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Abstract
The convergence of the Internet of Things (IoT) and Industrial Internet of Things

(IIoT) within the Industry 4.0 paradigm leverages software-defined networking,

multi-cloud architectures, and edge/fog computing to enhance industrial processes.

However, this digital transformation introduces significant cybersecurity and pri-

vacy vulnerabilities within the complex, data-intensive IoT/IIoT ecosystems. To

mitigate these risks, this research proposes a novel Anomaly-based Intrusion

Detection System using Voting-based Ensemble Model (ABIDS-VEM) in Industry

4.0 environments. The VEM architecture synergistically combines multiple

machine learning algorithms and gradient boosting frameworks, including CatBoost

(CB), XGBoost (XGB), LightGBM (LGBM), Logistic Regression (LR), and Ran-

dom Forest (RF), to enhance the precision and computational efficiency of intrusion

detection systems (IDS) in IoT/IIoT contexts. The proposed framework incorporates

a data ramification process, in which the data is divided into multiple parts, feature

selection process which is optimized through the Equilibrium Optimizer (EO)

algorithm, and outlier detection utilizing the Isolation Forest (IF) method. Com-

prehensive empirical evaluations were conducted using three benchmark datasets:

XIIoTID, NSL-KDD, and UNSW-NB15, to validate the efficacy of the proposed

system. The model achieves high accuracy across datasets: 98.1476% for XIIoT-ID,

an impressive accuracy of 98.9671% for NSL-KDD, and 94.1327% for UNSW-

NB15 dataset. These experimental results demonstrate the potential of this approach

to significantly enhance the resilience of critical industrial systems and data against

evolving cyber threats, thereby supporting the continued evolution of Industry 4.0

technologies and bolstering the security posture of IoT/IIoT ecosystems. This

research contributes to the ongoing efforts to secure the rapidly expanding digital

industrial landscape, offering a robust solution for detecting and mitigating

sophisticated cyberattacks in the increasingly interconnected and data-driven

industrial environments of the future.

Keywords Industry 4.0 � Equilibrium optimizer � IIoT � Anomaly-based

IDS � Ensemble learning
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1 Introduction

The onset of Industry 4.0 has marked the commencement of a new era in advanced

industrial processes, driven by the extensive adoption of the Internet of Things (IoT)

and the Industrial Internet of Things (IIoT) [1, 2]. This technological revolution has

heralded the amalgamation of state-of-the-art networking and computing paradigms,

software-defined networking, multi-cloud platforms, edge computing, fog comput-

ing, and artificial intelligence, into traditional industrial settings. While these

innovations have unlocked unprecedented opportunities for increased efficiency and

productivity, they have also given rise to significant concerns regarding network

security against various cyber threats and user privacy in complex and data-rich IoT

ecosystems.

As the volume of data and the complexity of IIoT ecosystems continue to expand,

there is a growing need for robust and effective security models [3–5] and intrusion

detection systems (IDSs) [6, 7]. An IDS plays a critical role in ensuring the safety of

computer networks and cyber systems by identifying and mitigating cyber threats.

IDSs can be broadly classified into two types depending on their objectives:

Signature-based IDS and Anomaly-based IDS.

A signature-based IDS operates by monitoring network traffic or system activity

and identifying anomalies by comparing them to specific signatures or patterns that

are previously kept in its memory. These signatures or patterns are derived from

known attack profiles [8–10]. However, they require substantial storage capacity to

maintain a comprehensive database of attack signatures.

On the other hand, anomaly-based IDS employs a distinct methodology,

monitoring system, or network behavior, pinpointing deviations from established

patterns of normal behavior. Any behavior that significantly deviates from this

predefined normal behavior is marked as a potential threat or cyberattack [11]. This

method offers the advantage of being capable of detecting new, previously

unidentified attacks based on behavior rather than specific signatures. However, it is

also more prone to false positives, as any unusual but normal activity can trigger

alerts.

Despite the deployment of various machine learning (ML) algorithms for IDS

aimed at improving detection accuracy [12], existing IDS methods continue to face

challenges in achieving satisfactory results [13]. This limitation can be attributed to

the predominant focus on individual classifiers, which often prove ineffective in

terms of both accuracy and F1-score. Notable ML algorithms, including decision

trees (DT) [14], support vector machines (SVM) [13], genetic algorithms (GA) [15],

particle swarm optimization (PSO) [16], spider wasp optimization [17], binary

quadratic interpolation optimization [18], statistical approaches (SA) [19], and

various swarm intelligence (SI) techniques [20, 21], have been explored for

constructing IDSs.

One of the fundamental limitations in the concept of utilizing ML for IDSs was

the recognition that a single classifier might not possess the requisite power to

effectively construct a robust IDS [22]. As a result, relying on one classifier to

function adequately across all settings and scenarios has thus far proved unfeasible.
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This challenge has led to the emergence of the need for ensemble classification

techniques.

Ensemble learning techniques [23, 24] have been introduced to address various

challenges in both ML and IDS [25]. It involves the concept of combining multiple

classification models while making decisions, specifically in supervised ML tasks.

The fundamental idea underlying ensemble learning is that the prediction errors of

one classifier can be offset in combination with other classifiers while they are

working together. This leads to the final prediction of an ensemble being more

accurate than that of an individual classifier. It has been statistically demonstrated

that combining multiple classifiers significantly reduces the probability of incorrect

predictions in ensemble-based models [26].

