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Abstract

The convergence of the Internet of Things (IoT) and Industrial Internet of Things
(IIoT) within the Industry 4.0 paradigm leverages software-defined networking,
multi-cloud architectures, and edge/fog computing to enhance industrial processes.
However, this digital transformation introduces significant cybersecurity and pri-
vacy vulnerabilities within the complex, data-intensive IoT/IIoT ecosystems. To
mitigate these risks, this research proposes a novel Anomaly-based Intrusion
Detection System using Voting-based Ensemble Model (ABIDS-VEM) in Industry
4.0 environments. The VEM architecture synergistically combines multiple
machine learning algorithms and gradient boosting frameworks, including CatBoost
(CB), XGBoost (XGB), LightGBM (LGBM), Logistic Regression (LR), and Ran-
dom Forest (RF), to enhance the precision and computational efficiency of intrusion
detection systems (IDS) in IoT/IIoT contexts. The proposed framework incorporates
a data ramification process, in which the data is divided into multiple parts, feature
selection process which is optimized through the Equilibrium Optimizer (EO)
algorithm, and outlier detection utilizing the Isolation Forest (IF) method. Com-
prehensive empirical evaluations were conducted using three benchmark datasets:
XIIoTID, NSL-KDD, and UNSW-NB15, to validate the efficacy of the proposed
system. The model achieves high accuracy across datasets: 98.1476% for XIIoT-ID,
an impressive accuracy of 98.9671% for NSL-KDD, and 94.1327% for UNSW-
NB15 dataset. These experimental results demonstrate the potential of this approach
to significantly enhance the resilience of critical industrial systems and data against
evolving cyber threats, thereby supporting the continued evolution of Industry 4.0
technologies and bolstering the security posture of IoT/IIoT ecosystems. This
research contributes to the ongoing efforts to secure the rapidly expanding digital
industrial landscape, offering a robust solution for detecting and mitigating
sophisticated cyberattacks in the increasingly interconnected and data-driven
industrial environments of the future.
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1 Introduction

The onset of Industry 4.0 has marked the commencement of a new era in advanced
industrial processes, driven by the extensive adoption of the Internet of Things (IoT)
and the Industrial Internet of Things (IIoT) [1, 2]. This technological revolution has
heralded the amalgamation of state-of-the-art networking and computing paradigms,
software-defined networking, multi-cloud platforms, edge computing, fog comput-
ing, and artificial intelligence, into traditional industrial settings. While these
innovations have unlocked unprecedented opportunities for increased efficiency and
productivity, they have also given rise to significant concerns regarding network
security against various cyber threats and user privacy in complex and data-rich IoT
ecosystems.

As the volume of data and the complexity of IIoT ecosystems continue to expand,
there is a growing need for robust and effective security models [3—5] and intrusion
detection systems (IDSs) [6, 7]. An IDS plays a critical role in ensuring the safety of
computer networks and cyber systems by identifying and mitigating cyber threats.
IDSs can be broadly classified into two types depending on their objectives:
Signature-based IDS and Anomaly-based IDS.

A signature-based IDS operates by monitoring network traffic or system activity
and identifying anomalies by comparing them to specific signatures or patterns that
are previously kept in its memory. These signatures or patterns are derived from
known attack profiles [§—-10]. However, they require substantial storage capacity to
maintain a comprehensive database of attack signatures.

On the other hand, anomaly-based IDS employs a distinct methodology,
monitoring system, or network behavior, pinpointing deviations from established
patterns of normal behavior. Any behavior that significantly deviates from this
predefined normal behavior is marked as a potential threat or cyberattack [11]. This
method offers the advantage of being capable of detecting new, previously
unidentified attacks based on behavior rather than specific signatures. However, it is
also more prone to false positives, as any unusual but normal activity can trigger
alerts.

Despite the deployment of various machine learning (ML) algorithms for IDS
aimed at improving detection accuracy [12], existing IDS methods continue to face
challenges in achieving satisfactory results [13]. This limitation can be attributed to
the predominant focus on individual classifiers, which often prove ineffective in
terms of both accuracy and F1-score. Notable ML algorithms, including decision
trees (DT) [14], support vector machines (SVM) [13], genetic algorithms (GA) [15],
particle swarm optimization (PSO) [16], spider wasp optimization [17], binary
quadratic interpolation optimization [18], statistical approaches (SA) [19], and
various swarm intelligence (SI) techniques [20, 21], have been explored for
constructing IDSs.

One of the fundamental limitations in the concept of utilizing ML for IDSs was
the recognition that a single classifier might not possess the requisite power to
effectively construct a robust IDS [22]. As a result, relying on one classifier to
function adequately across all settings and scenarios has thus far proved unfeasible.
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This challenge has led to the emergence of the need for ensemble classification
techniques.

Ensemble learning techniques [23, 24] have been introduced to address various
challenges in both ML and IDS [25]. It involves the concept of combining multiple
classification models while making decisions, specifically in supervised ML tasks.
The fundamental idea underlying ensemble learning is that the prediction errors of
one classifier can be offset in combination with other classifiers while they are
working together. This leads to the final prediction of an ensemble being more
accurate than that of an individual classifier. It has been statistically demonstrated
that combining multiple classifiers significantly reduces the probability of incorrect
predictions in ensemble-based models [26].

Therefore, we propose anomaly-based intrusion detection system (ABIDS) that
utilizes a voting-based ensemble model (VEM) in conjunction with an equilibrium
optimizer (EO) [27] for a feature selection, and data ramification process to address
imbalanced data, along with isolation forest (IF) for the detection of outliers. The
VEM leverages various ML and boosting techniques [28], including logistic
regression (LR) [29], random forest (RF) [30], LightGBM (LGBM) [31], CatBoost
(CB) [32], and the eXtreme gradient boosting machine (XGB) [33]. Furthermore,
we have assessed the performance of the IDS models on three distinct datasets,
namely, XIIoTID [34], NSL-KDD [35], and UNSW-NBI15 [36], evaluated the
performance, and demonstrated the advantages of using our proposed ABIDS-VEM
method. Finally, we evaluated the proposed framework using Fl-score, accuracy,
precision, recall, and Matthew Correlation Coefficient (MCC) metrics. Thus, the
contributions of this paper are:

e The research introduces a novel feature selection approach using equilibrium
optimization (EO). This advanced technique intelligently extracts the most
relevant features from complex datasets, significantly enhancing the intrusion
detection system’s efficiency. By reducing data dimensionality while preserving
critical insights, this method addresses a fundamental challenge in machine
learning for cybersecurity: balancing computational efficiency with detection
accuracy.

e The paper presents a sophisticated Voting Ensemble Model (VEM), integrating
diverse machine learning and boosting algorithms including Logistic Regres-
sion, Random Forest, LightGBM, CatBoost, and XGBoost. This ensemble
approach leverages the strengths of multiple algorithms to create a robust, high-
performance intrusion detection system. The VEM’s ability to combine these
varied techniques represents a significant advancement in adaptive cybersecurity
measures for Industry 4.0 environments.

e The research demonstrates exceptional versatility through rigorous testing across
multiple datasets (XIIoTID, NSL-KDD, UNSW-NB15) that represent a wide
array of network security scenarios. This comprehensive evaluation not only
validates the ABIDS-VEM framework’s effectiveness but also showcases its
adaptability to diverse intrusion landscapes. Such versatility is crucial for
developing intrusion detection systems capable of addressing the evolving and
varied nature of cyber threats in modern networked environments.
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The rest of the paper is organized as follows: Section 2 discusses the related work,
followed by Section 3, which establishes pre-requisite knowledge. Section 4
describes the proposed framework, and an evaluation of its results is provided in
Section 5. Lastly, Section 6 ends with conclusions and the scope for future work.

