. The benefits of
integrating pervasive computing and blockchain technologies
include context-aware authentication, traceability, auditing, in-
tegrity, and security. All software artefacts produced in this work
are available on GitHub, including a Postman collection of API
requests for demo purposes.

Index Terms—pervasive computing, ubiquitous computing,
artificial intelligence, optimisation, sustainability, intelligent man-
ufacturing, reconfigurable manufacturing, smart farming, smart
city, smart building, software framework, distributed system, con-
tainerisation, low-code, modularity, parallel computing, MQTT,
API, blockchain

I. INTRODUCTION

Pervasive computing [1] [2] integrates connectivity func-
tions into objects so that they can interact with each other and
perform automated tasks with minimal human effort.

Concerns have been raised about the negative impact of
ubiquitous computing on environmental sustainability due to
power consumption, electronic waste, radiation, and social
sustainability, consumer privacy, and freedom of choice [3].

This publication has emanated from research supported in part by the Eu-
ropean Digital Innovation Hub Data2Sustain, co-funded by Ireland’s National
Recovery and Resilience Plan (the EU’s Recovery and Resilience Facility),
the Digital Europe Programme, and the Government of Ireland, and by a grant
from Taighde Éireann - Research Ireland under Grant Number 12/RC/2289 P2
(Insight). For the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript version arising
from this submission. A heartfelt thank you goes to the WiSAR Lab for
logistic support, encouragement, and the lovely conversations.

Conflicts between users and non-users of the technology might
also arise [4]. Smart cities are not exempt from risks and
challenges, although technology has the potential to advance
and accelerate environmental sustainability in urban areas [5].
An effective governance of energy and waste is crucial [6].

In recent years, efforts have been made to address the envi-
ronmental and ethical implications of pervasive computing [7]
and to use pervasive computing to create smarter and greener
environments [8]. In some workshops aimed at exploring how
to drive action and change in relation to environmental sus-
tainability, ubiquitous computing was found to play a positive
role [9]. Furthermore, pervasive computing can contribute
to the challenge of tackling the acceleration of the climate
crisis through new devices/services and tools for algorithmic
data analysis and control [10]. This finds confirmation in
some applications for sustainable forest management [11] and
ambient intelligence [12].

Blockchain technology has attracted massive attention and
has triggered multiple projects in different industries. Although
the financial industry is its main field of application, it has also
been used in food safety, verification of asset ownership, and
enforcement of agreements [13]. Simply put, blockchains are
distributed systems in which immutable encrypted data and
automatically actionable agreements known as smart contracts
are replicated in thousands of nodes, with data integrity
guaranteed by links drawn between consecutive pieces of
data and by consensus mechanisms [14]. It is a foundational
rather than a disruptive technology, with unprecedented levels
of technological, regulatory, and social complexity, whose
adoption requires broad coordination and years of time [15].

The synergy between ubiquitous computing and blockchain
technologies has not been investigated until recently [16] [17],
when blockchain technologies and ubiquitous computing have
been used to (i) streamline secure data processing and analytics
in healthcare [18], (ii) help small and medium enterprises
adapt to the growing demand for customised products [19],
(iii) improve security by storing access control lists in public
blockchains [20], and (iv) streamline access to wireless net-
work while preventing unauthorised access [21].



II. BACKGROUND

This work builds on our software framework for pervasive
computing as a service. The framework was developed to be
applied to reconfigurable manufacturing, to support scenarios
in which geodistributed and semiautomated real-time recon-
figuration was required. However, the framework is general
enough to find application in a variety of fields, including
environmental monitoring and preservation.

In the framework, the Network Factory [22] is a container-
ised Node-RED application available on the Docker Hub1,
which exposes APIs to create and organise containerised
software locally or remotely.

Among the software components that can be created, the
Service Nodes [23] deserve a special mention. They are
configurable Node-RED applications. At creation time, they
all look the same. However, they expose APIs that are used
for configuring a variety of aspects, including the function
that the node must execute, as well as the data source(s),
and the destination(s) of the output(s). The implementation
of the function is loaded into the Service Node from the
Transformation Library, which is a containerised Node-RED
application that contains a collection of functions that are
loaded into the Service Nodes on request.