Therefore, we propose anomaly-based intrusion detection system (ABIDS) that

utilizes a voting-based ensemble model (VEM) in conjunction with an equilibrium

optimizer (EO) [27] for a feature selection, and data ramification process to address

imbalanced data, along with isolation forest (IF) for the detection of outliers. The

VEM leverages various ML and boosting techniques [28], including logistic

regression (LR) [29], random forest (RF) [30], LightGBM (LGBM) [31], CatBoost

(CB) [32], and the eXtreme gradient boosting machine (XGB) [33]. Furthermore,

we have assessed the performance of the IDS models on three distinct datasets,

namely, XIIoTID [34], NSL-KDD [35], and UNSW-NB15 [36], evaluated the

performance, and demonstrated the advantages of using our proposed ABIDS-VEM

method. Finally, we evaluated the proposed framework using F1-score, accuracy,

precision, recall, and Matthew Correlation Coefficient (MCC) metrics. Thus, the

contributions of this paper are:

• The research introduces a novel feature selection approach using equilibrium

optimization (EO). This advanced technique intelligently extracts the most

relevant features from complex datasets, significantly enhancing the intrusion

detection system’s efficiency. By reducing data dimensionality while preserving

critical insights, this method addresses a fundamental challenge in machine

learning for cybersecurity: balancing computational efficiency with detection

accuracy.

• The paper presents a sophisticated Voting Ensemble Model (VEM), integrating

diverse machine learning and boosting algorithms including Logistic Regres-

sion, Random Forest, LightGBM, CatBoost, and XGBoost. This ensemble

approach leverages the strengths of multiple algorithms to create a robust, high-

performance intrusion detection system. The VEM’s ability to combine these

varied techniques represents a significant advancement in adaptive cybersecurity

measures for Industry 4.0 environments.

• The research demonstrates exceptional versatility through rigorous testing across

multiple datasets (XIIoTID, NSL-KDD, UNSW-NB15) that represent a wide

array of network security scenarios. This comprehensive evaluation not only

validates the ABIDS-VEM framework’s effectiveness but also showcases its

adaptability to diverse intrusion landscapes. Such versatility is crucial for

developing intrusion detection systems capable of addressing the evolving and

varied nature of cyber threats in modern networked environments.
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The rest of the paper is organized as follows: Section 2 discusses the related work,

followed by Section 3, which establishes pre-requisite knowledge. Section 4

describes the proposed framework, and an evaluation of its results is provided in

Section 5. Lastly, Section 6 ends with conclusions and the scope for future work.

2 Related work

The growing demand for efficient network analytics solutions has encouraged

numerous researchers to make significant contributions in their designs of IDS

[37–40]. In response to an evolving landscape of security threats, these researchers

have also introduced hybrid models that leverage ML techniques to enhance the

detection of security attacks. Many initial IDS models were rule-based, involving a

continuous scanning process to identify potential attacks and assess them against a

predefined set of attack patterns. These rule-based systems served as the foundation

for subsequent developments in intrusion detection technology. With this view, this

section delves into the frameworks and methodologies designed to analyze network

traffic and formulate IDS systems.

2.1 ML-based IDS systems

Astha et al. (2017) [41] proposed a hybrid approach named SVM-Classification and

Regression Tree (CART). This approach combines the capabilities of an SVM with

a regression tree algorithm. The researchers compared the performance of SVM-

CART with the k-nearest neighbors (KNN) algorithm using the KDD dataset. While

the hybrid SVM-CART algorithm shows potential for improving intrusion detection

systems, its limitations regarding dataset dependency, scalability, comparative

analysis, and false positive rates, show the need for further improvement.

Guo et al. [42] introduced a two-level hybrid intrusion detection approach,

combining misuse & anomaly detection to achieve a high detection rate and a low

False positive rate (FPR). The first stage employs a low-complexity anomaly

detection method, while the second stage uses the KNN algorithm. These

components work in tandem to minimize false positives and false negatives.

Experimental results on the KDD’99 dataset and Kyoto University Benchmark

dataset validate the effectiveness of this hybrid approach in detecting network

anomalies with a low FPR. Concerns about the computational complexity of the

hybrid approach, particularly the scalability of the k-NN algorithm in stage 2, and

points out limitations in the analysis of false positive/negative rates across various

attack scenarios.

Contemporary Smart Power Networks (SPNs) rely on cyber-physical systems

(CPSs) for connectivity and control, making them vulnerable to cyberattacks. Khan

et. al. [43] presented a privacy-conserving intrusion detection system (PC-IDS)

designed to protect SPNs from attacks like data poisoning. The framework includes

data preprocessing for privacy and an intrusion detection component using a particle

swarm optimization-based probabilistic neural network. Tested on Power System

and UNSW-NB15 datasets, PC-IDS demonstrated superior performance with
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detection rates of 96.03% and 95.91%, and false positive rates of 0.18% and 0.14%,

respectively, outperforming existing methods in efficiency and accuracy.