2 Related work

The growing demand for efficient network analytics solutions has encouraged
numerous researchers to make significant contributions in their designs of IDS
[37—40]. In response to an evolving landscape of security threats, these researchers
have also introduced hybrid models that leverage ML techniques to enhance the
detection of security attacks. Many initial IDS models were rule-based, involving a
continuous scanning process to identify potential attacks and assess them against a
predefined set of attack patterns. These rule-based systems served as the foundation
for subsequent developments in intrusion detection technology. With this view, this
section delves into the frameworks and methodologies designed to analyze network
traffic and formulate IDS systems.

2.1 ML-based IDS systems

Astha et al. (2017) [41] proposed a hybrid approach named SVM-Classification and
Regression Tree (CART). This approach combines the capabilities of an SVM with
a regression tree algorithm. The researchers compared the performance of SVM-
CART with the k-nearest neighbors (KNN) algorithm using the KDD dataset. While
the hybrid SVM-CART algorithm shows potential for improving intrusion detection
systems, its limitations regarding dataset dependency, scalability, comparative
analysis, and false positive rates, show the need for further improvement.

Guo et al. [42] introduced a two-level hybrid intrusion detection approach,
combining misuse & anomaly detection to achieve a high detection rate and a low
False positive rate (FPR). The first stage employs a low-complexity anomaly
detection method, while the second stage uses the KNN algorithm. These
components work in tandem to minimize false positives and false negatives.
Experimental results on the KDD’99 dataset and Kyoto University Benchmark
dataset validate the effectiveness of this hybrid approach in detecting network
anomalies with a low FPR. Concerns about the computational complexity of the
hybrid approach, particularly the scalability of the k-NN algorithm in stage 2, and
points out limitations in the analysis of false positive/negative rates across various
attack scenarios.

Contemporary Smart Power Networks (SPNs) rely on cyber-physical systems
(CPSs) for connectivity and control, making them vulnerable to cyberattacks. Khan
et. al. [43] presented a privacy-conserving intrusion detection system (PC-IDS)
designed to protect SPNs from attacks like data poisoning. The framework includes
data preprocessing for privacy and an intrusion detection component using a particle
swarm optimization-based probabilistic neural network. Tested on Power System
and UNSW-NBI15 datasets, PC-IDS demonstrated superior performance with
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detection rates of 96.03% and 95.91%, and false positive rates of 0.18% and 0.14%,
respectively, outperforming existing methods in efficiency and accuracy.

Sara et al. (2019) [44] demonstrated an intrusion detection approach which
incorporates feature selection & clustering algorithms. This approach employs both
filter and wrapper methods for feature selection and utilizes a decision tree as the
base classifier. Their findings demonstrated exceptional performance, achieving an
accuracy of 95.03% and a notably low FPR of 1.65%. However, the study lacks
comparison with recent advancements like deep learning-based approaches in
intrusion detection, potentially overlooking improvements in accuracy and
efficiency.

Gite et al. [45] highlighted the importance of IDS in maintaining the integrity of
wireless sensor networks (WSN). It introduces a system that effectively detects
common network attacks (black hole, wormhole, gray hole, and DDoS) using a Base
Station ML algorithm (BS). Their method employed pattern analysis to identify
malicious nodes and achieve high accuracy in simulations, which can improve
energy efficiency and packet delivery in WSNs. As the proposed scheme’s use of
C4.5 and CART classifiers may be computationally demanding for wireless sensor
networks (WSNs), which typically operate under strict resource constraints. This
mismatch between the algorithm’s requirements and the limited processing power,
memory, and energy of many sensor nodes could restrict the practical deployment
of the system in resource-constrained WSN environments.

These ML models aim to effectively produce good-performing IDS; however,
they face significant challenges in real-world applications. The hybrid approaches,
while promising, struggle with dataset dependency, scalability issues, and high
computational demands. Furthermore, the lack of comprehensive comparisons with
recent advancements, such as deep learning-based methods, and insufficient
analysis of false positive/negative rates across diverse attack scenarios limit their
proven effectiveness. Striking a balance between retaining valuable information and
reducing computational burden is essential for effective model training and
improved accuracy, particularly in scenarios with extensive or intricate data sets.

2.2 Ensemble learning-based IDS systems

There have been multiple ensemble models employed for enhancing the security
front [46]. A dual ensemble model, joining bagging & gradient boosting decision
tree (GBDT), offering a competitive solution was proposed by Louk et al. [47]. The
Bagging-GBM combination stands out, achieving superior results among various
schemes and comparable techniques in the field.

Wang et al. [48] introduced the Ensemble Feature Selection-based Deep Neural
Network (EFS-DNN) for enhancing attack detection in high-traffic networks. It
leverages a Light Gradient Boosting Machine (LightGBM) for robust feature
selection & employs a deep neural network with batch normalization & embedding
techniques for classification. Extensive experiments on public datasets highlight the
EFS-DNN’s superiority over baseline methods in intrusion detection. Although the
use of LightGBM as the base selector enhances robustness, the overall robustness of
the EFS-DNN model in various real-world scenarios remains to be fully validated.
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The paper does not extensively discuss how the model performs under different
types of cyberattacks or varying network conditions, which could affect its
reliability.

A tree-based Stacking Ensemble Technique (SET) for IDS was proposed by
Rashid et al. [49] and tested on NSL-KDD and UNSW-NB15 datasets. Results
indicate that their SET model excels in distinguishing normal and anomaly network
traffic, demonstrating its potential for enhancing cybersecurity in IoT and large-
scale networks. However, the single classifiers may not perform well for large-scale
data. Also complexity of intrusion analysis is increasing exponentially due to data
size.

El et. al. [50] presented an innovative intrusion detection system combining
SHAP-based feature selection, the PV-DM shallow learning algorithm, and
XGBOOST for classification. Tested on NSL-KDD and UNSW-NBI15 datasets,
the model achieves impressive results with 82.86% accuracy on UNSW-NBI5.
However, limitations include potential overfitting to the specific datasets used, the
need for validation on more diverse and real-time data, and the challenge of
adapting to rapidly evolving attack patterns.

The proliferation of wireless devices and increased network traffic create a
heightened risk of network intrusion and security threats. Traditional packet-based
IDS struggle with high-speed and encrypted traffic. To address this, a cortex-
inspired ensemble-based network IDS (CI-EnsID) was proposed in [S1]. It combines
ensemble classification with cortex-like information processing, utilizing both
unsupervised and supervised learning techniques. Testing on KDDCup99 and
CICIDS2017 datasets demonstrates the CI-EnsID’s superior performance compared
to contemporary classification techniques like NB, Neural Networks (NN), LR, DT,
and RFs. While the CI-EnsID system is designed to minimize overhead by relying
on network flow information, there is still a risk of resource consumption, especially
if the system is not optimized for specific network conditions. This could lead to
performance degradation in resource-constrained environments.

[52] presented an anomaly-based intrusion detection system utilizing a one-
dimensional convolutional neural network (CNN) trained on the NSL-KDD dataset.
The proposed model outperforms existing methods in accuracy, precision, and F1-
score, particularly in detecting minority attack classes. However, limitations include
potential overfitting, as indicated by performance discrepancies between training
and testing datasets, and reliance on a single benchmark dataset, which may affect
generalizability to other environments.