Such functions are implemented as Node-RED subflows;
they can be as simple as calculating a configured mathematical
expression, or as complex as (i) interfacing with an Artificial
Intelligence Server (AIS) [24], (ii) displaying long sequences
of data points on a line graph served through a Web page
in real time [25], (iii) turning the device into a Bluetooth
Low Energy (BLE) server [26], or (iv) running a parametric
Postman collection of API requests [22].

Artificial intelligence servers are another notable container-
ised application that we have developed and that a Network
Factory can instantiate. They are modular and extensible
applications based on Scala and Spark. They expose APIs
so that Service Nodes can interface with them, configure the
job to be executed, then start and stop the execution. This
can be done by multiple service nodes at the same time,
independently of each other.

There is a unique feature of Node-RED that makes it
especially suitable for implementing resilient applications that
are capable to automatically or semi-automatically evolve
in response to either predictable or unpredictable events. In
Node-RED, it is possible to implement APIs that make arbi-
trary changes to the implementation of the application itself
with immediate effect. We provide such APIs in specialised
Service Nodes, named Crazy Nodes [27]. The name represents
the fact that although it is undoubtedly a powerful feature, it
must be used cautiously because of its security implications,
as well as to avoid introducing errors that cause the application
to fail or not behave as intended.

In terms of tools, technologies, protocols, it can be said that
Docker, Node-RED, MQTT, HTTPS, Scala, and Spark are the
foundations of the framework. GitHub, npm, websocket, sbt,

1https://hub.docker.com/r/msoderi/network-factory

and HTML also play a pivotal role. Kafka, Hadoop, Bluetooth
Low Energy (BLE), the web3 npm module, and Postman have
instead been used for the purposes of the applications that have
been built, configured, and run, using the framework.

III. BLOCKCHAIN INTEGRATION

Three new functions (Node-RED subflows) have been in-
troduced in the Transformation Library to support blockchain
integration. Thanks to them, it is possible to (i) get the
newly submitted pending transactions in real-time through
Blockchain RPC made via websocket; (ii) display transactions
in tabular format on the Web; (iii) submit transactions.

A. The holeskyskt subflow

The holeskyskt subflow (Fig. 1) is used to make RPC calls
to a blockchain via websocket to subscribe/unsubscribe.

Fig. 1. The holeskyskt subflow

It exposes configuration APIs to set the URL of the web-
socket and to retrieve the URL that is currently configured;
authorisation is enforced through a request to an external
application, which is configured for each Service Node at the
time of its creation. Configurations are stored in Node-RED
memory and are globally available in the Service Node.

It exposes subscribe and unsubscribe APIs. The request
payload is expected to be a valid JSON-RPC payload and
is sent to the blockchain as is. A valid payload for the
Ethereum Holesky blockchain, for example, must contain the
following properties: (i) id, a numeric identifier, which is
used to link responses to requests transmitted through the
websocket; (ii) jsonrpc, the JSON-RPC version; (iii) method,
either eth subscribe or eth unsubscribe; (iv) params, which
specify what the subscription is for, or which subscription
should be canceled. The methods and parameters may vary
for different types of blockchain.

It also exposes a disconnect API, which can be called to
terminate the websocket connection from the client side.

API requests go into input to the websocket node, where
most of the logic takes place. Requests are stored in the
memory of the node with the numeric identifier used as a key,
so when responses come asynchronously from the blockchain
via websocket, it is possible to use the identifier in the response
to link it to the correct request. At the first API request, the
websocket connection is initialised and stored for later use.
Then, if the request is to subscribe or unsubscribe, the payload
is sent as is to the blockchain via websocket. When a response
comes still via websocket, a Node-RED message is created and
sent to the switch node, and eventually to (i) the http out nodes,
to provide a response to the API request, and (ii) the output



1, to notify transaction consumers. Otherwise, if the request is
to disconnect, the websocket connection is closed, and when
the close event is triggered (asynchronously), a Node-RED
message is created and sent forward to provide a response
to the API request and notify transaction consumers. When
a transaction is received through the blockchain websocket
as a result of an active subscription, a Node-RED message
is created with the transaction as payload and sent forward
to the switch node, and eventually to the output 1 node, but
not to the http out nodes, as there is no API request that
requires a response in this scenario. Remarkably, websocket
communication is entirely wrapped in the websocket node and
completely transparent to any other Node-RED node.