Sara et al. (2019) [44] demonstrated an intrusion detection approach which

incorporates feature selection & clustering algorithms. This approach employs both

filter and wrapper methods for feature selection and utilizes a decision tree as the

base classifier. Their findings demonstrated exceptional performance, achieving an

accuracy of 95.03% and a notably low FPR of 1.65%. However, the study lacks

comparison with recent advancements like deep learning-based approaches in

intrusion detection, potentially overlooking improvements in accuracy and

efficiency.

Gite et al. [45] highlighted the importance of IDS in maintaining the integrity of

wireless sensor networks (WSN). It introduces a system that effectively detects

common network attacks (black hole, wormhole, gray hole, and DDoS) using a Base

Station ML algorithm (BS). Their method employed pattern analysis to identify

malicious nodes and achieve high accuracy in simulations, which can improve

energy efficiency and packet delivery in WSNs. As the proposed scheme’s use of

C4.5 and CART classifiers may be computationally demanding for wireless sensor

networks (WSNs), which typically operate under strict resource constraints. This

mismatch between the algorithm’s requirements and the limited processing power,

memory, and energy of many sensor nodes could restrict the practical deployment

of the system in resource-constrained WSN environments.

These ML models aim to effectively produce good-performing IDS; however,

they face significant challenges in real-world applications. The hybrid approaches,

while promising, struggle with dataset dependency, scalability issues, and high

computational demands. Furthermore, the lack of comprehensive comparisons with

recent advancements, such as deep learning-based methods, and insufficient

analysis of false positive/negative rates across diverse attack scenarios limit their

proven effectiveness. Striking a balance between retaining valuable information and

reducing computational burden is essential for effective model training and

improved accuracy, particularly in scenarios with extensive or intricate data sets.

2.2 Ensemble learning-based IDS systems

There have been multiple ensemble models employed for enhancing the security

front [46]. A dual ensemble model, joining bagging & gradient boosting decision

tree (GBDT), offering a competitive solution was proposed by Louk et al. [47]. The

Bagging-GBM combination stands out, achieving superior results among various

schemes and comparable techniques in the field.

Wang et al. [48] introduced the Ensemble Feature Selection-based Deep Neural

Network (EFS-DNN) for enhancing attack detection in high-traffic networks. It

leverages a Light Gradient Boosting Machine (LightGBM) for robust feature

selection & employs a deep neural network with batch normalization & embedding

techniques for classification. Extensive experiments on public datasets highlight the

EFS-DNN’s superiority over baseline methods in intrusion detection. Although the

use of LightGBM as the base selector enhances robustness, the overall robustness of

the EFS-DNN model in various real-world scenarios remains to be fully validated.
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The paper does not extensively discuss how the model performs under different

types of cyberattacks or varying network conditions, which could affect its

reliability.

A tree-based Stacking Ensemble Technique (SET) for IDS was proposed by

Rashid et al. [49] and tested on NSL-KDD and UNSW-NB15 datasets. Results

indicate that their SET model excels in distinguishing normal and anomaly network

traffic, demonstrating its potential for enhancing cybersecurity in IoT and large-

scale networks. However, the single classifiers may not perform well for large-scale

data. Also complexity of intrusion analysis is increasing exponentially due to data

size.

El et. al. [50] presented an innovative intrusion detection system combining

SHAP-based feature selection, the PV-DM shallow learning algorithm, and

XGBOOST for classification. Tested on NSL-KDD and UNSW-NB15 datasets,

the model achieves impressive results with 82.86% accuracy on UNSW-NB15.

However, limitations include potential overfitting to the specific datasets used, the

need for validation on more diverse and real-time data, and the challenge of

adapting to rapidly evolving attack patterns.

The proliferation of wireless devices and increased network traffic create a

heightened risk of network intrusion and security threats. Traditional packet-based

IDS struggle with high-speed and encrypted traffic. To address this, a cortex-

inspired ensemble-based network IDS (CI-EnsID) was proposed in [51]. It combines

ensemble classification with cortex-like information processing, utilizing both

unsupervised and supervised learning techniques. Testing on KDDCup99 and

CICIDS2017 datasets demonstrates the CI-EnsID’s superior performance compared

to contemporary classification techniques like NB, Neural Networks (NN), LR, DT,

and RFs. While the CI-EnsID system is designed to minimize overhead by relying

on network flow information, there is still a risk of resource consumption, especially

if the system is not optimized for specific network conditions. This could lead to

performance degradation in resource-constrained environments.

[52] presented an anomaly-based intrusion detection system utilizing a one-

dimensional convolutional neural network (CNN) trained on the NSL-KDD dataset.

The proposed model outperforms existing methods in accuracy, precision, and F1-

score, particularly in detecting minority attack classes. However, limitations include

potential overfitting, as indicated by performance discrepancies between training

and testing datasets, and reliance on a single benchmark dataset, which may affect

generalizability to other environments.

[53] addressed the growing complexity of cyberattacks by proposing an

innovative intrusion detection system that combines feature selection and adaptive

voting. Applied to the widely used NSL-KDD dataset, it achieves 86.5% accuracy.

The results underscore the potential of this approach in advancing cybersecurity

research and practice. However, it is worth noting that it only focuses solely on the

NSL-KDD dataset, which may limit its broader applicability; the 86.5% accuracy,

while high, still leaves room for missed intrusions; and the model’s performance in

real-time environments remains unexplored.