[53] addressed the growing complexity of cyberattacks by proposing an
innovative intrusion detection system that combines feature selection and adaptive
voting. Applied to the widely used NSL-KDD dataset, it achieves 86.5% accuracy.
The results underscore the potential of this approach in advancing cybersecurity
research and practice. However, it is worth noting that it only focuses solely on the
NSL-KDD dataset, which may limit its broader applicability; the 86.5% accuracy,
while high, still leaves room for missed intrusions; and the model’s performance in
real-time environments remains unexplored.

Uddin et. al [54] proposed two semi-supervised learning strategies: using
synthetic attack samples for supervised learning and employing One Class
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Classification (OCC) trained solely on benign traffic. Experiments across 10
benchmark datasets reveal that the OCC model, particularly using the usfAD
technique, outperforms conventional supervised methods and other OCC
approaches in detecting unknown attacks. However, limitations include the need
for further exploration of hierarchical multi-classification for specific attack types,
potential overfitting to the datasets used, and the challenge of generating
representative synthetic attack samples across feature spaces.

3 Preliminaries

This section establishes the prerequisites for the ABIDS-VEM such as EO, its
parameters, and ensemble learning.

3.1 Equilibrium optimizer (EO)

The equilibrium optimizer (EO) [27] is a physics-inspired optimization algorithm
designed for addressing continuous optimization challenges. Some optimization
features of the EO algorithm include its capability to incorporate randomness into
the solution space, which enables more exploration and exploitation. In the EO
algorithm, particles and their concentrations bear a resemblance to the particles and
positions found in a PSO, serving as representative search agents. These search
agents dynamically adjust their concentrations based on the best solutions
encountered thus far, known as equilibrium candidates. This iterative process
ultimately leads them to attain an equilibrium state, representing optimal result [27].

The EO approach employs a mass balance [55] equation to depict the
concentration of a non-reactive component within a control volume, taking into
account various mechanisms that contribute to its sources and sinks. The mass
balance equation forms the physical basis for conserving mass within the control
volume, encompassing mass inflow, outflow, and generation. This equation is
commonly represented as,

y e

= V0~ VO + M m

Where Q denotes the concentration within the control volume V, and the term V%
signifies the rate of change of mass within this control volume. Additionally, V¢
represents the volumetric flow entering and exiting the control volume, while Qcq is
indicative of the equilibrium state concentration, characterized by the absence of
any generation within the control volume. The variable M designates the rate of
mass generation under the control volume. Upon reaching a state where V% equals
zero, a steady equilibrium condition is attained. By rearranging Eq. (1), it becomes
feasible to compute ‘f,—? as a function of %, which corresponds to the inverse of
residence time or the turnover rate, here referred to as J. Furthermore, Eq. (1) can
also be rearranged to determine the value of Q, the concentration within the control
volume, as a function of time (t):
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dQ _
5Qeq - 5Q +% B

On integrating with respect to time we get,

(4] do t
Qo 5Q6q5Q+%_/m @ (3)

dt (2)

which gives,

Q:Qeq+(Q0_Qqu+%(l _E)) (4)

On calculating E from Eq. (4), we find,
E— efé(tftn) (5)

Here, fy and Q) represent the initial starting time and concentration, respectively,
and they are dependent on the integration interval. Equation (4) serves a dual
purpose: it can be employed to either estimate the concentration within the control
volume when the turnover rate is known, or it can be utilized to calculate the
average turnover rate. This calculation can be carried out through a linear regression
analysis when the generation rate and relevant conditions are known.

The initial concentrations Q are generated by uniformly initializing the number
of particles and dimensions in search space using random values:

Qli,nitial — Qmin + randomi(Qmax — Qmin) (6)

p=123,..n

The vector Q! represents the initial concentration of p™ particle, while Qmin
and Q. denote the minimum and maximum values within which the dimensions of
random; vary, with random; falling within [0, 1]. Here, n corresponds to the
population size, signifying the number of particles. The particles undergo evaluation
based on their fitness function, following which they are sorted to identify potential
equilibrium candidates.

A precise definition of E plays a pivotal role in assisting EO to maintain a well-
considered equilibrium between exploration and exploitation. Given that the
turnover rate could exhibit temporal variations within an actual control volume, it is
considered that ¢ is a random vector € [0,1].

E — e—S(r—to) (7)

where time t is confined under iterations “itr* and thus decreases with number of
iterations:

it itr
= (1 - )l (8)

max _itr

where c is a constant value used to manage exploitation ability.
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M is the generation rate and it could be expressed using many models [56]. For
example, a versatile model that characterizes M as a first-order exponential decay
process is defined as:

M =Mye20=") = MyE 9)
MO :6P(éeq - gé) (10)
where M, is initial value & 0 is alias of decay constant.
CP =0.5rn, if my,>GP (11)
CP =0 if rny <GP (12)

where rn; and rn, represent random numbers within [0,1] and the CP vector is
constructed by repeating the same value obtained from eqs. 11 and 12. In these
equations, CP serves as the control parameter for the generation rate, encompassing
the contribution of the generation term for the updating process. The probability of
this contribution, which dictates how many particles utilize the generation term for
updating their states, is determined by another parameter known as generation
probability (GP), as defined by eqs. 10, 11, and 12. A well-balanced trade-off
between exploration and exploitation is obtained when GP is set to 0.5. Conse-
quently, the update rule for EO is formulated as follows:

o L LM .
Q=0+ (00— Qeq).E+§(1 —E) (13)

The initial component in Eq. (13) signifies the equilibrium concentration, while the
subsequent two terms account for changes in concentration.

3.2 Ensemble learning

Ensemble learning, a technique in ML, amalgamates the forecasts of numerous
individual models, known as base learners, to enhance overall prediction accuracy.
The rationale behind ensemble learning lies in aggregating the predictions of diverse
models to offset the shortcomings of individual models and bolster their combined
performance. This can be achieved through techniques like bagging, boosting, and
stacking. Bagging methods involve creating diverse subsets of training data and
independently training multiple models, while boosting techniques assign different
weights to data points, emphasizing the ones that were previously misclassified.
Stacking combines the outcomes of various models into a final model. Every
general framework of ensemble learning uses some aggregation function, say A,, to
combine B number of base classifiers such that: b; € B for final prediction. For a
dataset size d, number of features °f, and real numbers R, dataset =
{(X;,y)},1<i<d,X; € R, the prediction based on this is given using,
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yi = lﬁ(X,) = Ag(b],b27b3, ...... bB) (14)

Consider a series system of ensemble classifiers having 5 base classifiers, each with
a loss value of, say, 0.35. The combined loss of the classifiers would be given as:

Loss = (0.35)° = .00525 < < < <0.35

Hence, ensemble techniques considerably reduce the error of the system. Moreover,
further categorization of ensemble methods is described in Table 1.

