
Alexandria Engineering Journal 127 (2025) 677–689 

A
1
B

 

Contents lists available at ScienceDirect

Alexandria Engineering Journal

journal homepage: www.elsevier.com/locate/aej  

Original article

WebShield 5.0: Harnessing AI and NLP to combat web threats in Industry 5.0
Priyanka Verma a,b ,∗, Donna O’Shea c, Thomas Newe b , Ankit Vidyarthi d, Deepak Gupta e, 
Jabir Ali f, Hamad Aldawsari g, John G. Breslin h
a School of Computer Science, University of Galway, University road, Galway, H91 TK33, Ireland
b Department of Electronics and Computer Engineering, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
c Digital Engineering, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
d Department of CSE&IT, Jaypee Institute of Information Technology, sector 62, Noida, 201309, India
eMaharaja Agrasen Institute of Technology, Delhi, India
f School of Computer Science Engineering and Technology, Bennett University, Greater Noida, Delhi, India
g Department of Computer Science, Haql University College, University of Tabuk, Tabuk, Saudi Arabia
h Data Science Institute, University of Galway, University road, Galway, H91 TK33, Ireland

A R T I C L E  I N F O

Keywords:
Industry 5.0
AI
Cybersecurity
Web-based attacks
NLP
Mayfly optimization

 A B S T R A C T

Industry 5.0 characterized by the integration of human intelligence and advanced technologies is inherently 
more connected and interdependent than previous industrial paradigms. This increased connectivity exposes to 
various web-based attacks and calls for strong security controls. To address the challenges and enhance attack 
detection, this paper introduces Ingress Manager (IM), a novel approach that amalgamates Natural Language 
Processing (NLP) with Machine Learning (ML) to mitigate web-based threats. By combining multimodal data 
and utilizing the Mayfly optimization algorithm for feature selection, IM carries out a thorough analysis 
for efficient web-based attack detection. Mayfly Optimization is considered to be a variation of Particle 
Swarm Optimization (PSO), combining the benefits of Firefly Algorithm, Genetic Algorithm (GA), and PSO. 
Experiments on the HTTP CSIC-2010 dataset show that this integration is effective, as evidenced by the 
notable gains in accuracy, precision, and F-score above baseline models. Notable performance metrics such 
as accuracy of 98.5753% along with thorough component analysis (ablation study) add deeper understanding 
to the proposed approach. The paper’s contributions lie in its utilization of Industry 5.0 principles, the 
incorporation of Mayfly optimization for feature selection, and the innovative combination of NLP and ML 
for robust web-based attack detection.
1. Introduction

Industry 5.0 seeks to improve industrial efficiency and foster flexi-
bility between humans and machines by fusing human cognitive capac-
ities and critical thinking with intelligent, networked equipment [1]. 
Industry 5.0 has the potential to elevate overall production quality by 
assigning routine tasks to robots and machines, while reserving creative 
problem-solving tasks for human workers. It represents the upcoming 
stage of the industrial revolution [2]. It extends beyond manufacturing 
and is facilitated by growth in Information and Communication Tech-
nology (ICT), including Artificial Intelligence (AI), automation, big-data 
analytics, Internet of Things (IoT), Industrial Internet of Things (IIoT), 
robotics, fog computing, cloud computing and edge computing. It is 
highlighted that cyber–physical systems, AI, and IoT work together 
to provide an intelligent, connected, and adaptable production envi-
ronment. This revolutionary change has brought about a revolution 
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in the manufacturing processes, leading to greater productivity, effi-
ciency, and customization [3]. It has also made resource optimization, 
including waste reduction and energy efficiency, possible. Utilizing IoT 
solutions and networks that penetrate many facets of everyday life, 
Industry 5.0 is having an impact on a variety of industries, including 
logistics, automotive, healthcare, and agriculture [4].

This IoT network comprises smart devices collaboratively working 
to fulfill designated tasks, equipped with the necessary software and 
hardware resources for learning, collecting, transmitting, and respond-
ing to information from their surroundings [5]. Projections indicate 
that by 2030, there would be 50 billion IoTs active globally, forming 
an extensive network of interconnected devices. While these devices 
operate with minimal human intervention, users can interact with 
them for installation, re-configuration, or specific instructions. Recent 
smart devices are equipped with a user-friendly management interface, 
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facilitating device configuration through web browsers without the 
need for client-side software [6].

Despite the efficiency of the integration of these smart devices, 
security threats emerge due to latent vulnerabilities in smart tech-
nologies and web applications [7]. Industry 5.0 systems are becoming 
more complex and networked, which creates new cybersecurity issues 
and increases their vulnerability to web-based attacks. Big data, cloud 
computing, and IoT device integration increase the attack surface and 
reveal vulnerabilities that cybercriminals can take advantage. Opera-
tional Technology (OT) and Information Technology (IT) convergence 
increase the likelihood of cyber–physical incidents, which could have 
disastrous effects on trust, safety, and security [8]. Significant threats 
to Industry 5.0 infrastructure are posed by web-based assaults, such 
as distributed denial of service (DDoS), SQL injection, and cross-site 
scripting, which may result in data loss, operational disruptions, and fi-
nancial losses. Furthermore, these attacks have the potential to weaken 
public confidence in cutting-edge technology, impeding their broad 
acceptance and inhibiting creativity. Networking protocols make it dif-
ficult to secure web applications since harmful files can be uploaded via 
non-web channels like File Transfer Protocol (FTP) or Server Message 
Block (SMB) protocol. Cross-Site Scripting (XSS) is a common online 
application vulnerability that has been ranked as one of the top 10 most 
serious web application vulnerabilities mentioned in [7].

Installing security systems like Intrusion Prevention and Detection 
systems (IDS and IPS) is essential to counteracting these threats and 
guaranteeing the robustness of Industry 5.0 systems [9]. Web Applica-
tion Firewall (WAF) is security at the application layer level. WAFs are 
specialized to analyze the HTTP and HTTPS traffic for detecting and 
blocking web-related attacks [10]. The integration of AI techniques, 
particularly Machine Learning (ML), is a focal point in cybersecurity 
research, aiming to enhance attack detection systems. Despite the 
effectiveness of ML, traditional models, and techniques often exhibit 
a higher False Positive Rate (FPR) and False Negative Rate (FNR) for 
increasingly complex cyberattacks [11].

Thus in this work we propose the Ingress Manager (IM), which 
combines NLP and traditional ML techniques like Random Forest (RF) 
to effectively detect web-based attacks. Fig.  1 describes the conceptual 
view of the proposed approach. Internally, it uses the Mayfly optimiza-
tion algorithm to analyze the numeric data and collate it with the string 
data. Then, it applies the concept of NLP to analyze the data collectively 
and classify it through an ML classifier. The significant contributions 
include:

• The paper contributes to the vision of Industry 5.0 by addressing 
the need for secure and resilient cyber–physical systems in highly 
automated and interconnected environments. It emphasizes the 
development of intelligent security mechanisms that align with 
the evolving demands of next-generation industrial systems.

• A key contribution of this work is the design of the Ingress 
Manager (IM), a novel hybrid framework for web-based threat 
detection. By integrating ML algorithms with NLP techniques, the 
IM approach enhances the detection of sophisticated and evolving 
web threats. Its ability to analyze HTTP request patterns enables 
a comprehensive and adaptive security solution for safeguarding 
web applications, making it particularly suitable for Industry 5.0 
contexts.

• The paper also introduces a novel feature selection strategy utiliz-
ing the Mayfly Optimization Algorithm. This bio-inspired method 
effectively identifies the most relevant features for intrusion de-
tection, thereby improving both the accuracy and computational 
efficiency of the system. The integration of Mayfly optimization 
further distinguishes the IM approach from traditional methods 
by enhancing its precision and robustness.

The rest of the paper is organized as follows: Section 2 discusses 
the related work, followed by Section 3, which describes preliminary 
knowledge. Section 4 describes the proposed approach and perfor-
mance evaluation is provided in Section 5. Lastly, Section 6 concludes 
the work.
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2. Related work

The developments, difficulties, and effects of web-based attacks on 
Industry 5.0 are covered in this section. It examines the numerous 
studies and presents their points of view.

Li et al. [12] introduces a novel ML approach for efficient anomaly 
detection in HTTP traffic. Their method utilizes NLP, leveraging
Word2vec for semantic understanding and TF-IDF for low-dimensional 
vector representation. Light gradient boosting machine and CatBoost 
are employed for accurate anomaly detection, showing high accuracy 
and low false positive rates in testing against various datasets. The pro-
posed method demonstrates superior efficiency, requiring shorter run-
ning times and lower CPU memory compared to existing approaches.