Uddin et. al [54] proposed two semi-supervised learning strategies: using

synthetic attack samples for supervised learning and employing One Class
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Classification (OCC) trained solely on benign traffic. Experiments across 10

benchmark datasets reveal that the OCC model, particularly using the usfAD

technique, outperforms conventional supervised methods and other OCC

approaches in detecting unknown attacks. However, limitations include the need

for further exploration of hierarchical multi-classification for specific attack types,

potential overfitting to the datasets used, and the challenge of generating

representative synthetic attack samples across feature spaces.

3 Preliminaries

This section establishes the prerequisites for the ABIDS-VEM such as EO, its

parameters, and ensemble learning.

3.1 Equilibrium optimizer (EO)

The equilibrium optimizer (EO) [27] is a physics-inspired optimization algorithm

designed for addressing continuous optimization challenges. Some optimization

features of the EO algorithm include its capability to incorporate randomness into

the solution space, which enables more exploration and exploitation. In the EO

algorithm, particles and their concentrations bear a resemblance to the particles and

positions found in a PSO, serving as representative search agents. These search

agents dynamically adjust their concentrations based on the best solutions

encountered thus far, known as equilibrium candidates. This iterative process

ultimately leads them to attain an equilibrium state, representing optimal result [27].

The EO approach employs a mass balance [55] equation to depict the

concentration of a non-reactive component within a control volume, taking into

account various mechanisms that contribute to its sources and sinks. The mass

balance equation forms the physical basis for conserving mass within the control

volume, encompassing mass inflow, outflow, and generation. This equation is

commonly represented as,

V
dQ

dt
¼ VfQeq � VfQþM ð1Þ

Where Q denotes the concentration within the control volume V, and the term V dQ
dt

signifies the rate of change of mass within this control volume. Additionally, Vf

represents the volumetric flow entering and exiting the control volume, while Qeq is

indicative of the equilibrium state concentration, characterized by the absence of

any generation within the control volume. The variable M designates the rate of

mass generation under the control volume. Upon reaching a state where V dQ
dt equals

zero, a steady equilibrium condition is attained. By rearranging Eq. (1), it becomes

feasible to compute dQ
dt as a function of

Vf

V , which corresponds to the inverse of

residence time or the turnover rate, here referred to as d. Furthermore, Eq. (1) can

also be rearranged to determine the value of Q, the concentration within the control

volume, as a function of time (t):
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dQ

dQeq � dQþ M
V

¼ dt ð2Þ

On integrating with respect to time we get,

Z Q

Q0

dQ

dQeq � dQþ M
V

¼
Z t

t0

dt ð3Þ

which gives,

Q ¼ Qeq þ ðQ0 � QeqE þ M

dV
ð1� EÞÞ ð4Þ

On calculating E from Eq. (4), we find,

E ¼ e�dðt�t0Þ ð5Þ

Here, t0 and Q0 represent the initial starting time and concentration, respectively,

and they are dependent on the integration interval. Equation (4) serves a dual

purpose: it can be employed to either estimate the concentration within the control

volume when the turnover rate is known, or it can be utilized to calculate the

average turnover rate. This calculation can be carried out through a linear regression

analysis when the generation rate and relevant conditions are known.

The initial concentrations Q are generated by uniformly initializing the number

of particles and dimensions in search space using random values:

Qinitial
p ¼ Qmin þ randomiðQmax � QminÞ ð6Þ

p = 1, 2 3,....n

The vector Qinitial
i represents the initial concentration of pth particle, while Qmin

and Qmax denote the minimum and maximum values within which the dimensions of

randomi vary, with randomi falling within [0, 1]. Here, n corresponds to the

population size, signifying the number of particles. The particles undergo evaluation

based on their fitness function, following which they are sorted to identify potential

equilibrium candidates.

A precise definition of E plays a pivotal role in assisting EO to maintain a well-

considered equilibrium between exploration and exploitation. Given that the

turnover rate could exhibit temporal variations within an actual control volume, it is

considered that d is a random vector 2 [0,1].

E~ ¼ e�d~ðt�t0Þ ð7Þ

where time t is confined under iterations ‘‘itr‘‘ and thus decreases with number of

iterations:

t ¼ ð1� itr

max itr
Þðc

itr
max itr

Þ ð8Þ

where c is a constant value used to manage exploitation ability.
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M is the generation rate and it could be expressed using many models [56]. For

example, a versatile model that characterizes M as a first-order exponential decay

process is defined as:

M~ ¼M0
~ e�d~ðt�t0Þ ¼ M0

~ E~ ð9Þ

M~ 0 ¼CP~ ðQ~eq � d~Q~Þ ð10Þ

where M0 is initial value & d is alias of decay constant.

CP~ ¼0:5rn1 if rn2 �GP ð11Þ

CP~ ¼0 if rn2\GP ð12Þ

where rn1 and rn2 represent random numbers within [0,1] and the CP vector is

constructed by repeating the same value obtained from eqs. 11 and 12. In these

equations, CP serves as the control parameter for the generation rate, encompassing

the contribution of the generation term for the updating process. The probability of

this contribution, which dictates how many particles utilize the generation term for

updating their states, is determined by another parameter known as generation

probability (GP), as defined by eqs. 10, 11, and 12. A well-balanced trade-off

between exploration and exploitation is obtained when GP is set to 0.5. Conse-

quently, the update rule for EO is formulated as follows:

Q~ ¼ Qeq
~ þ ðQ~� Qeq

~ Þ:E~þ M~

d~V
ð1� E~Þ ð13Þ

The initial component in Eq. (13) signifies the equilibrium concentration, while the

subsequent two terms account for changes in concentration.