4 Proposed framework

The ABIDS-VEM algorithm 1 presents a comprehensive approach to intrusion
detection, incorporating several sophisticated phases as shown in Fig. 1. The
process begins with a thorough data preprocessing phase, where unnecessary
columns are dropped, missing values are imputed, and categorical variables are
encoded. This phase also includes an innovative step of using isolation forest for
outlier detection, which is particularly effective for high-dimensional datasets
typical in network intrusion scenarios. Following this, the algorithm employs the
equilibrium optimizer (EO) for feature selection, a critical step in reducing
dimensionality and focusing on the most relevant attributes. The EO, inspired by
control volume mass balance models, uses multiple agents to identify an optimal
subset of features that best represent the entire dataset. After feature selection, the
algorithm introduces a unique data ramification phase. This phase is crucial for
addressing the common problem of class imbalance in intrusion detection datasets.
The core of the classification process lies in the voting-based ensemble model
(VEM). Here, multiple base classifiers are trained on different subsets of the
ramified data, leveraging the strengths of diverse models. The final prediction is
determined through a majority voting mechanism, where an instance is classified as
an intrusion if more than two models in the ensemble predict it as such. This

Table 1 Ensemble methods

Category Order Heterogeneity
Bagging Parallel Homogeneous
RF Parallel Homogeneous
Boosting Series Homogeneous
AdaBoost Series Homogeneous
GDBoost Series Homogeneous
XGBoost Series Homogeneous
Stacking Parallel Heterogeneous
Hybrid Any Any

@ Springer



ABIDS-VEM: leveraging an equilibrium optimizer and data... Page 11 of 35 856

(T N (r

Data cleaning % O’ -
' O l
O—>

\ -
- ~\
Data transformation ,
(Encoding, normalization, % ! ~._+® 9 e~
scaling, imputation) ? ’1 A . o) ]
'3 O’ N
-~ (o

(Isolation forest) il

EO based Feature Selection
(EFS)

O ’
Data Outlier detection :{ O o> \ © 1'

\

\/l N

=
Li/\
*1 X, X, X
Xy X5
vy 4 v
XGBoost LR |:>

Ad y

v

RF LGBEM CatBoost

\ Data splitting and ramification / KVoting based Ensemble Method
(VEM)

Fig. 1 Proposed ABIDS-VEM architecture

ensemble approach helps to reduce individual model biases and improve overall
prediction accuracy.

4.1 Data preprocessing phase

This phase opts for data cleaning, data transformation, and outlier detection. Data
cleaning is the process of identifying and correcting errors or inconsistencies in a
dataset to ensure its accuracy and reliability. It involves tasks such as handling
missing values, removing duplicates, and correcting typos. Data cleaning plays a
critical role in data quality and is a significant step in the data preprocessing pipeline
for various applications. After cleaning the data, data transformation is employed to
label and scale the data (indicated by steps 4-5 in Algorithm 1).

The data transformation process often includes tasks such as normalization
(scaling data to a common range), encoding categorical variables into numerical
formats, creating new derived features, and aggregating or summarizing data. Data
transformation aims to improve the quality of the dataset, make it more compatible
with the chosen analytical techniques, and enhance the interpretability of the results.
Lastly, this step involves outlier detection using Isolation Forest (IF). The IF
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Fig. 2 Convergence curve of EO on different datasets

algorithm was initially designed for outlier detection. It works by randomly
partitioning data samples based on certain attributes or features. The core idea is that
rare observations, which are likely outliers, can be isolated more quickly with
random splits, as they tend to end up alone in one branch. This concept is extended
to split hyperplanes and guided splits in advanced models. This updated version
includes heuristics for managing missing data and categorical variables.
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Input: Dataset df
Output: Final classification results y_pred_final

10:

11:

12:

13:

14:

15:

16:

17:
18:

19:

Data preprocessing phase

: Drop the unnecessary columns from df
. Apply imputation technique

df = df.replace([‘?’,*-",nan,....],np.mean)

: Create train and label data

X = df.iloc:;,:-1] /* all columns except the last one */
y = df.iloc[:,-1] /*only the last column (the training output)*/

: Apply encoding schema to train data and labels

X = convert_categorical values(X)
y = Label Encoder (). fit_trans form(y)
df = pd.concat([X,y],axis = 1)

: Use Isolation Forest for the outlier detection

if = IsolationForest(n_estimators=100,
random _state=42, bootstrap=false, contamination=auto,
max_samples=auto)
if fit(X)
scores = if.decision_fxn(X)
outliers_indices = np.where(if.predict(X)==-1)[0]
data_clean = df.drop(outlier_indices,axis = 1)
Feature selection using EO

: fs = EO(num_agents=30, max_iter=10,train_data=

data_clean.iloc[:,:-1],train_label = data_clean.iloc[:,
-1],save_conv_graph=true)

: results = fs.run()
: 1i = [results.solution.best_agent == 1]

Data ramification phase

. X = data_clean.iloc/[:,li]

y = data_clean.iloc[:,-1]
X _train, X _test, y_train, y_test = train_test_split(X, y,
test_size=0.3, stratify = y)
Ramify(X_train,y_train)
VEM
Initialize the ensemble models
model,, = VEM (hyper_parameters),,
Train the models
model,,. fit(X train,,y_train,)
y-pred, = model,.predict(X _test)
n<n+1
until n < N
y-pred_final = ]
for i in X_test:
if(count(y_pred[i]==1) > 2):
y_pred_final.append(1)
else:
y_pred_final.append(0)
return y_pred_final

Algorithm 1 Proposed framework
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It can also approximate pairwise distances and densities by examining the depth
at which two observations separate and fitting trees beyond the balanced-tree height
limit. Additionally, it provides options for both randomized and deterministic splits,
making it a versatile tool for various data analysis tasks. IF is created by computing
a score based on a collection of trees:

_AG0)
if_score(X,itr) =2 ® (15)
where itr is iterations, A(f(X)) is the average number of successful iterations for X,
and itr is the average iterations for unsuccessful iterations.

4.2 EO-based feature selection phase

After passing through the data preprocessing phase, data is passed through the EO-
based feature selection [57]. EO can reduce overfitting, improve accuracy, and
decrease training time making it a promising choice for various ML tasks. The
feature selection based on EO employs a continuous search space within a binary
search algorithm. Particles representing solutions similar to the feature subset are
placed within this search space, and their positions are determined by their
concentration. The particle population, initial concentration, and fixed parameters
are initialized. Concentration is represented as a binary vector, where 0 describes
the deselection of a feature, and 1 indicates the selection of a feature. Feature
selection is treated as a multi-objective optimization problem due to two distinct
criteria for evaluating a considered feature subset: classification accuracy and the
number of selected features. To address both objectives, a fitness score is utilized,
which is assessed as follows:
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: accuracy(x)
F = 1
itness(x) 1 + 0(num_particle(x)) (16)

The score is computed for the initial population, and the particles in global equi-
librium are selected. The concentration is then updated to shift all particles toward
the global optimum using Eq. (13). The updating rule combines the current equi-
librium state (first term), exploration (second term), and exploitation (third term).
Equations (12) and (11) exclusively manage exploitation through the CP, while
exploration is introduced through mutation. Figure 2 describes the convergence of
EO-based feature selection on the chosen datasets. These convergence curves help
to monitor the performance of feature selection.

4.3 Data ramification phase

After feature selection, the data undergoes the data ramification phase, as outlined in
Fig. 3. Initially, the dataset is bifurcated into train and test sets, reserving test data to
evaluate. The train data is further split based on majority and minority labels, with
each label divided into 5 subsets. The process of stratified sampling is employed to
ensure uniformity among each subset. These subsets are then combined to create 5
individual training sub-datasets, which are used to train the ensemble model’s 5
base classifiers. This phase significantly reduces the dataset’s load on individual
classifiers, leading to shorter training times and lower memory usage for all base
classifiers. It also addresses the class imbalance issue by potentially combining
multiple minority subsets with a majority subset, achieving a balanced sub-dataset
without the need for sampling techniques or specialized algorithms for imbalanced
datasets.
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Fig. 4 Accuracy comparison of various ML classifiers for ensemble model selection
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4.4 VEM

Following the data splitting and ramification phase, the subsequent phase involves
the utilization of the voting-based ensemble model (VEM), which incorporates 5
base classifiers (denoted as model,), namely, RF, LR, LGBM, XGB, and CB. The
selection process of these classifiers was based on the accuracy score achieved on
the X-IIoTID dataset. Initially, various well-known ML-based classifiers were
employed on the selected dataset to analyze the performance. Considering the
accuracy of all employed classifiers, an ensemble approach was devised, taking the
top 5 classifiers with the highest accuracy as ensemble base classifiers as shown in
figure 4. These classifiers are then individually trained in parallel on their respective
training datasets derived from the preceding phase (X_train,). After the training
phase is completed, these model, are combined to create an ensemble model. For
the final classification, the predictions from each model, are collected, and the
ultimate output is determined using the voting scheme outlined in steps 17-18 of
Algorithm 1. The combined power of these classifiers jointly reduces error and
enhances precision and FAR values.