Cloud-IoT systems heighten the risk of web server attacks due to the 
attractive rewards of centralized data. To address this, author in [13] 
proposes a web attack detection system leveraging distributed deep 
learning for URL analysis. This system, designed for deployment on 
edge devices, allows the cloud to manage challenges within the Edge 
of Things paradigm. Utilizing multiple concurrent deep models, the 
system enhances stability and ease of updates. Experiments were con-
ducted with two concurrent deep models and the system’s performance 
was also compared.

Amid a surge in internet-connected devices, phishing attacks on 
smartphones, IoT, and cloud networks exploit human vulnerabilities. 
Researchers in [14] advocate ML for phishing detection. Address-
ing this, a nine-lexical-feature phishing detection approach achieves 
99.57% accuracy on the ISCXURL-2016 dataset, demonstrating effec-
tiveness against diverse classifiers, notably Random Forest.

Nguyen et al. [15] presents a study which focuses on selecting fea-
ture to filter HTTP traffic in the context of WAFs, specifically examining 
the Generic-Feature-Selection (GeFS) measure. This work investigates 
the performance of GeFS on high-level HTTP traffic using trials on 
the ECML/PKDD-2007 dataset. GeFS has previously been effective on 
low-level package filters like the KDD CUP’99 dataset. Furthermore, a 
fresh CSIC-2010 dataset is produced. Both datasets’ statistical analyses 
provide information about their nature and quality. The results indicate 
that 63% of irrelevant and redundant features can be removed, with 
only a 0.12% reduction in WAFs’ detection accuracy.

The article [16] introduces Ensemble Deep Learning-based Web 
Attack Detection System (EDL-WADS). It employs 3 deep learning mod-
els for individually identifying web-based attacks, with an ensemble 
classifier combining their outputs for a final decision. The system’s 
precise detection with few false positives and negatives is demonstrated 
by experimental results on publicly available and real-world datasets.

Salam et al. address cybersecurity issues in Industry 5.0 in [17], 
where they suggest a deep-learning methodology that uses transformer 
models, recurrent neural networks, and convolutional neural networks 
to detect web-based threats. The transformer-based system exhibits bet-
ter accuracy, precision, and recall compared to current deep-learning 
techniques and conventional methods. The study highlights how deep 
learning can effectively solve cybersecurity issues in Industry 5.0 con-
texts, helping to safeguard sensitive data and vital infrastructure.

The study [18] evaluates ML techniques for detecting web-based 
attacks in Industry 5.0, focusing on ensemble methods, including ho-
mogeneous and heterogeneous ensembles. The experiment employs 
well-established classifiers and reveals that bagging, particularly RF, 
outperforms single classification algorithms in terms of accuracy and 
other metrics. The results provide guidance to practitioners and security 
researchers on how to choose effective learning strategies for Industry 
5.0 web application security.

Kozik et al. [19] address the significant threat of injection attacks, 
including XSS and SQL vulnerabilities, by proposing an innovative 
method to model normal web application behavior. Leveraging infor-
mation from HTTP requests, the approach aims to overcome obfus-
cation used by attackers. Evaluation on the CSIC-2010 HTTP Dataset 
demonstrates effective detection of injection attacks.
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Fig. 1. Conceptual architecture of proposed approach.
The study proposed by Smitha et al. [20] focuses on addressing 
web application vulnerabilities, such as SQLI and XSS, by evaluating 
the effectiveness of ML algorithms—decision forest, Neural Networks 
(NN), Support Vector Machine (SVM), and Logistic Regression (LR). 
Utilizing the HTTP CSIC-2010 dataset, the results reveal that SVM 
and LR outperform other algorithms. The study also employs Microsoft 
Azure ML studio for creating predictive workflows, providing insights 
into effective anomaly detection.

Gong et al. [21] proposed CECoR-Net for web attack detection. 
This model combines the Convolutional Neural Network (CNN) and 
Long Short-Term Memory (LSTM) techniques. This attack detection 
model relies only on a character-level input of the HTTP requests, 
which dramatically simplifies the data pre-processing achieving an 
accuracy of 97.8%. Hao et al. [22] presented a deep learning-based 
approach for detecting web attacks using a Bidirectional Long Short-
Term Memory (Bi-LSTM) network. Unlike traditional anomaly-based or 
rule-based detection methods – which often suffer from poor accuracy 
and limited adaptability to unknown attacks – this method leverages 
automatic feature extraction from HTTP request data with minimal pre-
processing. By converting HTTP request packets into word sequences 
and embedding them into vector space, the Bi-LSTM model learns to 
distinguish between normal and abnormal traffic. Evaluated on the 
CSIC 2010 HTTP dataset, the proposed method demonstrated high 
detection accuracy and a low false alarm rate, achieving state-of-the-art 
performance in web attack detection.

Urda et al. [23] explored the creation of predictive models for 
detecting web application attacks using the CSIC2010 dataset. The 
paper evaluated five classifiers – kNN, LASSO, SVM, RF, and XG-
Boost – alongside three feature selection methods: IG, LASSO, and 
RF. The study highlights ensemble classifiers, especially XGBoost, for 
their superior performance, achieving an average AUC of 0.989. While 
computationally demanding, ensemble methods showed reduced vari-
ability and improved accuracy. The approach is valuable for small 
to medium businesses with legacy systems. Chakir et al. [18] of-
fered valuable insights into the comparative effectiveness of ensemble 
learning versus single classifiers for web-based attack detection in 
the context of Industry 5.0. By empirically evaluating both homoge-
neous and heterogeneous ensemble methods on two realistic datasets 
(ECML/PKDD 2007 and CSIC HTTP 2010), the research highlights the 
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strong performance of bagging methods, particularly Random Forest, in 
key metrics like accuracy, precision, and FPR. It underscores that while 
ensemble models generally outperform single classifiers, their benefits 
vary based on specific application needs, such as prioritizing FPR over 
FNR or balancing training time and performance. However, the study is 
limited by its focus on traditional web-based attacks, lacking coverage 
of more advanced or adversarial threats. The authors acknowledge 
this gap and suggest future work on more comprehensive, adaptive 
detection systems and updated datasets tailored to modern Industry 5.0 
environments.

3. Preliminaries

3.1. Mayfly optimization

Mayfly Optimization [24] is considered to be a variation of Particle 
Swarm Optimization (PSO), combining the benefits of Firefly Algo-
rithm, Genetic Algorithm (GA), and PSO. It is modeled after the way 
mayflies mate. Only the most fit mayfly lives after hatching, when the 
others are thought to be adults. Every mayfly’s location in the search 
space indicates a possible fix for the issue. This is how the algorithm 
functions. First, two random sets of mayflies are created, one for each 
of the male and female populations. That is, each mayfly is randomly 
placed in the problem space as a candidate solution represented by 
an n-dimensional vector 𝑝 = (𝑝1, 𝑝2,… .., 𝑝𝑛), and its performance is 
evaluated on the predefined objective function O(p). The velocity 𝜐 =
(𝜐1, 𝜐2,… .., 𝜐𝑛) of a mayfly is defined as the change of its position, and 
the flying direction of each mayfly is a dynamic interaction of both indi-
vidual and social flying experiences. Specifically, every mayfly modifies 
its trajectory to approach both its current personal best position (pBest) 
and the highest position any mayfly in the swarm has reached thus far 
(gBest). Certain parameters are taken into account for the construction 
of the mayfly algorithm based on the process and interaction involved 
in mating, including the movement of the male and female mayflies, the 
mating process, velocity limits, gravity coefficients, the nuptial dance 
of mayflies, and gene mutation.

The male mayfly modifies its location based on its own experiences 
as well as those of its neighbors. If 𝑝𝑚 represents the mayfly m’s current 
position in the search space at time step t, and the position is modified 
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by adding a velocity 𝜐𝑡+1𝑚  to the current position, the male mayfly’s 
position can be expressed as follows: 
𝑝𝑡+1𝑚 = 𝑝𝑡𝑚 + 𝜐𝑡+1𝑚 (1)

with 𝑝0𝑚 ∪ (𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥) The velocity of the mayfly m is calculated using:

𝜐𝑡+1𝑚𝑖 = 𝜐𝑡𝑚𝑖 + 𝛼1𝑒
−𝜙𝛶 2

𝑞 (𝑝𝐵𝑒𝑠𝑡𝑚𝑖 − 𝑥𝑡𝑚𝑖) +

𝛼2𝑒
−𝜙𝛶 2

𝑔 (𝑔𝐵𝑒𝑠𝑡𝑖 − 𝑝𝑡𝑚𝑖) (2)

where 𝜐𝑡𝑚𝑖 is the velocity of 𝑚th mayfly in dimension i = 1,2, . . . .,n at t 
time, 𝑝𝑡𝑚𝑖 is the position of 𝑚th mayfly in dimension i at time t, 𝛼1 & 𝛼2
are the positive attraction constants used to scale the contribution of 
the cognitive and social components respectively, 𝑝𝐵𝑒𝑠𝑡𝑚 is the best 
position mayfly m had ever visited. 
𝑝𝐵𝑒𝑠𝑡𝑚 = 𝑝𝑡+1𝑚 (3)