3.2 Ensemble learning

Ensemble learning, a technique in ML, amalgamates the forecasts of numerous

individual models, known as base learners, to enhance overall prediction accuracy.

The rationale behind ensemble learning lies in aggregating the predictions of diverse

models to offset the shortcomings of individual models and bolster their combined

performance. This can be achieved through techniques like bagging, boosting, and

stacking. Bagging methods involve creating diverse subsets of training data and

independently training multiple models, while boosting techniques assign different

weights to data points, emphasizing the ones that were previously misclassified.

Stacking combines the outcomes of various models into a final model. Every

general framework of ensemble learning uses some aggregation function, say Ag, to

combine B number of base classifiers such that: bi 2 B for final prediction. For a

dataset size d, number of features ‘f’, and real numbers R, dataset =

fðXi; yiÞg; 1� i� d;Xi 2 Rf , the prediction based on this is given using,
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yi ¼ wðXiÞ ¼ Agðb1; b2; b3; ::::::bBÞ ð14Þ

Consider a series system of ensemble classifiers having 5 base classifiers, each with

a loss value of, say, 0.35. The combined loss of the classifiers would be given as:

Loss ¼ ð0:35Þ5 ¼ :00525\\\\0:35

Hence, ensemble techniques considerably reduce the error of the system. Moreover,

further categorization of ensemble methods is described in Table 1.

4 Proposed framework

The ABIDS-VEM algorithm 1 presents a comprehensive approach to intrusion

detection, incorporating several sophisticated phases as shown in Fig. 1. The

process begins with a thorough data preprocessing phase, where unnecessary

columns are dropped, missing values are imputed, and categorical variables are

encoded. This phase also includes an innovative step of using isolation forest for

outlier detection, which is particularly effective for high-dimensional datasets

typical in network intrusion scenarios. Following this, the algorithm employs the

equilibrium optimizer (EO) for feature selection, a critical step in reducing

dimensionality and focusing on the most relevant attributes. The EO, inspired by

control volume mass balance models, uses multiple agents to identify an optimal

subset of features that best represent the entire dataset. After feature selection, the

algorithm introduces a unique data ramification phase. This phase is crucial for

addressing the common problem of class imbalance in intrusion detection datasets.

The core of the classification process lies in the voting-based ensemble model

(VEM). Here, multiple base classifiers are trained on different subsets of the

ramified data, leveraging the strengths of diverse models. The final prediction is

determined through a majority voting mechanism, where an instance is classified as

an intrusion if more than two models in the ensemble predict it as such. This

Table 1 Ensemble methods
Category Order Heterogeneity

Bagging Parallel Homogeneous

RF Parallel Homogeneous

Boosting Series Homogeneous

AdaBoost Series Homogeneous

GDBoost Series Homogeneous

XGBoost Series Homogeneous

Stacking Parallel Heterogeneous

Hybrid Any Any
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ensemble approach helps to reduce individual model biases and improve overall

prediction accuracy.

4.1 Data preprocessing phase

This phase opts for data cleaning, data transformation, and outlier detection. Data

cleaning is the process of identifying and correcting errors or inconsistencies in a

dataset to ensure its accuracy and reliability. It involves tasks such as handling

missing values, removing duplicates, and correcting typos. Data cleaning plays a

critical role in data quality and is a significant step in the data preprocessing pipeline

for various applications. After cleaning the data, data transformation is employed to

label and scale the data (indicated by steps 4–5 in Algorithm 1).

The data transformation process often includes tasks such as normalization

(scaling data to a common range), encoding categorical variables into numerical

formats, creating new derived features, and aggregating or summarizing data. Data

transformation aims to improve the quality of the dataset, make it more compatible

with the chosen analytical techniques, and enhance the interpretability of the results.

Lastly, this step involves outlier detection using Isolation Forest (IF). The IF

Fig. 1 Proposed ABIDS-VEM architecture
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algorithm was initially designed for outlier detection. It works by randomly

partitioning data samples based on certain attributes or features. The core idea is that

rare observations, which are likely outliers, can be isolated more quickly with

random splits, as they tend to end up alone in one branch. This concept is extended

to split hyperplanes and guided splits in advanced models. This updated version

includes heuristics for managing missing data and categorical variables.

Fig. 2 Convergence curve of EO on different datasets
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Algorithm 1 Proposed framework
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It can also approximate pairwise distances and densities by examining the depth

at which two observations separate and fitting trees beyond the balanced-tree height

limit. Additionally, it provides options for both randomized and deterministic splits,

making it a versatile tool for various data analysis tasks. IF is created by computing

a score based on a collection of trees:

if scoreðX; itrÞ ¼ 2
�Aðf ðXÞÞ

itr ð15Þ

where itr is iterations, A(f(X)) is the average number of successful iterations for X,

and itr is the average iterations for unsuccessful iterations.