4.4.1 Random forest

RF is an ensemble machine learning algorithm that leverages a large ensemble of
decision trees [58]. In the architecture of random forests, decision trees serve as the
foundational predictors. While implementing RF, multiple decision trees are
generated, each of which selects multiple samples from the original dataset and
begins splitting based on minimum leaf node mean square error (MSE) in the case
of regression tasks. This process continues until no more features are available, and
the predictions from the multiple decision trees are combined to produce the final
result, often by averaging the results (Eq. (17)) in the case of regression tasks.

RF = %idt,(x) (17)

where RF denotes the combined RF model, df,(X) is a single decision tree model
and T is the total number of trees employed.

4.4.2 XGBoost

It is a scalable end-to-end tree-boosting technique that sequentially trains numerous
weak learners [33]. Each subsequent learner works to rectify the errors made by the
previous one, ultimately leading to the creation of an effective model primarily
utilized for classification tasks. XGB not only addresses overfitting concerns
associated with the GBDT algorithm but also improves real-world performance
through its utilization of sparsity-aware metrics and multi-threading capabilities.
Since the process of boosting is iterative, the goal of present iteration ifr in terms of
prediction of previous iteration )?,(; "= could be expressed using the most recent tree
dt;:
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obj_fm'" =" {(ya, "V + D &(dry)) (18)

b

XGB uses a weight value, w, to minimize the objective function. The best leaf
weight w in a present tree structure is given as:

ZaeAdl _ P;
ZafAdZJrl’_ Qi+r (19)

w =

where d1 and d2 are the first and second derivatives of the loss function, for
instance, a, respectively. At the end, with the best w, an objective function for the
best tree structure is defined as:

. itr 1 P12
obj_fxn"" = —EZQH_eryT (20)

4.43 LightGBM

LGBM stands out as an efficient implementation of gradient-boosting trees. It
harnesses histogram and leaf-wise algorithms for enhancing both computational
speed and prediction accuracy. The histogram technique is employed to amalgamate
features that are incompatible with each other. The core idea is to discretize
continuous features into ‘n’ integers, creating an ‘n’-width histogram. Training data
is then scanned based on these discretized histogram values for constructing a
decision tree. This histogram-based method reduces time complexity. Additionally,
LGBM identifies the leaf with the largest splitting gain and divides it using a leaf-
wise strategy [31]. Although leaf-wise can lead to overfitting and deeper decision
trees, LGBM mitigates this by imposing a maximum depth constraint, ensuring high
efficiency and preventing overfitting.

In contrast to the traditional approach of using information gain to split nodes in a
decision tree algorithm, LGBM employs a gradient-based one-side sampling
(GOSS) method to compute variance gain for identifying the optimal split point.
This involves sorting the absolute gradient values of training examples in
descending order and selecting top U x 100% of data samples with the highest
gradient values, denoted as U. Then from the remaining samples U*, a subset V of
size r * |U*| is chosen randomly. Finally, the instances are partitioned using the
estimated variance o on set U U V. The gain of the split feature f of a node at point p
is defined as:

_ 2 - 2
(Zx,-eA, o; + IT'C Zx,-eB, ai) + (ZX,GA, % + %ZX[EB, O‘i)
m(p) m(p)
where Aj={x; € A:x;<p},A, ={xi€A:x;>c},Bi={x;€B:x;<p},B, =
{x; € B : x;; > p}, o denotes negative gradient of loss function, ld;c is utilized to
normalize the sum of gradients.

V(o) = )@
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4.4.4 Logistic regression

LR [59] is a widely used statistical model for binary classification. It is a type of
regression analysis where the dependent variable is binary (0 or 1), representing two
possible outcomes. LR models the relationship between the binary dependent
variable and one or more independent variables, often using the logistic function,
also known as the sigmoid function represented as Py(x), Eq. (22), to transform the
linear combination of the predictor variables into a probability value between 0 and
1. This probability can be interpreted as the likelihood of the binary outcome
occurring.

P 22
o) =7 22)
The cost function will be,
1< i
J0,3) = 5> (ha()' = ¥ (23)
i=1
where hy(x) is the output obtained.
Due to the non-convex function, the cost function of LR becomes,
J(Co(x)',y) = —log(hy(x))  ify=1 (24)
J(Co(x)',y) = —log(1 —hy(x))  ify=0 (25)
therefore, another representation of the cost function J(hy,y) is given as:
1< 0
(C() Z log h() )—|— (26)

l:l

(1 - ) og(1 — Co(x)"))

4.4.5 CatBoost

CB is constructed on the foundation of symmetric decision trees [32]. This
algorithm is acknowledged as a classification method that not only produces
outstanding results but also demonstrates a tenfold enhancement in prediction speed
compared to other techniques that do not utilize symmetric decision trees.
Distinguishing itself from previous gradient-boosted-decision trees (GBDT) algo-
rithms, CB effectively handles gradient bias and prediction shift, leading to
improved prediction accuracy and generalization capabilities, especially with large
datasets. CB comprises two vital algorithms: ordered boosting, which calculates leaf
values during tree structure selection to prevent overfitting and a unique technique
for handling categorical features during the training process. Instead of using one-
hot encoding for categorical variables, CB utilizes the concept of “ordered target
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Table 2 Model parameters

Dataset Features selected

XGBoost eta=0.3, gamma=0, max_depth=6, subsample=1, min_child_weight=1, max_bin=256
RF n_estimators=300, criterion=gini, min_samples_split=2, min_samples_leaf=1,
max_features=sqrt

LightGBM learning_rate=0.01, num_iterations=1000, num_leaves=30, max_depth=15, lambda_11=0.5,
lambda_12=0.5, feature_fraction=0.75, max_bin=1000

LR penalty=12, dual=False, tol=0.0001, C=1, intercept_scaling=1, max_iter=100

CatBoost iterations=1000, depth=6, learning_rate=0.3, 12_leaf_reg=5, border_count=50,
boosting_type=Plain

i

statistics,” a value derived from the ground truth output values that correspond to
specific values of an absolute attribute in the dataset.

5 Results evaluation

In this section, we empirically validate the efficacy of the proposed framework for
anomaly-based intrusion detection systems. To showcase the versatility and
applicability of the proposed model, we conducted experiments on three datasets.
The outcomes are juxtaposed with several baseline models including neural network
(NN), k-nearest neighbor (KNN), Naive Bayes (NB), SCD, decision tree (DT),
support vector machine (SVC), and Perceptron. This section presents, the
experimental setup and performance metrics selected for analysis of results are
elucidated, followed by an overview of the dataset used and the results analysis.