B. The holeskytbl subflow

The holeskytbl subflow (Fig. 2) is responsible for displaying
blockchain transactions in a table on a web page. The table
is built incrementally; for each incoming message, a row is
added to the table. Incoming messages are expected to be
JSON objects that represent blockchain transactions, and they
are expected to have the following properties: (i) From, (ii) To,
(iii) Value, (iv) Gas, (v) Gas Price, (vi) Max Fee Per Gas, and
(vii) Max Priority Fee Per Gas. Some formatting is performed
on the tabulator node to produce Node-RED messages that
have a payload that complies with the tabulator JavaScript
framework for dynamic tables and data grids, which is what
the table node is based on. The table node comes with the npm
module node-red-node-ui-table, and displays incoming Node-
RED messages in an HTML table. The node-red-dashboard
npm module is also required for this subflow.

Fig. 2. The holeskytbl subflow

C. The holeskywrt subflow

The holeskywrt subflow submits new transactions to a
blockchain. It exposes configuration APIs to set the HTTP
URL of the blockchain and the private key of the sender’s
wallet, and to retrieve the configured values; authorisation is
enforced as described in Section III-A. Most importantly, it
exposes the transaction API, to be called in POST with a
JSON payload that carries two properties: to and value.

Fig. 3. The holeskywrt subflow

Most of the logic is wrapped in the json-rpc Node-RED
function node. In it, the web3 npm module is used to instantiate
the sender’s web3 Ethereum account from the sender’s wallet
private key, and then the sender’s wallet address is retrieved

from the account and used to fill the from property of the
transaction. The getGasPrice and estimateGas methods of the
Web3 Ethereum account instance are used to fill the gasPrice
and gas properties of the new transaction, respectively. The to
and value properties are filled with the values specified in the
payload of the transaction API request. The transaction is then
signed using the signTransaction method of the sender’s web3
Ethereum account instance and sent using the Web3 Ethereum
package. The transactionHash is then extracted from the send
receipt and used as a payload in a Node-RED message that
the json-rpc function node sends in output, and that goes to
output 1, so that an MQTT client or other software component
can be optionally connected to output 1 and be notified every
time a new transaction is sent. The same Node-RED message
also reaches a http out node, so a response is returned to the
request made to the transaction API.

IV. EVALUATION

A Postman collection of API requests has been prepared to
evaluate the proposed approach; it is available on GitHub2.
The collection has a variable DockerHost, which defaults
to localhost, which is okay if requests are made from the
same host where a Docker Engine is running, and the Docker
daemon is exposed on port 2375 over HTTP. For the purposes
of the demo, the Google Cloud Blockchain RPC service can
be used; the service provides the socket and HTTP URL
for a variety of blockchains, including a Holesky blockchain
(recommended). A wallet is necessary; free wallets can be
obtained from a variety of providers, including MetaMask. The
wallet must be non-emopty; 1 Holesky ETH can be obtained
through the Google Cloud Ethereum Holesky Faucet. The
socket and HTTP URLs of the blockchain, and the private
key of the wallet, must be provided as payload in requests no.
10, 42.1, and 42.2 of the Postman collection.

The collection creates, configures, and runs three Service
Nodes and an MQTT broker (Fig. 4). The Service Nodes
are (i) HoleskysktSN, which runs the holeskyskt subflow;
(ii) HoleskytblSN, which runs the holeskytbl subflow; and
(iii) HoleskywrtSN, which runs the holeskywrt subflow. The
former two are linked through the MQTT broker. The Holesky-
wrtSN also publishes the transaction hash of every new
transaction that is sent to the blockchain to a dedicated topic
on the same MQTT broker, though it is not listened to.