𝑖𝑓 𝑂(𝑝𝑡+1𝑚 ) < 𝑂(𝑝𝐵𝑒𝑠𝑡𝑚) 𝑒𝑙𝑠𝑒 𝑘𝑒𝑒𝑝 𝑠𝑎𝑚𝑒

where O: 𝑅𝑛 →R is the objective function determining the quality of 
the solution. Here,
𝑔𝐵𝑒𝑠𝑡 ∈ {𝑝𝐵𝑒𝑠𝑡1, 𝑝𝐵𝑒𝑠𝑡2,… ....𝑝𝐵𝑒𝑠𝑡𝑀 |𝑂(𝐶𝐵𝑒𝑠𝑡)}

= 𝑚𝑖𝑛{𝑂(𝑝𝐵𝑒𝑠𝑡1), 𝑂(𝑝𝐵𝑒𝑠𝑡2),… ..., 𝑂(𝑝𝐵𝑒𝑠𝑡𝑚)} (4)

where M is the total number of male mayflies in the swarm.
The distances are given by: 

‖𝑝𝑚 − 𝑃𝑚‖ =

√

√

√

√

𝑛
∑

𝑖=1
(𝑝𝑚𝑖 − 𝑃(𝑚𝑖))2 (5)

where 𝑝𝑚𝑖 is the 𝑖th element of mayfly m and 𝑃𝑚 corresponds to 𝑝𝐵𝑒𝑠𝑡𝑚
or gBest.

It is important for the functioning of the algorithm that the best 
mayflies in a swarm keep changing their velocities which could be 
given by: 
𝜐𝑡+1𝑚𝑖 = 𝜐𝑡𝑚𝑖 + 𝛬 ∗ 𝑟 (6)

where 𝛬 is the nuptial dance coefficient and 𝑟 ∈ [−1, 1]
Female mayflies fly towards male mayflies instead of gathering into 

swarms. Say 𝑞𝑡𝑚 is the current position of female mayfly m at time t, 
then the position is given by: 
𝑞𝑡+1𝑚 = 𝑞𝑡𝑚 + 𝜐𝑡+1𝑚 (7)

with 𝑞0𝑚 ∪ (𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥) The velocities for females would be calculated as: 

𝜐𝑡+1𝑚𝑖 = 𝜐𝑡𝑚𝑖 + 𝛼2𝑒
−𝜙𝑑2𝑝𝑞 (𝑝

𝑡
𝑚𝑖−𝑞

𝑡
𝑚𝑖) (8)

𝑖𝑓 𝑂(𝑞𝑚) > 𝑂(𝑝𝑚)

𝜐𝑡+1𝑚𝑖 = 𝜐𝑡𝑚𝑖 +𝑤 ∗ 𝑟 (9)

𝑖𝑓 𝑂(𝑞𝑚) ≤ 𝑂(𝑞𝑚)

where w is the random walk coefficient, used when the female is not 
attracted by a male and then it flies randomly.

The mating between male and female mayflies could be random 
or based on the fitness function. The results of mating generate two 
offspring based on the higher value of fitness of males and females. 
𝑐ℎ𝑖𝑙𝑑𝑓𝑙𝑦1 = 𝑅 ∗ 𝐵 + (1 − 𝑅) ∗ 𝐺 (10)

𝑐ℎ𝑖𝑙𝑑𝑓𝑙𝑦2 = 𝑅 ∗ 𝐺 + (1 − 𝑅) ∗ 𝐵 (11)

where B is male and G is a female parent with R as the random value. 
Here, the initial velocities of the child mayflies are set to 0.

The real mayflies do not develop great speed, hence taking this into 
account with 𝜐𝑚𝑎𝑥 as the maximum velocity of a mayfly, the velocity is 
adjusted as 
𝜐𝑡+1 = 𝜐 (12)
𝑚𝑖 𝑚𝑎𝑥
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𝑖𝑓 𝜐𝑡+1𝑚𝑖 > 𝜐𝑚𝑎𝑥

𝜐𝑡+1𝑚𝑖 = −𝜐𝑚𝑎𝑥 (13)

𝑖𝑓 𝜐𝑡+1𝑚𝑖 < −𝜐𝑚𝑎𝑥

𝜐𝑚𝑎𝑥 = 𝑟𝑎 ∗ (𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛) (14)

where 𝑟𝑎 ∈ (0, 1]
Considering the gravitational acceleration an into account the ve-

locity of mayflies pertains to a certain amount. Hence, velocity could 
be represented as:

𝜐𝑡+1𝑚𝑖 = 𝑎 ∗ 𝜐𝑡𝑚𝑖 + 𝛼1𝑒
−𝜙𝛶 2

𝑞 (𝑝𝐵𝑒𝑠𝑡𝑚𝑖 − 𝑥𝑡𝑚𝑖) +

𝛼2𝑒
−𝜙𝛶 2

𝑔 (𝑔𝐵𝑒𝑠𝑡𝑖 − 𝑝𝑡𝑚𝑖) (15)

while the velocity of the female mayflies could be given by: 

𝜐𝑡+1𝑚𝑖 = 𝑎 ∗ 𝜐𝑡𝑚𝑖 + 𝛼2𝑒
−𝜙𝑑2𝑝𝑞 (𝑝

𝑡
𝑚𝑖−𝑞

𝑡
𝑚𝑖) (16)

𝑖𝑓 𝑂(𝑞𝑚) > 𝑂(𝑝𝑚)

𝜐𝑡+1𝑚𝑖 = 𝑎 ∗ 𝜐𝑡𝑚𝑖 +𝑤 ∗ 𝑟 (17)

𝑖𝑓 𝑂(𝑞𝑚) ≤ 𝑂(𝑞𝑚)

where 

𝑎 = 𝑎𝑚𝑎𝑥 −
𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥

∗ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (18)

could be used to gradually reduce the value of gravity coefficient 
a. 𝑎𝑚𝑎𝑥 & 𝑎𝑚𝑖𝑛 are the maximum and minimum values that gravity 
coefficient can take, iteration is the current iteration with 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥
as the maximum possible iteration of the algorithm.

The values of the nuptial dance 𝛬 and random walk w could be 
updated using: 

𝛬𝑗 = 𝛬0𝜃
𝑗 , 0 < 𝜃 < 1 (19)

𝑤𝑗 = 𝑤0𝜃
𝑗 , 0 < 𝜃 < 1 (20)

where j is the iteration counter and 𝜃 is a fixed value in the range of 
(0.1).

The mutation among the child mayflies obtained after mating could 
be given as: 

𝑐ℎ𝑖𝑙𝑑𝑓𝑙𝑦𝑐 = 𝑐ℎ𝑖𝑙𝑑𝑓𝑙𝑦𝑐 + 𝜌𝜎(0, 1) (21)

where 𝜌 is the standard deviation of normal distributions and 𝜎(0, 1)
stands for standard normal distribution with mean as 0 and variance 
as 1.

3.2. Natural Language Processing (NLP)

NLP [25] is an area of artificial intelligence that focuses on giving 
robots the capacity to comprehend, interpret, and produce writings 
in human languages. Text understanding, speech recognition, machine 
translation, sentiment analysis, named entity recognition, chatbots, 
text summarization, question answering, information extraction, and 
language production are just a few of the many applications it covers. 
NLP [26] plays a critical role in making technology more accessible and 
responsive to human needs, fostering breakthroughs in communication, 
automation, and information processing. It does this by enabling ma-
chines to process and interact with human language as well as analyze 
text data.



P. Verma et al. Alexandria Engineering Journal 127 (2025) 677–689 
Fig. 2. Modular architecture of the proposed approach.
4. Proposed solution

This section outlines the proposed approach focused on countering 
web-based attacks. Typically, these attacks leverage strings (e.g., URLs) 
to target users. Hence, it is crucial to analyze this string data to discern 
the intent behind incoming traffic. Additionally, empirical evidence 
supports the significance of numeric data in identifying the type of 
ingress. Consequently, IM is constructed with consideration for both 
aspects: string and numeric data in the ingress.

Fig.  2 illustrates the modular architecture of the proposed approach, 
detailing the components involved in analyzing HTTP requests with 
Algorithm 1 describing the summarized IM approach. The proposed 
IM approach begins by loading web-based data from a CSV file and 
identifying features with more than one unique value, which are con-
sidered significant for the analysis. These features are then categorized 
into string-based and object-based types. The feature matrix X is con-
structed from the object-based features, while the target variable 𝑦 is 
extracted for classification. To handle missing values, blank strings are 
used as placeholders. The object features are label encoded to convert 
categorical data into a numerical format suitable for ML models.