5.1 Experimental setup

The ABIDS-VEM' system was developed in Python utilizing TensorFlow 2.13,
with the deep learning model crafted using Keras 2.13 and was tuned using random
hit and trial experiments. The implementation and evaluation of ABIDS-VEM were
carried out in Python 3.10.11 on an Asus Vivobook gaming laptop equipped with an
NVIDIA 1650 GPU, an i5 processor, and 8 GB of RAM, running a 64-bit operating
system. A detailed description of the model parameters is provided in Table. 2.

5.2 Performance metrics

In the evaluation of intrusion detection methods, various commonly employed
metrics are employed to gauge their effectiveness. These metrics offer insights into
how well the method can detect and categorize intrusions. Some of the essential
metrics used in this work for assessing intrusion detection methods include
accuracy, recall, precision, Fl-score, and MCC. The efficacy of ABIDS-VEM is

! https://11nk.dev/ABIDS-VEM

@ Springer


https://l1nk.dev/ABIDS-VEM

856 Page 20 of 35 P. Verma et al.

measured using metrics such as accuracy and Fl-score while in cases with
imbalanced data, it can be measured through the precision, recall, and MCC values.
Accuracy assesses the overall correctness of the intrusion detection method in
distinguishing between attack and normal samples. Precision reflects the ratio of
correctly classified attack requests to the total samples classified as attacks. Recall
(or Sensitivity or True Positive Rate) indicates the number of correctly classified
attacks relative to the actual attack samples. The F1-score calculates the harmonic
mean of precision and recall. MCC serves as a measure of the quality of binary and
multiclass classifications, accounting for true and false positives and negatives, and
providing a balanced assessment even for imbalanced class sizes. The MCC is
essentially a correlation coefficient ranging from -1 to +1. For better depiction, a
multiplier of 100 is used on the MCC score, making its range from -100 to 100.

1
Accuracy __ st (27)
s+t+u+v
Precision = (28)
S+ u
s
Recall (TPR) =——
ecall ( ) o (29)
Fl 2 u 30
score =2 % —————
- 2xs+v—+u (30)

((sx1) — (ux*v))

MCC =
\/(s+u)*(s+m)*(t+u)*(t+v)

(31)

Where s is true positive, t is true negative, u is false positive and v is false negative.

5.3 Dataset description

To obtain comprehensive results, the proposed framework is evaluated on three
distinct datasets: XIIoTID, NSL-KDD, and UNSW-NB15. The descriptions of these
datasets can be found in Tables 3, 4, and 5, respectively. These datasets are readily
accessible and have been widely utilized for benchmarking purposes within the field
of IDS. XIIoTID is specifically designed for IoT intrusion detection, reflecting the
challenges of securing interconnected industrial devices. NSL-KDD, though older,
remains a benchmark dataset for assessing network intrusion detection systems,
enabling comparisons with established methods and providing insights into broader
network security. UNSW-NB15 captures contemporary network behaviors, incor-
porating realistic attack patterns and normal traffic, making it particularly
suitable for evaluating advanced Industry 4.0 systems. Together, these datasets
comprehensively address the diverse security challenges faced in modern industrial
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Table 3 XIIoTID dataset
description

Table 4 NSL-KDD dataset
description

Table 5 UNSW-NBI15 dataset
description

Category Training instances Testing instances
Reconnaissance 89286 38304
‘Weaponization 46954 20306
Exploitation 785 348
Lateral movement 21960 9636
Command & control 1973 890
Exfiltration 15551 6583
Tampering 3598 1524
Crypto Ransomware 327 131
RDoS 99194 42067
Normal 294955 126462
Total 574583 305501
Category Training instances Testing instances
Normal 67343 9711
DOS 11656 7458
Probe 45927 2421
U2R 52 200
R2L 995 2754
Total 125973 22544
Category Label  Training instances  Testing instances
Analysis 0 2000 677
Backdoor 1 1746 583
DoS 2 12264 4089
Exploits 3 33393 11132
Fuzzer 4 18184 6062
Generic 5 40000 18871
Normal 6 56000 37000
Reconnaissance 7 10491 3496
Shellcode 8 1133 378
Worms 9 130 44
Total 10 175341 82332

environments, enhancing the empirical validation’s applicability to practical

scenarios.

For the UNSW-NBI15 dataset, specific columns such as ‘dur,” ‘proto,” ‘service,’
and ‘state’ are initially removed. Subsequently, all the datasets undergo prepro-
cessing and feature selection using the EO method, with details of the selected
features provided in Table 6.
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Table 6 EO selected features

Dataset

Features selected

XIIoTID

NSL-KDD

UNSW-
NB15

resp_bytes, missed_bytes, orig_pkts, resp_ip_bytes, total_bytes, paket_rate, byte_rate,
orig_packts_ratio, resp_pkts_ratio, orig_bytes_ratio, resp_bytes_ratio, Avg_nice_time,
STD_system_time, Avg_iowait_time, std_iowait_time, std_rtps, avg_kbmemused,
Avg_num_Proc.s, std_num_proc.s, Avg_num_cswch.s, std_num_cswch.s, Conn_state,
is_syn_only, Is_SYN_ACK, is_SYN_with_RST, OSSEC_alert, OSSEC_alert_level,
Login_attmp, Succ_login, file_act

protocol_type, flag, dst_bytes, wrong_fragment, urgent, num_compromised, root_shell,
num_root, num_file_creations, is_host_login, count, srv_serror_rate, srv_rerror_rate,
diff_srv_rate, dst_host_same_srv_rate, dst_host_diff srv_rate,
dst_host_same_src_port_rate

spkts, dpkts, sbytes, rate, dttl, sload, sinpkt, dinpkt, sjit, djit, swin, stcpb, dtcpb, dwin,
ackdat, smean, trans_depth, ct_dst_Itm, ct_src_dport_Itm, ct_dst_sport_Itm, ct_srv_dst,

is_sm_ips_ports

Table 7 Performance evaluation
on XIIoTID dataset

Table 8 Time comparison of the
proposed approach on XIIoTID

dataset

Method Recall Fl-score Accuracy
NN 90.6796 89.8441 85.4992
KNN 93.1238 92.5003 90.3056
NB 66.1871 75.8097 72.8825
SGD Classifier 90.1103 84.3437 78.5234
DT 94.9705 95.0495 93.6489
SvC 95.9677 97.8036 97.8832
Perceptron 63.2281 74.2072 71.7823
Proposed 96.4549 98.0141 98.1476
Method Training time
NN 00249.1990
KNN 00235.2274
NB 00000.4830
SGD Classifier 00028.4167
DT 00003.6127
Svc 13448.1150
Perceptron 00000.5521
Proposed 00059.1193

5.4 Performance comparison using XlloTID dataset

Table 7 presents a comparative evaluation of different ML methods based on
various performance metrics. When considering recall ABIDS-VEM outperformed
the others with a value of 96.4549%. Whereas other methods range from 63.2281%
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Fig. 6 Precision comparison on XIIoTID dataset

Table 9 Performance evaluation

on NSL-KDD dataset Method Recall Fl-score Accuracy
NN 91.6796 89.8441 85.4992
KNN 85.9722 91.9582 92.4636
NB 02.3336 05.5036 50.3371
SGD Classifier 42.9064 37.9031 29.5378
DT 86.5298 92.4015 92.8673
SvVC 00.0973 00.1945 49.9290
Perceptron 43.7118 37.4365 26.7743
Proposed 98.6939 98.8499 98.9671
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to 95.9677% which is less in comparison to the proposed approach. In terms of the
Fl-score the proposed framework excelled with a score of 98.0141%. The SVC
method was closely followed with a score of 97.8036%. Accuracy, indicating the
overall correctness of the classification, was highest for the proposed framework at
98.1476%, closely followed by SVC with 97.8832%. The proposed method
demonstrates a training time of 59.1193 s as described in Table 8, offering a
perspective on its computational efficiency compared to other techniques consid-
ering both accuracy and training time. These results suggest that the proposed
framework demonstrates competitive performance across these metrics and could be
a promising choice for the given task.