4.2 EO-based feature selection phase

After passing through the data preprocessing phase, data is passed through the EO-

based feature selection [57]. EO can reduce overfitting, improve accuracy, and

decrease training time making it a promising choice for various ML tasks. The

feature selection based on EO employs a continuous search space within a binary

search algorithm. Particles representing solutions similar to the feature subset are

placed within this search space, and their positions are determined by their

concentration. The particle population, initial concentration, and fixed parameters

are initialized. Concentration is represented as a binary vector, where 0 describes

the deselection of a feature, and 1 indicates the selection of a feature. Feature

selection is treated as a multi-objective optimization problem due to two distinct

criteria for evaluating a considered feature subset: classification accuracy and the

number of selected features. To address both objectives, a fitness score is utilized,

which is assessed as follows:

Fig. 3 Data ramification phase (combining the minority and majority dataset to produce more balanced
data subsets)
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FitnessðxÞ ¼ accuracyðxÞ
1þ dðnum particleðxÞÞ ð16Þ

The score is computed for the initial population, and the particles in global equi-

librium are selected. The concentration is then updated to shift all particles toward

the global optimum using Eq. (13). The updating rule combines the current equi-

librium state (first term), exploration (second term), and exploitation (third term).

Equations (12) and (11) exclusively manage exploitation through the CP, while

exploration is introduced through mutation. Figure 2 describes the convergence of

EO-based feature selection on the chosen datasets. These convergence curves help

to monitor the performance of feature selection.

4.3 Data ramification phase

After feature selection, the data undergoes the data ramification phase, as outlined in

Fig. 3. Initially, the dataset is bifurcated into train and test sets, reserving test data to

evaluate. The train data is further split based on majority and minority labels, with

each label divided into 5 subsets. The process of stratified sampling is employed to

ensure uniformity among each subset. These subsets are then combined to create 5

individual training sub-datasets, which are used to train the ensemble model’s 5

base classifiers. This phase significantly reduces the dataset’s load on individual

classifiers, leading to shorter training times and lower memory usage for all base

classifiers. It also addresses the class imbalance issue by potentially combining

multiple minority subsets with a majority subset, achieving a balanced sub-dataset

without the need for sampling techniques or specialized algorithms for imbalanced

datasets.

Fig. 4 Accuracy comparison of various ML classifiers for ensemble model selection
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4.4 VEM

Following the data splitting and ramification phase, the subsequent phase involves

the utilization of the voting-based ensemble model (VEM), which incorporates 5

base classifiers (denoted as modelg), namely, RF, LR, LGBM, XGB, and CB. The

selection process of these classifiers was based on the accuracy score achieved on

the X-IIoTID dataset. Initially, various well-known ML-based classifiers were

employed on the selected dataset to analyze the performance. Considering the

accuracy of all employed classifiers, an ensemble approach was devised, taking the

top 5 classifiers with the highest accuracy as ensemble base classifiers as shown in

figure 4. These classifiers are then individually trained in parallel on their respective

training datasets derived from the preceding phase (X traing). After the training

phase is completed, these modelg are combined to create an ensemble model. For

the final classification, the predictions from each modelg are collected, and the

ultimate output is determined using the voting scheme outlined in steps 17–18 of

Algorithm 1. The combined power of these classifiers jointly reduces error and

enhances precision and FAR values.

4.4.1 Random forest

RF is an ensemble machine learning algorithm that leverages a large ensemble of

decision trees [58]. In the architecture of random forests, decision trees serve as the

foundational predictors. While implementing RF, multiple decision trees are

generated, each of which selects multiple samples from the original dataset and

begins splitting based on minimum leaf node mean square error (MSE) in the case

of regression tasks. This process continues until no more features are available, and

the predictions from the multiple decision trees are combined to produce the final

result, often by averaging the results (Eq. (17)) in the case of regression tasks.

RF ¼ 1

T

XT
t¼1

dttðXÞ ð17Þ

where RF denotes the combined RF model, dttðXÞ is a single decision tree model

and T is the total number of trees employed.

4.4.2 XGBoost

It is a scalable end-to-end tree-boosting technique that sequentially trains numerous

weak learners [33]. Each subsequent learner works to rectify the errors made by the

previous one, ultimately leading to the creation of an effective model primarily

utilized for classification tasks. XGB not only addresses overfitting concerns

associated with the GBDT algorithm but also improves real-world performance

through its utilization of sparsity-aware metrics and multi-threading capabilities.

Since the process of boosting is iterative, the goal of present iteration itr in terms of

prediction of previous iteration ŷ
ðitr�1Þ
a could be expressed using the most recent tree

dtt:
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obj fxnitr ¼
X
a

fðya; ŷðitr�1Þ
a þ

X
b

nðdttÞÞ ð18Þ

XGB uses a weight value, w, to minimize the objective function. The best leaf

weight w in a present tree structure is given as:

w ¼ �
P

a2A d1P
a
R

A
d2þ r

¼ � Pi

Qi þ r ð19Þ

where d1 and d2 are the first and second derivatives of the loss function, for

instance, a, respectively. At the end, with the best w, an objective function for the

best tree structure is defined as:

obj fxnitr ¼ � 1

2

X
i

P2
i

Qi þ r
þ c:T ð20Þ

4.4.3 LightGBM

LGBM stands out as an efficient implementation of gradient-boosting trees. It

harnesses histogram and leaf-wise algorithms for enhancing both computational

speed and prediction accuracy. The histogram technique is employed to amalgamate

features that are incompatible with each other. The core idea is to discretize

continuous features into ‘n’ integers, creating an ‘n’-width histogram. Training data

is then scanned based on these discretized histogram values for constructing a

decision tree. This histogram-based method reduces time complexity. Additionally,

LGBM identifies the leaf with the largest splitting gain and divides it using a leaf-

wise strategy [31]. Although leaf-wise can lead to overfitting and deeper decision

trees, LGBM mitigates this by imposing a maximum depth constraint, ensuring high

efficiency and preventing overfitting.