For each data instance, a new combined feature is generated by 
concatenating the relevant numeric and string features. This com-
bined feature undergoes a series of NLP steps, including tokenization 
using regular expressions, stemming with a Snowball Stemmer, and 
finally joining the processed tokens into a single string. These prepro-
cessed text entries are transformed into numerical vectors using TF-IDF 
vectorization, enabling them to be fed into machine learning models.

The dataset is then split into training and testing subsets, and a 
Random Forest classifier is employed for classification. To enhance 
model performance, a grid search with cross-validation is used to 
optimize hyperparameters such as the number of estimators, splitting 
criteria, and the strategy for selecting maximum features. Based on 
the best parameters identified, a final Random Forest model is trained 
and evaluated using performance metrics like accuracy, precision, F-
score, and Mean Absolute Error (MAE). The trained model is then 
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returned, completing the IM training pipeline. This approach effec-
tively combines structured and unstructured data, along with advanced 
preprocessing and tuning techniques, to deliver a robust and accurate 
classification system.

4.1. Data preprocessing

Initially, data stored in the data house is preprocessed. Data prepro-
cessing is a crucial step in preparing raw data for analysis, involving 
various operations to enhance its quality and usability. In this context, 
two essential preprocessing techniques are employed on the data: NULL 
imputation and feature filtering based on uniqueness. Firstly, NULL 
imputation addresses missing values in the dataset. This ensures a more 
complete dataset, preventing the loss of valuable information due to 
missing entries. Secondly, feature filtering involves the identification 
and removal of features that possess more than one unique value. 
Features with limited variability or those dominated by a single value 
may not contribute significantly to the analysis. Filtering out such 
features reduces redundancy, enhances computational efficiency, and 
focuses the analysis on more informative variables.

4.2. Content Separator (CTS)

After preprocessing, the preprocessed data is passed to the CTS. 
The primary function of the CTS involves examining the nature of the 
incoming data which typically consists of a mixture of strings (such 
as URLs) and numeric or object-related information. To achieve this 
separation, the CTS employs human-defined rules and conventions, 
leveraging its predefined knowledge to categorize different components 
of the incoming data accurately. additionally, it allows human interven-
tion to further analyze and bifurcate the data. This separation allows 
for more targeted and context-aware feature engineering, ensuring that 
the subsequent stages of the approach can extract relevant information 
from each data type independently.
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Algorithm 1 Proposed IM approach
Input: Web-based data
Output: Trained ingress manager
1: data = pd.read_csv(‘file_path’)
2: unique_features=[]
3: for feature in data.columns:
4:  unique_count = data[feature].unique()
5:  if unique_count > 1:
6:  unique_features.append(feature)
7: string_features = unique_features.string_features
8: object_features = unique_features - string_features
9: X= data [object_features]
y = data[classification]

10: X=X.fillna(‘ ’)
11: lb_encode = LabelEncoder()
12: X[numeric_features] = lb_encode.

 fit_transform(X[object_features])
13: for in range(X.shape[0]):
14:  if data.iloc[i,string_feature] is np.NaN:
15:  l = str(X.loc[i,numeric_feature])
16:  else:
17:  l = str(X.loc[i,numeric_feature])

 +str(X.loc[i,string_feature])
18:  X.loc[i,combined]=l
19: tokenizer = RegexpTokenizer(r‘[A-Za-z0-9]+’)
20: X[tokenized_text]=X.combined.map(lambda 

t:tokenizer.tokenize(t))
21: stemmer = SnowballStemmer(english)
22: X[stemmed_txt]=X[tokenized_text].map(lambda 

l:[stemmer.stem(word) for word in l])
23: X[text_sent]=X[stemmed_txt].map(lambda l:‘ ’.join(l))
24: cv=TF-IDFVectorizer()
25: final_data = cv.fit_transform(X.text_sent)
26: X_tr,X_ts,y_tr,y_ts = train_test_split(final_data,y

 ,test_size=0.2)
27: rf_model = RandomForestClassifier()
28: parameter_grids ={‘estimator:[100,200,400,600,800,1000],

 ‘criteria’:[gini,entropy,log_loss],
 ‘maximum_features’:[squareroott,log2]}

29: grid_search_method=GridSearchCV(r_f,parameter_grids, cv=5)
30: print(grid_search_result.best_params)
31: r_f=RandomForestClassifier(

criterion=gini,max_features=sqrt)
32: r_f.fit(X_tr,y_tr)
33: y_predicted = r_f.predict(X_ts)
34: Performance_metrices(y_predicted,y_ts)
35: return r_f model

4.3. Data encoder

Next, the separated numeric/object data is passed to the data en-
coder which uses a label encoder to encode the data, indicated by 
steps 13–14 in Algorithm 1. Object data often consists of non-numeric 
information or categorical variables, and encoding is essential to con-
vert this information into a format suitable for mathematical and 
computational analysis. The primary purpose of the data encoder is 
to assign numerical representations to different categories or labels 
present in the object data. This encoding process is imperative for ML 
models and algorithms, as they typically operate on numeric inputs. 
By converting object data into a numeric format, it becomes feasible 
to apply a wide range of statistical and ML techniques for further
analysis.
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4.4. MA feature selector

This step involves the use of the Mayfly optimization algorithm for 
feature selection. It begins by initializing a population of male and 
female mayflies using specified equations as described in Algorithm 
2. It evaluates their objective function values and determines their 
personal best (pBest) and global best (gBest) positions. The gravity 
coefficient is calculated, and the velocities of the mayflies are updated 
accordingly. The algorithm then mates the mayflies to produce child 
flies, evaluates these new solutions, and updates the pBest and gBest 
values. This process repeats until the maximum number of iterations is 
reached, ultimately outputting the optimal set of features based on the 
global best solution (gBest).

4.5. Tokenizer

After passing through FS, the feature-selected data is concatenated 
with the string data for further analysis. This concatenated data is now 
passed to the tokenizer. Tokenization is a crucial step in NLP that 
involves breaking down a sequence of text, such as a sentence or a 
document, into individual units called tokens, Fig.  3. These tokens can 
be words, phrases, or other meaningful elements, and the process of 
tokenization aids in analyzing and understanding the textual content. 
In the proposed approach, the tokenization stage is employed to dis-
sect the concatenated data into distinct tokens, allowing for further 
processing and analysis.

Regexp (regular expression) tokenizer [27] is a specific type of 
tokenization method utilized in this approach. During tokenization, the 
Regexp tokenizer scans the string data and identifies individual tokens 
based on the specified regular expression patterns. This ensures that 
the resulting tokens capture meaningful units of information from the 
original string. For instance, a simple regular expression pattern might 
identify tokens as individual words, excluding punctuation marks. The 
use of Regexp tokenizer in this context allows for a fine-grained and 
tailored approach to tokenization, ensuring that the subsequent analysis 
and processing stages receive well-structured and relevant tokens.

4.6. Stemmer

These tokens are then reduced to certain abbreviations to shorten 
the duration of training using stemmer. Stemming [28] is employed to 
reduce words to their base or root form, known as a stem. This helps in 
simplifying the analysis of textual data by considering variations of a 
word as a single entity. In the proposed approach, stemming is a crucial 
step performed after tokenization, aiming to further streamline the text 
data for subsequent analysis [29]. The specific method of stemming 
utilized in this approach is Snowball stemming. Snowball stemming 
is an algorithmic approach to stemming that employs a set of rules 
to iteratively trim suffixes from words. It is designed to be language-
specific, meaning that different versions of the algorithm are available 
for various languages. During the Snowball stemming process, each 
tokenized word undergoes a series of rule-based transformations to 
reduce it to its root or base form as shown in Fig.  4.

4.7. Vectorizer

In the proposed approach, vectorization [30] follows the tokeniza-
tion and stemming steps and is essential for converting the processed 
text data into a format that can be utilized by ML models. We specifi-
cally employed Term Frequency-Inverse Document Frequency (TF-IDF) 
vectorization. TF-IDF [31] is a numerical statistic that reflects the 
importance of a term within a corpus. The TF-IDF score is calculated 
based on two components, Term Frequency (TF), which represents the 
frequency of a term within a specific document. 