Figure 5 provides a comprehensive comparison of various ML methods based on
the MCC metric, which is commonly used to assess the quality of binary and
multiclass classifications. Among the methods, the proposed framework achieves
the highest MCC score of 96.3235%, highlighting its excellence in binary
classification tasks. Whereas other methods ranges from 48.5008% to 94.8212%,
which shows that the proposed method out performed over them.

Figure 6 offers a comparative analysis based on their precision metric indicating
that the proposed method stands out with the highest precision score of 99.6245%.
These results establish the significance of the precision of the proposed approach in
positive classifications, making it a robust choice for tasks that require accurate
positive predictions.

5.5 Performance comparison using NSL-KDD dataset

Table 9 presents a comparative analysis of techniques on the NSL-KDD dataset.
ABIDS-VEM demonstrates exceptional performance across all metrics. It method
excels in recall with a high score of 98.6939 %. The proposed framework also
achieves the highest Fl-score at 98.8499, underlining its balanced precision and
recall for attack and normal requests. Moreover, the proposed framework attains a
remarkable accuracy of 98.9671 %, indicating a high degree of correctness in
classifying attack and normal requests. Among other methods, the KNN also
delivers a commendable performance, showcasing relatively short training time,
high recall, excellent Fl-score, and impressive accuracy.

Table 10 Time comparison of

proposed approach on NSL- Method Training time

KDD dataset NN 0249.1990
KNN 0010.8241
NB 0000.5259
SGD Classifier 0000.8898
DT 0001.5004
SvC 4097.928
Perceptron 0000.7055
Proposed 0013.1976
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Fig. 8 Precision comparison on NSL-KDD dataset

On the other hand, methods like NN, DT, and NB exhibit varying degrees of
performance in different metrics. Meanwhile, the SGD Classifier, SVC, and
Perceptron methods demonstrate relatively lower performance across these metrics.

The proposed framework has a moderate training time of 13.1976s as indicated in
Table 10, showcasing a reasonable training duration. These results highlight the
robust performance of the proposed framework across various evaluation criteria,
making it a promising choice for applications demanding strong performance in
intrusion detection.

Figure 7 provides an MCC comparison, where higher scores indicate better
performance. ABIDS-VEM stands out with a remarkable MCC score of 97.9162 %,
showcasing its outstanding quality in classification tasks. It exhibits a high level of
agreement between predicted and actual classifications. The DT method also
achieves a notable MCC score of 86.4427 %, showing its effectiveness in
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Table 11 Performance

evaluation using UNSW-NB15 Method Recall Fl-score Accuracy

dataset NN 90.9093 89.8441 85.4992
KNN 93.1238 92.5003 90.3056
NB 66.1871 75.8096 72.8825
SGD Classifier 90.1103 84.3438 78.5233
DT 94.9705 95.0495 93.6489
SvC 92.1943 91.2986 88.012
Perceptron 63.228 74.2072 71.7823
Proposed 96.6264 96.2352 94.1327

Lal\? ISe“;_ZN];f ;?Z;Zr;g:arlson for Method Training time
NN 0249.1999
KNN 0235.2274
NB 0048.3004
SGD Classifier 0028.4167
DT 0003.6127
NYe 6335.2206
Perceptron 0000.5520
Proposed 0023.0519

classification tasks. On the contrary, the KNN method demonstrates a
respectable MCC score of 85.664, implying its strong performance in classification.
However, several methods, such as NN, NB, and SVC, exhibit relatively lower
MCC scores, suggesting less effective performance in classification. Notably, the
SGD Classifier and perceptron methods display negative MCC scores, signifying a
significant discord between predicted and actual classifications. In contrast, the
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Fig. 9 MCC comparison for UNSW-NB15 dataset
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proposed framework excels in terms of MCC, making it a promising choice for
applications requiring precise and reliable classifications.

Figure 8 showcases a comparison of precision scores across various methods,
with the proposed framework achieving an outstanding precision score of 99.0063
%. Close behind, DT method records a precision score of 96.1281 %, while the
KNN method impresses with a score of 98.8401 %, and NN posts a commendable
score of 91.5188 %. On the other hand, methods like SVC and NB register relatively
lower precision scores. Particularly, the SGD and perceptron methods exhibit the
lowest precision scores, highlighting their propensity for a higher frequency of false
positives in their classifications. Contrarily, the proposed framework distinguishes
itself by its superior precision, rendering it an exemplary option for scenarios
demanding highly accurate identification of positive samples.

5.6 Performance comparison using UNSW-NB15 dataset

Table 11 presents an evaluation of ML methods on the UNSW-NB15 dataset, with
Table 12 describing the training time. It indicates that the proposed framework has a
training time of 23.0519 s, a recall of 96.6264 %, an F1-score of 96.2352 %, and an
accuracy of 94.1327 %. Whereas other methods achieved training time ranging in
between 0.5520 to 6335.22 s and recall ranges from 63.228 % to 94.9705 %.
Similarly, for other metrics such as F1-Score and accuracy, results lie between
74.2072 % and 95.0495 %, respectively, for other methods.

Figure 9 illustrates that the proposed method outshines all others with an MCC
score of 82.9617 %, surpassing the performance of alternative techniques, which
achieve MCC scores ranging from 48.500 % to 81.193 %. Consequently, in terms of
efficacy in managing the UNSW-NB15 dataset for intrusion detection tasks, the
proposed approach stands as the superior option.

Figure 10 displays precision values and demonstrates that the proposed
framework achieves the highest precision of 95.8471 %, indicating a strong ability
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Fig. 10 Precision comparison using UNSW-NB15 dataset
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to make accurate positive predictions. DT follows closely with a precision value of
95.1287 %, showcasing robust classification performance. KNN achieves a
precision value of 91.8851 %, signifying its accuracy in positive predictions. Other
methods, including NN, SVC, and NB, exhibit precision values of 81.6213,
85.3078, and 88.7061, respectively, showing their ability to make accurate positive
predictions. SGD Classifier and perceptron show precision values of 79.2709 and
89.8004, respectively, providing insights into their performance in handling the
UNSW-NB15 dataset for intrusion detection applications.

Figure 10 reveals that the DT method demonstrates its effectiveness with a
precision of 95.1287 %, indicating a high level of accurate classifications. The KNN
method, with a precision of 91.8851 %, also proves to be reliable in predicting
positive outcomes accurately. Other methodologies like NN, SVC, and NB register
precision scores of 81.6213 %, 85.3078 %, and 88.7061 %, respectively,
underscoring their proficiency in making correct positive predictions. The SGD
Classifier and perceptron, with precision scores of 79.2709 % and 89.8004 %,
respectively, offer insights into their relative effectiveness when applied to the
UNSW-NB15 dataset in intrusion detection scenarios, illustrating a spectrum of
accuracy in identifying true positives across different techniques. However, the
proposed framework outperforms all and leads at 95.8471 %, indicating its superior
capability in accurately identifying true positive instances.