In contrast to the traditional approach of using information gain to split nodes in a

decision tree algorithm, LGBM employs a gradient-based one-side sampling

(GOSS) method to compute variance gain for identifying the optimal split point.

This involves sorting the absolute gradient values of training examples in

descending order and selecting top U � 100% of data samples with the highest

gradient values, denoted as U. Then from the remaining samples Us, a subset V of

size r * jUsj is chosen randomly. Finally, the instances are partitioned using the

estimated variance r on set U [ V. The gain of the split feature f of a node at point p

is defined as:

Vf ðpÞ ¼
1

n
ð
ð
P

xi2Al
ai þ 1�c

d

P
xi2Bl

aiÞ2

njlðpÞ
þ
ð
P

xi2Ar
ai þ 1�c

d

P
xi2Br

aiÞ2

njrðpÞ
Þ ð21Þ

where Al ¼ fxi 2 A : xij � pg;Ar ¼ fxi 2 A : xij [ cg;Bl ¼ fxi 2 B : xij � pg;Br ¼
fxi 2 B : xij [ pg; a denotes negative gradient of loss function, 1�c

d is utilized to

normalize the sum of gradients.
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4.4.4 Logistic regression

LR [59] is a widely used statistical model for binary classification. It is a type of

regression analysis where the dependent variable is binary (0 or 1), representing two

possible outcomes. LR models the relationship between the binary dependent

variable and one or more independent variables, often using the logistic function,

also known as the sigmoid function represented as PhðxÞ, Eq. (22), to transform the

linear combination of the predictor variables into a probability value between 0 and

1. This probability can be interpreted as the likelihood of the binary outcome

occurring.

PhðxÞ ¼
1

1þ e�x
ð22Þ

The cost function will be,

Jðh; yÞ ¼ 1

2I

XI

i¼1

ðhhðxÞi � yiÞ2 ð23Þ

where hhðxÞ is the output obtained.

Due to the non-convex function, the cost function of LR becomes,

JðChðxÞi; yÞ ¼ � logðhhðxÞÞ if y ¼ 1 ð24Þ

JðChðxÞi; yÞ ¼ � logð1� hhðxÞÞ if y ¼ 0 ð25Þ

therefore, another representation of the cost function J(hh,y) is given as:

JðChðxÞ; yÞ ¼ � 1

2I

XI

i¼1

ðyðiÞlogðhhðxÞðiÞÞþ ð26Þ

ð1� yÞðiÞlogð1� ChðxÞðiÞÞÞ

4.4.5 CatBoost

CB is constructed on the foundation of symmetric decision trees [32]. This

algorithm is acknowledged as a classification method that not only produces

outstanding results but also demonstrates a tenfold enhancement in prediction speed

compared to other techniques that do not utilize symmetric decision trees.

Distinguishing itself from previous gradient-boosted-decision trees (GBDT) algo-

rithms, CB effectively handles gradient bias and prediction shift, leading to

improved prediction accuracy and generalization capabilities, especially with large

datasets. CB comprises two vital algorithms: ordered boosting, which calculates leaf

values during tree structure selection to prevent overfitting and a unique technique

for handling categorical features during the training process. Instead of using one-

hot encoding for categorical variables, CB utilizes the concept of ‘‘ordered target
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statistics,’’ a value derived from the ground truth output values that correspond to

specific values of an absolute attribute in the dataset.

5 Results evaluation

In this section, we empirically validate the efficacy of the proposed framework for

anomaly-based intrusion detection systems. To showcase the versatility and

applicability of the proposed model, we conducted experiments on three datasets.

The outcomes are juxtaposed with several baseline models including neural network

(NN), k-nearest neighbor (KNN), Naive Bayes (NB), SCD, decision tree (DT),

support vector machine (SVC), and Perceptron. This section presents, the

experimental setup and performance metrics selected for analysis of results are

elucidated, followed by an overview of the dataset used and the results analysis.

5.1 Experimental setup

The ABIDS-VEM1 system was developed in Python utilizing TensorFlow 2.13,

with the deep learning model crafted using Keras 2.13 and was tuned using random

hit and trial experiments. The implementation and evaluation of ABIDS-VEM were

carried out in Python 3.10.11 on an Asus Vivobook gaming laptop equipped with an

NVIDIA 1650 GPU, an i5 processor, and 8 GB of RAM, running a 64-bit operating

system. A detailed description of the model parameters is provided in Table. 2.