𝑇𝐹 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 (22)
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
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Fig. 3. Understanding the concept of tokenization using CICS-2010 dataset.
Fig. 4. Understanding the concept of stemming using CICS-2010 dataset.
Fig. 5. Understanding the concept of vectorization using CICS-2010 dataset.
Algorithm 2 FS using Mayfly
Input: Numeric data
Output: Optimum features
1: Use Eq.  (1) & Eq.  (7) to initialize the male and female population.
2: 𝑡 ← 1
3: Find and analyze objective function values of male and female 
mayflies as:
 O(h) = 𝑂(ℎ𝑡𝑗 ) where O: 𝑅𝑛 → R

 𝑂(ℎ) =
∑𝑚

𝑖=2[
∑𝑛

𝑗=1(ℎ𝑗,𝑖−1 − ℎ𝑗,𝑖)2]

 ℎ𝑡𝑗 represents features at j=1,2,..n & i = 2,3,...,m
 𝑝𝐵𝑒𝑠𝑡𝑡𝑖 = ℎ𝑡𝑖; 𝑔𝐵𝑒𝑠𝑡𝑖 = 𝑚𝑖𝑛{𝑝𝐵𝑒𝑠𝑡𝑡𝑖}

4: Use Eq.  (18) to find gravity coefficient
5: Update the velocities of flies using Eq.  (12)-(16)
6: Evaluate the solutions 𝑂(ℎ) = 𝑂(ℎ𝑡+1𝑗 )
7: Mate the mayflies using Eq.  (10) & Eq.  (11), and evaluate the 
childflies.

8: Update the pBest & gBest using Eq.  (3) & Eq.  (4)
9: Repeat 1 to 8 until t < maximum iteration
10: Output the optimum feature selected solution as gBest

 gBest = ℎ𝑏
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and Inverse Document Frequency (IDF) which reflects the rarity of a 
term across the entire corpus. 

𝐼𝐷𝐹 = 𝑙𝑜𝑔(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤𝑜𝑟𝑑𝑠
) (23)

𝑇𝐹 − 𝐼𝐷𝐹𝑠𝑐𝑜𝑟𝑒 = 𝑇𝐹 ∗ 𝐼𝐷𝐹 (24)

This method emphasizes the importance of phrases that are common 
within a document but relatively uncommon throughout the entire 
corpus by giving them higher ratings. For every document, the TF-IDF 
vectorizer produces numerical vectors, with each dimension denoting 
a distinct phrase in the corpus. These vectors create a representation 
appropriate for machine learning analysis by encapsulating the signifi-
cance of each term in the document. The generated TF-IDF vectors are 
used as input features in the training and testing of machine learning 
models, which helps the suggested method effectively classify web-
based attacks. The vectorization procedure that IM uses is depicted in 
Fig.  5.

4.8. Classification model

Random Forest (RF), utilized as the classifier in the proposed 
approach, is an ensemble ML algorithm introduced by Breiman in 
2001 [32]. The architecture of an RF involves an ensemble of decision 
trees as its foundational predictors. In the implementation of RF, mul-
tiple decision trees are generated, each selecting random samples from 



P. Verma et al. Alexandria Engineering Journal 127 (2025) 677–689 
the original dataset. The process of splitting is based on minimizing the 
mean square error. 

𝐽 = 1
𝑁

𝑁
∑

𝑖=1
(𝑦 − 𝑦̂)2 (25)

at each leaf node in the case of regression tasks. This iterative process 
continues until no more features are available for splitting. The predic-
tions from the multiple decision trees are then aggregated to produce 
the final result. In the context of regression tasks, this aggregation is 
typically achieved by averaging the results. Mathematically, this could 
be given as follows:

Final Prediction = 1
𝑛𝑟

𝑛𝑟
∑

𝑖=1
Prediction𝑖

Here, 𝑛𝑟 represents the number of decision trees in the random 
forest, and Prediction𝑖 is prediction of 𝑖th decision tree.

5. Performance and evaluation

It outlays the implementation scenario and the results evaluation 
of the IM. It describes the CSIC-2010 dataset employed to test the 
proposed solution and compares the traditional and existing solutions 
thereby establishing the efficacy of the IM. The proposed framework 
was developed using Python 3.0 on an Asus Vivobook equipped with 
an NVIDIA 1650 GeForce GTX, 4 GB Graphics in addition to a 4-core 
CPU, 8 GB-RAM, and 512 GB SSD memory.

5.1. Performance metrics

In evaluating IM methods, key metrics used include accuracy, F-
score, precision, ROC_AUC_Score, and Mean Absolute Error (MAE). 
Accuracy gauges the overall correctness of the intrusion detection 
method in distinguishing between attack and normal samples. Precision 
measures the ratio of correctly classified attack requests to the total 
samples classified as attacks. The F-score calculates the harmonic mean 
of precision and recall. ROC_AUC_Score quantifies the ability of a model 
to distinguish between classes, providing a single value that summa-
rizes the model’s performance across various classification thresholds. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑥𝑝 + 𝑥𝑛

𝑦𝑝 + 𝑥𝑛 + 𝑦𝑝 + 𝑦𝑛
(26)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑥𝑝

𝑥𝑝 + 𝑦𝑝
(27)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑥𝑝

2𝑥𝑝 + 𝑥𝑛 + 𝑦𝑝
(28)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦 − 𝑦̂| (29)

where 𝑥𝑝 is true positive, 𝑥𝑛 is true negative, 𝑦𝑝 is false positive, and 𝑦𝑛
is false negative.

5.2. Dataset description

The experimental results are devised using the CSIC-2010 dataset. 
The HTTP dataset CSIC-2010 [33], extensively utilized in similar prob-
lem domains, offers readily available text files comprising HTTP re-
quests. This dataset presents a variety of attacks, including SQL in-
jection, buffer overflow, information gathering, file disclosure, CRLF 
injection, XSS, and other exploits. The traffic is generated by targeting a 
specific e-commerce web application, making it particularly suitable for 
our proposed approach. The data set contains 72,000 normal requests 
and more than 25,000 abnormal requests, where 36,000 are normal 
data for training, and 36,000 are normal data for testing. For training 
and testing purposes it is split in an 80:20 ratio.
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Table 1
Comparing of proposed IM approach with various ML and DL classifiers.
 Method Accuracy Precision F-score  
 RF 98.5753 98.5863 98.5728 
 KNN 92.0331 92.3990 92.0781  
 Linear SVM 97.0687 97.0812 97.0621  
 Decision Tree 98.5179 98.5323 98.5151  
 Gradient Boosting 96.6675 96.7763 96.6478  
 Perceptron 98.4443 98.4668 98.4405  
 SGD 96.7576 96.7857 96.7472  
 MLP 98.2151 98.2153 98.2151  

Table 2
Classification report of proposed IM approach using RF as classifier on CICS-2010 
dataset.
 Precision Recall F1-score Support 
 Normal 0.98 1.00 0.99 7218  
 Attack 0.99 0.97 0.98 4995  
 Accuracy 0.99 12213  
 Macro avg 0.99 0.98 0.99 12213  
 Weighted avg 0.99 0.99 0.99 12213  

5.3. Results analysis

5.3.1. Analysis of proposed work
Table  1 provides a comparative analysis of diverse classification 

models employed with proposed IM approach. Their performance is 
showcased in terms of metrics such as accuracy, precision, and F-score 
along with Table  2 providing the classification report.

Among the models evaluated, RF stands out with remarkable values 
in accuracy (98.5753%), precision (98.5863%), and F-score
(98.5728%). Perceptron also demonstrates robust performance across 
the metrics. Notably, Decision Tree (DT) and MLP exhibit competitive 
results, emphasizing the effectiveness of these models in the context 
of the proposed IM. This comprehensive summary aids researchers and 
practitioners in selecting suitable models based on specific evaluation 
criteria, contributing valuable insights into the efficacy of classification 
methods in handling web-based attacks.

Owning to the superior performance of RF, Table  2 & Fig.  6 describe 
the classification report and confusion metrics of the RF classifier 
obtained using the proposed IM approach.

Additionally, to analyze the tokenizer, stemmer, and vectorizer we 
conducted rigorous experiments to determine the optimal tokenizer, 
stemmer, and vectorizer. Keeping in mind that an industrial approach 
would require a balance between the time, the memory consumption 
and performance metrics, we opted for methods that takes either least 
amount of time, or least memory consumption or highest performance 
measures.

Table  3 presents an analysis of various tokenizers for the IM while 
keeping stemmer as Snowball stemmer and vectorizer as TF-IDF. Five 
different tokenizers, namely Regexp, Treebank, Toktok, SExpr, and 
Tweet, were assessed with the top 3 classifiers: RF, DT, and Perceptron 
for analysis. The results show that the SExpr tokenizer achieves notable 
performance across multiple classifiers, demonstrating the highest ac-
curacy (98.7554%), precision (98.7589%), F-score (98.7542%), but it 
takes more time than the Regexp tokenizer. Based on the comparative 
results and time taken for tokenization, we opted for the Regexp 
tokenizer as it takes least time (0.3354 s) to tokenize the corpus and 
also comparable performance metrics.