5.7 State-of-art comparison

Table 13 offers a comparative analysis between the ABIDS-VEM and various
state-of-the-art models. The proposed model exhibits significant improvements

Table 13 State-of-art

comparison with proposed Dataset Model Accuracy MCC Recall Fl-score
approach XIIoT-ID [54] 93.5 - 879 933
[60] 99.8 - 99.7 99.6
[61] 91.07 - - -
Proposed  98.1 963 964 98.0
NSL-KDD [52] 93.2 - 93.2 93.1
[53] 86.5 - 79.2 87.0
[54] 95.9 - 95.0 95.9
[60] 99.5 - 99.4 99.4
[62] 91.5 - - -
Proposed  99.0 98.0  99.0 99.0
UNSWNB-15  [54] 82.2 - 74.3 81.8
[50] 77.4 - 71.3 75.5
[62] 99.2 - - -
[63] 953 - 98.9 97.4
Proposed 94.1 83.0 96.6 96.2
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Table 14 Performance

evaluation for various feature Method Recall Fl-score Accuracy

Zzltzzgfn techniques on XIOTID by | vEM (Proposed) 964549 980141  98.1476
MI + VEM 96.6156 97.5642 97.6566
Pearson coefficient + VEM 96.5895 97.9736 98.0621
RFE + VEM 95.1918 96.4179 96.5536
RF + VEM 96.1638 97.2687 97.3753
ANOVA + VEM 96.3836 98.0268 98.0982

across all performance metrics, indicating a substantial enhancement in intrusion
detection capabilities. However, the studies cited in [60, 62, 63] employ DL models,
which perform better than the proposed approach. Nonetheless, the emphasis of this
paper lies in presenting a proposed method characterized by low computational cost,
suitable for deployment in resource-constrained environments. The training and
deployment of ML-based ensemble models is faster and more cost-effective
compared to DL, which frequently necessitates the use of GPUs. ML ensembles
offer greater ease of implementation in low-resource settings compared to intricate
deep-learning models. These consistent improvements across diverse datasets
suggest that the proposed approach is not merely incrementally better but potentially
represents a transformative advancement in intrusion detection capabilities.

5.8 Ablation study

Table 14 presents the performance evaluation of various feature selection
techniques on the XIIoTID dataset. The proposed method, EO + VEM, outperforms
other techniques in terms of recall (96.4549) and accuracy (98.1476), while
achieving a competitive F1-score of 98.0141. ANOVA + VEM attains the highest
Fl-score (98.0268) but slightly lower recall (96.3836) and accuracy (98.0982)
compared to the proposed approach. Other techniques, such as MI + VEM, Pearson

97

96,3255 96.1537 96.2212

9%
95.324
95 94.7665
94
93.1271

93

9

91

EO + VEM Ml + VEM Pearson RFE + VEM RF+VEM ANOVA + VEM
(Proposed) coefficient +
VEM

N

Fig. 11 MCC comparison for various feature selection techniques on XIIoTID dataset
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Fig. 12 Precision comparison for various feature selection techniques on XIIoTID dataset

coefficient + VEM, and RF 4+ VEM, exhibit strong performance, though they fall
short of EO + VEM in overall accuracy. RFE + VEM shows the lowest recall
(95.1918) and accuracy (96.5536), indicating it may be less effective.

Figure 11 presents a comparison of MCC indicating that the proposed EO +
VEM method achieves the highest MCC score (96.3235), indicating superior model
performance. ANOVA + VEM (96.2212) and Pearson coefficient + VEM
(96.1537) also perform well but fall slightly short of the proposed approach. MI
4+ VEM (95.324) and RF + VEM (94.7665) demonstrate moderate MCC values,
while RFE + VEM records the lowest MCC (93.1271), suggesting weaker
predictive capability. These results highlight the effectiveness of EO + VEM in
optimizing feature selection for improved model performance.

Figure 12 presents a comparison of precision scores. ANOVA 4 VEM (99.4024)
and Pearson coefficient + VEM (99.398) demonstrate strong precision values, though
slightly lower than the proposed approach (99.6245). MI 4+ VEM (98.5316) and RF +
VEM (98.3994) follow with moderate performance, while RFE + VEM records the
lowest precision (97.6759). These results highlight the effectiveness of EO + VEM in
achieving superior precision compared to alternative feature selection methods.

5.9 Computational complexity analysis

The computational complexity of an EO is described by a function that correlates
the algorithm’s execution time with the input problem’s size. In this context, the
widely used Big-O notation is employed. The complexity is influenced by several
factors, including the no. of particles, the no. of dimensions, the no. of iterations
“itr*, and the cost of function evaluation.

O(EO) = O(pd) + O(init) + O(itr(fe)) + O(itr(ms)) + O(itr(cu)) (32)
where, pd=problem definition, init=initialization, fe=function evaluations,

ms=memory saving, cu=concentration update, itr=iterations, um=update mechanism.
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Neglecting less influential terms such as O(pd), and combining the terms
O(itr(ms)) + O(itr(cu)) to O(um), Eq. (32) could be given as,

O(EO) = O(init) + O(itr(fe)) + O(um) (33)

Consider P as the number of particles, D as dimensionality, Eq. (33) could be given
as,

O(EO) =O(P * D) + O(P * fe) + O(P * D) periteration (34)
O(EO) =0(2 % P x D) + O(P x fe) per iteration (35)
O(EO) =O(P * (D + fe)) per iteration (36)

For I iteration Eq. (36) could be given as,
O(EO) = O(itr * P * (D + fe)) per iteration (37)

The overall computational complexity of the proposed framework could be ana-
lyzed as:

O(Proposed_framework) = O(EO) + O(model, )+ (38)

O(Voting)
This can be simplified to,

O(Proposed_framework) = O(itr * P % (D + fe)) + O(model,) + O(N « V) (39)

where N is the number of classifiers and V is the time for each classifier.
Therefore, the overall computational complexity is of the polynomial order.

6 Conclusion and future work

The proposed Anomaly-Based Intrusion Detection System using the Voting-based
Ensemble Model (ABIDS-VEM) exhibits exceptional efficacy across diverse
datasets, positioning it as a formidable solution for fortifying network infrastruc-
tures against emerging cyber threats. Rigorous evaluation on the XIIoTID, NSL-
KDD, and UNSW-NB15 benchmarks demonstrates its superiority over traditional
machine learning paradigms, including neural networks, k-nearest neighbors, Naive
Bayes, stochastic gradient descent, decision trees, support vector classifiers, and
perceptrons. The framework’s remarkable performance is evidenced by its high
recall rates, peaking at 98.6939%, which underscores its proficiency in minimizing
false negatives and effectively identifying intrusions. Moreover, the model achieves
F1-scores exceeding 98.8499%, indicative of an optimal balance between precision
and recall. With accuracy metrics surpassing 98.9671%, ABIDS-VEM showcases
unparalleled prowess in discriminating between benign and malicious network
activities. These compelling results underscore the model’s potential as a critical
component in next-generation cybersecurity architectures, capable of adapting to
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and mitigating evolving threat landscapes. Future research directions include
enhancing the framework’s resilience against adversarial Al-based attacks and
exploring its applicability in real-time, high-throughput network environments. In
parallel, we recognize that our initial experiments were conducted on an Asus
Vivobook gaming laptop equipped with an NVIDIA 1650 GPU and 8GB RAM-a
setup that, while sufficient for research, prompts questions about the model’s
scalability in large-scale industrial networks. Moving forward, we plan to
investigate the memory and processing time requirements in production environ-
ments, incorporate additional metrics for a more comprehensive evaluation, and
compare our approach with traditional balancing techniques.
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