The numbers on the arrows indicate that in the hypothesis a
new transaction is sent to the blockchain through the Holesky-
wrtSN, what happens next is that (i) as soon as the Holesky-
wrtSN gets a receipt from the blockchain, it extracts the trans-
action hash and publishes it to the newtransactionhash topic
of the MQTT broker; (ii) a few instants later, the blockchain
sends the new transaction via websocket to HoleskysktSN,
which had previously subscribed; (iii) HoleskysktSN publishes
the new transaction to the pendingtransactions topic of the

2https://github.com/mircosoderi/State-of-the-art-
Artifacts-for-Big-Data-Engineering-and-Analytics-as-a-
Service/blob/162cd5b53fe67f42beff2499a338277af2be4bce/BDEAaaS-
Blockchain.postman collection



Fig. 4. The demo architecture

MQTT broker; (iv) HoleskytblSN is listening to the pending-
transactions topic, so it receives the transaction, and adds it
to the table on the Web page.

In terms of execution times of the requests in the collection,
generally speaking, those requests that are aimed at configur-
ing, starting, and using the Service Nodes execute in less than
a second, whereas the requests that are aimed at creating the
Service Nodes, the broker, the library of the subflows that
are then loaded into the Service Nodes tend to be slower
because they encompass the download of software artefacts
from the GitHub repository and possibly the download of
Docker images from the Docker Hub.

The main challenges that this work presented list as follows:
(i) design of the interfaces; (ii) state tracking; (iii) famil-
iarisation with the RPC method definitions of the specific
blockchain, and with the JavaScript libraries used to imple-
ment blockchain clients.

V. CONCLUSION

In this work, it has been demonstrated how ubiquitous com-
puting as a service and blockchain technologies can be used
together to build maximally resilient, secure, explainable, and
auditable applications. This finds application in a variety of
fields, including manufacturing and environmental monitoring.

Future directions include (i) integration with a wider range
of platforms for data storage, processing, visualisation; (ii)
support of a wider range of communication protocols; (iii)
performance optimisation of Node-RED applications; (iv) sup-
port of additional low-code platforms; (v) exploration of the
benefits of semantic technologies; (vi) collaborations with
industry partners for on-the-field evaluation.

REFERENCES

[1] D. Saha, A. Mukherjee, S. Bandyopadhyay, D. Saha, A. Mukherjee, and
S. Bandyopadhyay, “Pervasive computing,” Networking Infrastructure
for Pervasive Computing: Enabling Technologies and Systems, pp. 1–
37, 2003.

[2] M. Satyanarayanan, “Pervasive computing: Vision and challenges,”
IEEE Personal communications, vol. 8, no. 4, pp. 10–17, 2001.

[3] A. Koehler and C. Som, “Effects of pervasive computing on sustainable,”
IEEE Technology and Society Magazine, vol. 24, no. 1, pp. 15–23, 2005.

[4] L. M. Hilty, C. Som, and A. Köhler, “Assessing the human, social, and
environmental risks of pervasive computing,” Human and Ecological
Risk Assessment, vol. 10, no. 5, pp. 853–874, 2004.

[5] S. E. Bibri and S. E. Bibri, “Transitioning from smart cities to smarter
cities: the future potential of ict of pervasive computing for advancing
environmental sustainability,” Smart Sustainable Cities of the Future:
The Untapped Potential of Big Data Analytics and Context–Aware
Computing for Advancing Sustainability, pp. 535–599, 2018.

[6] A. Köhler and L. Erdmann, “Expected environmental impacts of perva-
sive computing,” Human and Ecological Risk Assessment, vol. 10, no. 5,
pp. 831–852, 2004.

[7] P. McCullagh and S. Moore, “Addressing ethics and sustainability in
ubiquitous computing and ambient intelligence,” in International Con-
ference on Ubiquitous Computing and Ambient Intelligence. Springer,
2024, pp. 859–864.

[8] J.-H. Park, Y. Pan, H.-C. Chao, and N. Y. Yen, “Ubiquitous systems to-
wards green, sustainable, and secured smart environment,” The Scientific
World Journal, vol. 2015, p. 281921, 2015.