Keeping the Regexp tokenizer and TF-IDF vectorizer, Table  4 gives 
analysis using various stemmers for the proposed IM approach, assess-
ing their performance with different stemmers. Five different stemmers, 
namely Snowball, Regexp, Porter, Lancaster, and ISRIS, were evaluated 
using the top 3 classifiers. The results indicate that the Snowball stem-
mer consistently achieves high performance across multiple classifiers, 
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Table 3
Analyzing various tokenizers for proposed IM approach using CICS-2010 dataset (ablation study for tokenizers).
 Tokenizer Method Accuracy Precision F-score MAE roc_auc_score Time taken by tokenizer Memory consumption 
 
Regexp tokenizer

RF 98.5753 98.5863 98.5728 0.0143 98.3599

0.3354 5.5444

 
 DT 98.5179 98.5323 98.5151 0.0148 98.2807  
 Perceptron 98.4443 98.4668 98.4405 0.0156 98.1628  
 
Treebank tokenizer

RF 98.5671 98.5733 98.5649 0.0144 98.3716

5.7319 3.1380

 
 DT 98.4934 98.4992 98.4912 0.0151 98.2967  
 Perceptron 98.5343 98.5514 98.5310 0.0147 98.2662  
 
Toktok tokenizer

RF 98.3869 98.3978 98.3842 0.0161 98.1772

3.5445 1.3860

 
 DT 98.2232 98.2365 98.2198 0.0178 97.9908  
 Perceptron 98.3378 98.3564 98.3343 0.0166 98.0855  
 
SExpr tokenizer

RF 98.7554 98.7589 98.7542 0.0124 98.6242

0.9341 0.0809

 
 DT 98.5179 98.5248 98.5160 0.0148 98.3468  
 Perceptron 97.0114 97.0604 97.0178 0.0299 97.1587  
 
Tweet tokenizer

RF 96.1680 96.2108 96.1531 0.0383 95.6954

3.2640 3.3300

 
 DT 96.3891 96.4033 96.3801 0.0361 96.0392  
 Perceptron 98.1003 98.1089 98.0972 0.0190 97.8826  
Table 4
Analyzing various stemmers for proposed IM approach using CICS-2010 dataset (ablation study for stemmer).
 Stemming Method Accuracy Precision F-score MAE roc_auc_score Time taken by stemmer Memory consumption 
 
Snowball stemmer

RF 98.5753 98.5863 98.5728 0.0143 98.3599

9.7791 0.7368

 
 DT 98.5179 98.5323 98.5151 0.0148 98.2807  
 Perceptron 98.4443 98.4668 98.4405 0.0156 98.1628  
 
Regexp stemmer

RF 98.5917 98.5937 98.5903 0.0141 98.4573

0.6051 8.8684

 
 DT 98.3869 98.3925 98.3848 0.0161 98.2050  
 Perceptron 98.6162 98.6278 98.6138 0.0138 98.4055  
 
Porter stemmer

RF 98.4770 98.4875 98.4742 0.0152 98.2451

15.3281 15.0328

 
 DT 98.3952 98.4063 98.3921 0.0160 98.1536  
 Perceptron 98.5835 98.6021 98.5801 0.0142 98.3119  
 
Lanchaster stemmer

RF 94.7187 94.8993 94.6740 0.0528 93.8397

6.1707 3.9117

 
 DT 94.4158 94.6218 94.3645 0.0558 93.4780  
 Perceptron 94.3175 94.4891 94.2695 0.0568 93.4261  
 
ISRIS stemmer

RF 98.4770 98..4873 9.4748 0.0152 98.2678

6.8716 8.8417

 
 DT 98.3705 98.3828 98.3676 0.0163 98.1443  
 Perceptron 93.4987 93.9652 93.5385 0.0650 94.1196  
Table 5
Analyzing various vectorizers for proposed IM approach using CICS-2010 dataset (ablation study for vectorizer).
 Vectorizer Method Accuracy Precision F-score MAE roc_auc_score Time taken by vectorizer Memory consumption 
 
TF-IDF

RF 98.5753 98.5863 98.5728 0.0143 98.3599

1.0217 2.2016

 
 DT 98.5179 98.5323 98.5151 0.0148 98.2807  
 Perceptron 98.4443 98.4668 98.4405 0.0156 98.1628  
 
Count

RF 98.1413 98.1535 98.1378 0.0186 97.8992

0.9318 2.2508

 
 DT 98.2969 98.3202 98.2927 0.0170 98.0098  
 Perceptron 98.2559 98.2794 98.2516 0.0174 97.9661  
 
Hashing

RF 98.4683 98.4774 98.4667 0.0203 98.2879

0.6957 1.6435

 
 DT 98.425 98.3545 98.3399 0.0150 98.2197  
 Perceptron 98.1004 98.0997 98.0997 0.0189 98.0012  
displaying the highest accuracy (98.5753%), precision (98.5863%), F-
score (98.5728%), and the lowest MAE (0.0143%). Additionally, it 
exhibits efficient processing with moderate time taken (9.7791 s) and 
least memory consumption (0.7368 MB).

Table  5 presents an analysis of various vectorizers for the proposed 
IM while using the Regexp tokenizer and Snowball stemmer. It was as-
sessed RF, DT, and Perceptron. The results show that the TF-IDF vector-
izer consistently achieves high performance across multiple classifiers, 
displaying the highest accuracy (98.5753%), precision (98.5863%), 
and F-score (98.5728%), with the lowest MAE (0.0143%). The TF-
IDF vectorizer also demonstrates efficient processing, with moderate 
time taken (1.0217 s) and reasonable memory consumption (2.2016 
MB). It gives insights into the comparative effectiveness of multiple 
vectorization methods concerning IM classifiers.

5.3.2. Comparison with traditional techniques
Fig.  7 compares the accuracy of the proposed IM approach with 

traditional methodology. The traditional approach generally involves 
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the analysis of only string data using NLP techniques (regexp tokenizer 
+ count vectorizer). The RF classifier exhibits a significantly higher 
accuracy of 98.5753% when used with the IM approach, outperforming 
the traditional approach where it achieves an accuracy of 62.0732%. 
Similar trends are observed for other classifiers like KNN, Linear SVM, 
DT, Gradient Boosting, Perceptron, SGD, and MLP. This comparison 
underscores the superiority of the IM approach in achieving higher 
accuracy compared to traditional methods across various classifiers.

The comparison between the IM and traditional approach using 
precision is indicated by Fig.  8. Notably, the RF classifier achieves a 
remarkable precision of 98.5863% when utilized with the IM approach, 
surpassing its performance in the traditional approach with a precision 
of 61.0817%. It determines that IM approach handles the web-based 
data well in comparison to the traditional techniques.

Fig.  9 provides a comparative analysis of F-scores between the IM 
classifiers and traditional classifiers. It indicates that the RF classifier 
achieves a substantial F-score of 98.5728% when integrated with the 
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Fig. 6. Confusion metrics of proposed IM approach using RF as classifier on using 
CICS-2010 dataset.

Fig. 7. Accuracy comparison of proposed and traditional approach using CICS-2010 
dataset.

Fig. 8. Comparing proposed precision values with traditional approach using CICS-
2010 dataset.

IM approach, surpassing the F-score of 62.0732% in the traditional 
approach.

Across various classifiers, the IM approach consistently yields lower 
MAE values compared to the traditional approach as indicated in Fig. 
10. For instance, with the RF classifier, the IM approach achieves a 
686 
Fig. 9. F-score comparison of proposed and traditional approach using CICS-2010 
dataset.

Fig. 10. Comparing MAE values of proposed IM with traditional approach using CICS-
2010 dataset.

Fig. 11. Comparison of proposed and traditional approach using ROC values using 
CICS-2010 dataset.

notably lower MAE of 0.0143 compared to the traditional approach’s 
0.3793. This trend underscores the efficacy of the IM approach in 
minimizing prediction errors, as reflected in reduced MAE values across 
multiple classifiers.

Fig.  11 illustrates the ROC values for both the IM classifiers and 
traditional classifiers across various methods. The IM classifiers con-
sistently outperform traditional classifiers in terms of ROC AUC, in-
dicating superior performance in distinguishing between true positive 
and false positive rates. For instance, with the RF classifier, the IM 
approach achieves a significantly higher ROC AUC of 98.3599 com-
pared to the traditional approach’s 57.0537. This pattern persists across 
multiple classifiers, highlighting the effectiveness of the IM approach in 
enhancing the classifiers’ discrimination ability.
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Table 6
Comparison using majority voting on proposed IM approach using CICS-2010 dataset.
 Majority vote Accuracy Precision F-score MAE roc_auc_score 
 5 classifier 98.6817 98.6991 98.6789 0.0132 98.4377  
 3 classifiers 98.6735 98.6889 98.6709 0.0133 98.4401  

Fig. 12. Confusion metrics using majority voting among top 3 classifiers using CICS-
2010 dataset.

The superior performance of the IM approach over traditional meth-
ods stems from its ability to incorporate multi-dimensional features, 
including contextual, behavioral, and structural information from web-
based data, rather than relying solely on textual inputs. It leverages 
advanced preprocessing and feature engineering techniques to extract 
deeper patterns, making it more effective in handling the variability 
and noise inherent in web data. Additionally, the IM approach en-
ables classifiers particularly ensemble models like RF and Gradient 
Boosting to better exploit the enriched feature space, thereby reducing 
overfitting and bias. This holistic data modeling leads to consistently 
improved performance metrics such as accuracy, precision, F-score, and 
reduced MAE across various classifiers.

5.3.3. Enhancing the performance metrics
With aim to enhance the performance of proposed IM approach, we 

tested the ensemble way of classification by taking top 3 and top 5 
classifiers based on their accuracy as mentioned in Table  1. On applying 
the concept of majority voting between the top 3 and 5 classifiers 
respectively, the highest accuracy achieved was 98.6817% (for 5 clas-
sifiers) as described in Table  6. The majority voting approach with 5 
classifiers attains an impressive performance, achieving a precision of 
98.6991%, F-score of 98.6789%, MAE of 0.0132, and Roc_Auc_Score 
of 98.4377. Similarly, the approach with 3 classifiers also demon-
strates high performance, with an accuracy of 98.6735%, precision of 
98.6889%, F-score of 98.6709%, MAE of 0.0133, and Roc_Auc_Score 
of 98.4401. This comparison provides insights into the effectiveness of 
majority voting in enhancing overall classification performance based 
on multiple classifiers in the IM approach. Figs.  12 & 13 gives the 
confusion metrics obtained when applying the majority voting concept 
using the IM approach.

5.3.4. State-of-the-art comparison
Table  7 provides a comparative evaluation of the proposed approach 

against several state-of-the-art models in web-based attack detection. It 
687 
Fig. 13. Confusion metrics using majority voting among top 5 classifiers using CICS-
2010 dataset.

Table 7
Comparison of proposed approach with state-of-the-art models using CICS-2010
dataset.
 Method Accuracy Precision F1-score MAE roc_auc_score 
 Proposed 98.6 98.6 98.6 0.014 98.4  
 Urda et al. [23] 96.4 97.0 97.3 – 98.9  
 Chakir et al. [18] 98.2 98.2 98.2 – –  
 Hao et el. [22] 98.3 99.0 98.5 – –  
 Gong et al. [21] 97.8 98.5 97.3 – –  

lists key performance metrics, including accuracy, precision, F1-score, 
mean absolute error (MAE), and the ROC AUC score. Notably, the 
proposed approach achieves an accuracy, precision, and F1-score of 
98.6%, which is comparable to or exceeds the performance of alterna-
tive methods such as those by Urda et al. (96.4% accuracy) [23], Chakir 
et al. (98.2% accuracy) [18], and Hao et al. (98.3% accuracy) [22]. 
Additionally, the proposed method records a very low MAE of 0.014 
and an impressive ROC AUC of 98.4, underscoring its high prediction 
quality and minimal error rate.

This performance indicates that the proposed approach7 is par-
ticularly effective in handling the complexities of web-based attack 
detection. The uniformity and consistency across various metrics not 
only demonstrate its robust detection capabilities but also highlight the 
strength of the innovative feature selection and analysis methodology 
it employs. Consequently, this approach offers a compelling solution 
for enhancing security measures in modern, interconnected Industry 
5.0 environments, where strong, adaptive protection against web-based 
threats is essential.

5.4. Complexity analysis

The complexity of the proposed IM approach (Algo. 1) can be 
broadly decomposed into several stages. The data pre-processing and 
feature extraction involve iterating over the 𝑀 features across 𝑁
samples, resulting in a complexity of approximately 𝑂(𝑀 × 𝑁). Sub-
sequent text tokenization and stemming steps introduce an additional 
cost proportional to 𝑂(𝑁 × 𝐿), where 𝐿 represents the average length 
of the text for each sample. The TF-IDF vectorization then further 
contributes 𝑂(𝑁 × 𝑉 ), with 𝑉  denoting the size of the vocabulary. 
The most computationally intensive part of the approach lies in the 
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grid search-based hyperparameter tuning of the Random Forest model, 
whose complexity can be expressed as 
𝑂(𝑃 × 𝑘𝑐𝑣 × 𝑇𝑅𝐹 ), (30)

where 𝑃  is the number of parameter combinations, 𝑘𝑐𝑣 is the number 
of cross-validation folds, and 𝑇𝑅𝐹  represents the computational cost to 
train a single Random Forest model.

In the feature selection phase implemented via the Mayfly algorithm 
(Algo. 2), the initial population is generated with a complexity of 
𝑂(𝑆 × 𝐷), where 𝑆 is the population size and 𝐷 is the number of 
features. Each iteration involves evaluating an objective function for 
all candidate solutions—a process that typically runs in 𝑂(𝑚 × 𝐷), 
with 𝑚 being the number of candidate solutions per iteration. Over 𝑇
iterations, this yields a total complexity of 
𝑂(𝑇 × 𝑚 ×𝐷). (31)

When combining these stages, the dominant factors are the grid 
search in the IM approach and the iterative evaluations in the Mayfly 
algorithm. These complexities highlight the necessity of parameter 
tuning and possible parallelization to ensure scalability and practicality 
in real-world scenarios.

6. Conclusion

In conclusion, the proposed Ingress Manager (IM) demonstrates 
substantial advancements against web-based attacks. The utilization of 
ML algorithms in association with NLP techniques is pivotal in decod-
ing intricate patterns associated with web-based threats. The modular 
architecture of IM, encompassing feature selection, tokenization, stem-
ming, and vectorization, contributed to its robustness. Analyses of 
tokenizers, stemmers, and vectorizers underscored their nuanced im-
pacts on performance metrics and efficiency. Comparative assessments 
against traditional classifiers emphasized IM’s superiority (e.g., RF in 
IM achieved 98.58% accuracy compared to 61.08% in traditional meth-
ods). ROC AUC values consistently favored IM, affirming its proficiency 
in identifying normal and suspicious web traffic. IM emerges as a 
proactive and effective solution, leveraging advanced techniques to 
fortify web applications against evolving cyber threats.

CRediT authorship contribution statement

Priyanka Verma: Writing – original draft, Methodology, Concep-
tualization. Donna O’Shea: Writing – review & editing, Supervision, 
Funding acquisition. Thomas Newe: Supervision, Funding acquisition, 
Formal analysis. Ankit Vidyarthi: Validation. Deepak Gupta: Investi-
gation, Formal analysis. Jabir Ali: Formal analysis. Hamad Aldawsari: 
Validation. John G. Breslin: Writing – review & editing, Supervision, 
Project administration, Funding acquisition.

Ethical approval

The author states that this paper complies with ethical standards. 
This work does not involve either human participants or animals.

Funding

Taighde Éireann - Research Ireland under grant numbers 12/RC/228
(Insight) and 22/NCF/DR/11165 (Cyber-Shock)

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.
688 
Acknowledgments

This work was supported by Taighde Éireann - Research Ireland 
under grant number 12/RC/2289_P2 (Insight) and 22/NCF/DR/11165 
(Cyber-Shock). For the purpose of Open Access, the author has applied 
a CC BY public copyright licence to any Author Accepted Manuscript 
version arising from this submission.

References

[1] P.K.R. Maddikunta, Q.-V. Pham, B. Prabadevi, N. Deepa, K. Dev, T.R. Gadekallu, 
R. Ruby, M. Liyanage, Industry 5.0: A survey on enabling technologies and 
potential applications, J. Ind. Inf. Integr. 26 (2022) 100257.

[2] P. Boobalan, S.P. Ramu, Q.-V. Pham, K. Dev, S. Pandya, P.K.R. Maddikunta, T.R. 
Gadekallu, T. Huynh-The, Fusion of federated learning and industrial internet of 
things: A survey, Comput. Netw. 212 (2022) 109048.

[3] J. Leng, W. Sha, B. Wang, P. Zheng, C. Zhuang, Q. Liu, T. Wuest, D. Mourtzis, L. 
Wang, Industry 5.0: Prospect and retrospect, J. Manuf. Syst. 65 (2022) 279–295.

[4] A. Jankovic, F. Adrodegari, N. Saccani, N. Simeunovic, Improving service 
business of industrial companies through data: Conceptualization and application, 
Int. J. Ind. Eng. Manag. 13 (2) (2022) 78–87.

[5] H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, M. Aledhari, H. Karimipour, A 
survey on internet of things security: Requirements, challenges, and solutions, 
Internet Things 14 (2021) 100129.

[6] P. Chaudhary, B.B. Gupta, A. Singh, Securing heterogeneous embedded devices 
against XSS attack in intelligent IoT system, Comput. Secur. 118 (2022) 102710.