[9] M. Foth, E. Paulos, C. Satchell, and P. Dourish, “Pervasive computing
and environmental sustainability: Two conference workshops,” IEEE
Pervasive Computing, vol. 8, no. 1, pp. 78–81, 2008.

[10] M. L. Mauriello and M. Hazas, “Pervasive sustainability,” IEEE Perva-
sive Computing, vol. 23, no. 2, pp. 4–6, 2024.

[11] M. F. Khan, “Pervasive computing for sustainable forestry management:
Developing an iot-connected timber harvesting and forest conservation
platform.”

[12] A. Bimpas, J. Violos, A. Leivadeas, and I. Varlamis, “Leveraging
pervasive computing for ambient intelligence: A survey on recent
advancements, applications and open challenges,” Computer Networks,
vol. 239, p. 110156, 2024.

[13] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business
& information systems engineering, vol. 59, pp. 183–187, 2017.

[14] I. Bashir, Mastering blockchain. Packt Publishing Ltd, 2017.
[15] M. Iansiti, K. R. Lakhani et al., “The truth about blockchain,” Harvard

business review, vol. 95, no. 1, pp. 118–127, 2017.
[16] R. Singh, R. Kumar Tyagi, A. Kumar Mishra, and U. Choudhury,

“Review on applicability and utilization of blockchain technology in
ubiquitous computing,” Recent Advances in Computer Science and Com-
munications (Formerly: Recent Patents on Computer Science), vol. 16,
no. 7, pp. 51–65, 2023.

[17] R. Singh, A. Pandey, and L. K. Dixit, “Blockchain in ubiquitous
computing,” in Web 3.0. CRC Press, pp. 190–207.

[18] S. Ayyasamy, “Metadata securing approach on ubiquitous computing
devices with an optimized blockchain model,” Journal of Ubiquitous
Computing and Communication Technologies, vol. 4, no. 2, pp. 57–67,
2022.

[19] A. Vatankhah Barenji, Z. Li, W. M. Wang, G. Q. Huang, and D. A.
Guerra-Zubiaga, “Blockchain-based ubiquitous manufacturing: A secure
and reliable cyber-physical system,” International Journal of Production
Research, vol. 58, no. 7, pp. 2200–2221, 2020.

[20] S. Rani, D. Gupta, N. Herencsar, and G. Srivastava, “Blockchain-enabled
cooperative computing strategy for resource sharing in fog networks,”
Internet of Things, vol. 21, p. 100672, 2023.

[21] M. X. Ng, “A context-aware authentication method using blockchain for
pervasive computing,” Ph.D. dissertation, UTAR, 2021.

[22] M. Soderi and J. G. Breslin, “A service for resilient manufacturing,”
in 2023 IEEE International Conference on Smart Computing (SMART-
COMP). IEEE, 2023, pp. 195–197.

[23] M. Soderi, V. Kamath, J. Morgan, and J. G. Breslin, “Ubiquitous system
integration as a service in smart factories,” in 2021 IEEE International
Conference on Internet of Things and Intelligence Systems (IoTaIS).
IEEE, 2021, pp. 261–267.

[24] M. Soderi, V. Kamath, and J. G. Breslin, “A demo of a software
platform for ubiquitous big data engineering, visualization, and analytics,
via reconfigurable micro-services, in smart factories,” in 2022 IEEE
International Conference on Smart Computing (SMARTCOMP). IEEE,
2022, pp. 1–3.

[25] ——, “Toward an api-driven infinite cyber-screen for custom real-time
display of big data streams,” in 2022 IEEE International Conference on
Smart Computing (SMARTCOMP). IEEE, 2022, pp. 153–155.

[26] M. Soderi and J. Gerard, “Ble servers and ubiquitous analytics aas,”
AICS 2022 Digital Book of Abstracts, 2022.

[27] M. Soderi and J. G. Breslin, “Crazy nodes: towards ultimate flexibility
in ubiquitous big data stream engineering, visualisation, and analytics, in
smart factories,” in International Symposium on Leveraging Applications
of Formal Methods. Springer, 2022, pp. 235–240.