[7] T. OWASP, 10. web application security risks, Viitattu 1 (2017) 2021.
[8] K. Stouffer, M. Pease, C. Tang, T. Zimmerman, V. Pillitteri, S. Lightman, Guide 

to operational technology (ot) security, NIST Spec. Publ. (2022) 800–882.
[9] P. Verma, J.G. Breslin, D. O’Shea, Fldid: Federated learning enabled deep 

intrusion detection in smart manufacturing industries, Sensors 22 (22) (2022) 
8974.

[10] Y. Sadqi, Y. Maleh, A systematic review and taxonomy of web applications 
threats, Inf. Secur. J.: A Glob. Perspect. 31 (1) (2022) 1–27.

[11] D. Gupta, R. Rani, Improving malware detection using big data and ensemble 
learning, Comput. Electr. Eng. 86 (2020) 106729.

[12] J. Li, H. Zhang, Z. Wei, The weighted word2vec paragraph vectors for anomaly 
detection over HTTP traffic, IEEE Access 8 (2020) 141787–141798.

[13] Z. Tian, C. Luo, J. Qiu, X. Du, M. Guizani, A distributed deep learning system 
for web attack detection on edge devices, IEEE Trans. Ind. Inform. 16 (3) (2019) 
1963–1971.

[14] B.B. Gupta, K. Yadav, I. Razzak, K. Psannis, A. Castiglione, X. Chang, A novel 
approach for phishing URLs detection using lexical based machine learning in a 
real-time environment, Comput. Commun. 175 (2021) 47–57.

[15] H.T. Nguyen, C. Torrano-Gimenez, G. Alvarez, S. Petrović, K. Franke, Application 
of the generic feature selection measure in detection of web attacks, in: 
Computational Intelligence in Security for Information Systems: 4th International 
Conference, CISIS 2011, Held At IWANN 2011, Torremolinos-MÁlaga, Spain, 
June 8-10, 2011. Proceedings, Springer, 2011, pp. 25–32.

[16] C. Luo, Z. Tan, G. Min, J. Gan, W. Shi, Z. Tian, A novel web attack detection 
system for internet of things via ensemble classification, IEEE Trans. Ind. Inform. 
17 (8) (2020) 5810–5818.

[17] A. Salam, F. Ullah, F. Amin, M. Abrar, Deep learning techniques for web-based 
attack detection in industry 5.0: A novel approach, Technologies 11 (4) (2023) 
107.

[18] O. Chakir, A. Rehaimi, Y. Sadqi, E.A.A. Alaoui, M. Krichen, G.S. Gaba, A. 
Gurtov, An empirical assessment of ensemble methods and traditional machine 
learning techniques for web-based attack detection in industry 5.0, J. King Saud 
University- Comput. Inf. Sci. 35 (3) (2023) 103–119.

[19] R. Kozik, M. Choraś, R. Renk, W. Hołubowicz, A proposal of algorithm for 
web applications cyber attack detection, in: Computer Information Systems and 
Industrial Management: 13th IFIP TC8 International Conference, CISIM 2014, Ho 
Chi Minh City, Vietnam, November 5-7, 2014. Proceedings 14, Springer, 2014, 
pp. 680–687.

[20] R. Smitha, K. Hareesha, P.P. Kundapur, A machine learning approach for web 
intrusion detection: Mamls perspective, in: Soft Computing and Signal Processing: 
Proceedings of ICSCSP 2018, Volume 1, Springer, 2019, pp. 119–133.

[21] X. Gong, J. Lu, Y. Wang, H. Qiu, R. He, M. Qiu, CECoR-Net: A character-level 
neural network model for web attack detection, in: 2019 IEEE International 
Conference on Smart Cloud, SmartCloud, IEEE Computer Society, Los Alamitos, 
CA, USA, 2019, pp. 98–103, http://dx.doi.org/10.1109/SmartCloud.2019.00027, 
URL https://doi.ieeecomputersociety.org/10.1109/SmartCloud.2019.00027.

[22] S. Hao, J. Long, Y. Yang, BL-IDS: Detecting web attacks using bi-LSTM model 
based on deep learning, in: J. Li, Z. Liu, H. Peng (Eds.), Security and Privacy in 
New Computing Environments, Springer International Publishing, Cham, 2019, 
pp. 551–563.

[23] D. Urda, B. Martínez, N. Basurto, M. Kull, Á. Arroyo, Á. Herrero, Enhancing web 
traffic attacks identification through ensemble methods and feature selection, 
2024, arXiv preprint arXiv:2412.16791.

http://refhub.elsevier.com/S1110-0168(25)00629-5/sb1
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb1
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb1
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb1
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb1
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb2
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb2
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb2
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb2
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb2
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb3
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb3
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb3
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb4
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb4
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb4
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb4
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb4
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb5
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb5
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb5
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb5
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb5
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb6
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb6
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb6
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb7
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb8
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb8
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb8
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb9
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb9
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb9
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb9
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb9
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb10
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb10
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb10
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb11
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb11
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb11
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb12
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb12
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb12
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb13
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb13
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb13
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb13
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb13
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb14
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb14
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb14
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb14
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb14
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb15
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb16
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb16
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb16
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb16
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb16
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb17
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb17
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb17
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb17
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb17
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb18
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb18
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb18
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb18
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb18
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb18
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb18
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb19
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb20
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb20
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb20
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb20
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb20
http://dx.doi.org/10.1109/SmartCloud.2019.00027
https://doi.ieeecomputersociety.org/10.1109/SmartCloud.2019.00027
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb22
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb22
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb22
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb22
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb22
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb22
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb22
http://arxiv.org/abs/2412.16791


P. Verma et al. Alexandria Engineering Journal 127 (2025) 677–689 
[24] R. Guha, B. Chatterjee, S. Khalid Hassan, S. Ahmed, T. Bhattacharyya, R. Sarkar, 
Py_fs: a python package for feature selection using meta-heuristic optimization 
algorithms, in: Computational Intelligence in Pattern Recognition: Proceedings 
of CIPR 2021, Springer, 2022, pp. 495–504.

[25] J. O’Connor, I. McDermott, NLP, Thorsons, 2001.
[26] R. Mihalcea, H. Liu, H. Lieberman, NLP (natural language processing) for NLP 

(natural language programming), in: Computational Linguistics and Intelligent 
Text Processing: 7th International Conference, CICLing 2006, Mexico City, 
Mexico, February 19-25, 2006. Proceedings 7, Springer, 2006, pp. 319–330.

[27] S. Špalek, Evaluation of text tokenization.
689 
[28] H. Patel, B. Patel, Stemmatizer—stemmer-based lemmatizer for gujarati text, in: 
Emerging Trends in Expert Applications and Security: Proceedings of ICETEAS 
2018, Springer, 2019, pp. 667–674.

[29] A. Jabbar, S. Iqbal, M.I. Tamimy, A. Rehman, S.A. Bahaj, T. Saba, An analytical 
analysis of text stemming methodologies in information retrieval and natural 
language processing systems, IEEE Access 11 (2023) 133681–133702.

[30] A.K. Singh, M. Shashi, Vectorization of text documents for identifying unifiable 
news articles, Int. J. Adv. Comput. Sci. Appl. 10 (7) (2019).

[31] B. Kabra, C. Nagar, Convolutional neural network based sentiment analysis with 
tf-idf based vectorization, J. Integr. Sci. Technol. 11 (3) (2023) 503–503.

[32] L. Breiman, Random forests, Mach Learn 45 (1) (2001) 5–32.
[33] C.T. Giménez, A.P. Villegas, G.Á. Marañón, HTTP data set CSIC 2010, Inf. Secur. 

Inst. CSIC ( Span. Res. Natl. Council) 64 (2010).

http://refhub.elsevier.com/S1110-0168(25)00629-5/sb24
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb24
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb24
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb24
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb24
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb24
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb24
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb25
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb26
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb26
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb26
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb26
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb26
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb26
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb26
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb28
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb28
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb28
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb28
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb28
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb29
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb29
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb29
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb29
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb29
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb30
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb30
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb30
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb31
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb31
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb31
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb32
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb33
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb33
http://refhub.elsevier.com/S1110-0168(25)00629-5/sb33

	WebShield 5.0: Harnessing AI and NLP to combat web threats in Industry 5.0
	Introduction
	Related Work
	Preliminaries
	Mayfly optimization
	Natural Language Processing (NLP)

	Proposed Solution
	Data Preprocessing
	Content Separator (CTS)
	Data encoder
	MA feature selector
	Tokenizer
	Stemmer
	Vectorizer
	Classification model

	Performance and Evaluation
	Performance metrics
	Dataset description
	Results analysis
	Analysis of proposed work
	Comparison with traditional techniques
	Enhancing the performance metrics
	State-of-the-art comparison

	Complexity analysis

	Conclusion
	CRediT authorship contribution statement
	Ethical approval
	Funding
	Declaration of competing interest
	Acknowledgments
	References