5.2 Performance metrics

In the evaluation of intrusion detection methods, various commonly employed

metrics are employed to gauge their effectiveness. These metrics offer insights into

how well the method can detect and categorize intrusions. Some of the essential

metrics used in this work for assessing intrusion detection methods include

accuracy, recall, precision, F1-score, and MCC. The efficacy of ABIDS-VEM is

1 https://l1nk.dev/ABIDS-VEM

Table 2 Model parameters

Dataset Features selected

XGBoost eta=0.3, gamma=0, max_depth=6, subsample=1, min_child_weight=1, max_bin=256

RF n_estimators=300, criterion=gini, min_samples_split=2, min_samples_leaf=1,

max_features=sqrt

LightGBM learning_rate=0.01, num_iterations=1000, num_leaves=30, max_depth=15, lambda_l1=0.5,

lambda_l2=0.5, feature_fraction=0.75, max_bin=1000

LR penalty=l2, dual=False, tol=0.0001, C=1, intercept_scaling=1, max_iter=100

CatBoost iterations=1000, depth=6, learning_rate=0.3, l2_leaf_reg=5, border_count=50,

boosting_type=Plain
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measured using metrics such as accuracy and F1-score while in cases with

imbalanced data, it can be measured through the precision, recall, and MCC values.

Accuracy assesses the overall correctness of the intrusion detection method in

distinguishing between attack and normal samples. Precision reflects the ratio of

correctly classified attack requests to the total samples classified as attacks. Recall

(or Sensitivity or True Positive Rate) indicates the number of correctly classified

attacks relative to the actual attack samples. The F1-score calculates the harmonic

mean of precision and recall. MCC serves as a measure of the quality of binary and

multiclass classifications, accounting for true and false positives and negatives, and

providing a balanced assessment even for imbalanced class sizes. The MCC is

essentially a correlation coefficient ranging from -1 to ?1. For better depiction, a

multiplier of 100 is used on the MCC score, making its range from -100 to 100.

Accuracy ¼ sþ t

sþ t þ uþ v
ð27Þ

Precision ¼ s

sþ u
ð28Þ

Recall (TPR) ¼ s

sþ v
ð29Þ

F1 score ¼2 � s

2 � sþ vþ u
ð30Þ

MCC ¼ ððs � tÞ � ðu � vÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ uÞ � ðsþ mÞ � ðt þ uÞ � ðt þ vÞ

p ð31Þ

Where s is true positive, t is true negative, u is false positive and v is false negative.

5.3 Dataset description

To obtain comprehensive results, the proposed framework is evaluated on three

distinct datasets: XIIoTID, NSL-KDD, and UNSW-NB15. The descriptions of these

datasets can be found in Tables 3, 4, and 5, respectively. These datasets are readily

accessible and have been widely utilized for benchmarking purposes within the field

of IDS. XIIoTID is specifically designed for IoT intrusion detection, reflecting the

challenges of securing interconnected industrial devices. NSL-KDD, though older,

remains a benchmark dataset for assessing network intrusion detection systems,

enabling comparisons with established methods and providing insights into broader

network security. UNSW-NB15 captures contemporary network behaviors, incor-

porating realistic attack patterns and normal traffic, making it particularly

suitable for evaluating advanced Industry 4.0 systems. Together, these datasets

comprehensively address the diverse security challenges faced in modern industrial
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environments, enhancing the empirical validation’s applicability to practical

scenarios.

For the UNSW-NB15 dataset, specific columns such as ‘dur,’ ‘proto,’ ‘service,’

and ‘state’ are initially removed. Subsequently, all the datasets undergo prepro-

cessing and feature selection using the EO method, with details of the selected

features provided in Table 6.

Table 3 XIIoTID dataset

description
Category Training instances Testing instances

Reconnaissance 89286 38304

Weaponization 46954 20306

Exploitation 785 348

Lateral movement 21960 9636

Command & control 1973 890

Exfiltration 15551 6583

Tampering 3598 1524

Crypto Ransomware 327 131

RDoS 99194 42067

Normal 294955 126462

Total 574583 305501

Table 4 NSL-KDD dataset

description
Category Training instances Testing instances

Normal 67343 9711

DOS 11656 7458

Probe 45927 2421

U2R 52 200

R2L 995 2754

Total 125973 22544

Table 5 UNSW-NB15 dataset

description
Category Label Training instances Testing instances

Analysis 0 2000 677

Backdoor 1 1746 583

DoS 2 12264 4089

Exploits 3 33393 11132

Fuzzer 4 18184 6062

Generic 5 40000 18871

Normal 6 56000 37000

Reconnaissance 7 10491 3496

Shellcode 8 1133 378

Worms 9 130 44

Total 10 175341 82332
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5.4 Performance comparison using XIIoTID dataset

Table 7 presents a comparative evaluation of different ML methods based on

various performance metrics. When considering recall ABIDS-VEM outperformed

the others with a value of 96.4549%. Whereas other methods range from 63.2281%

Table 6 EO selected features

Dataset Features selected

XIIoTID resp_bytes, missed_bytes, orig_pkts, resp_ip_bytes, total_bytes, paket_rate, byte_rate,

orig_packts_ratio, resp_pkts_ratio, orig_bytes_ratio, resp_bytes_ratio, Avg_nice_time,

STD_system_time, Avg_iowait_time, std_iowait_time, std_rtps, avg_kbmemused,

Avg_num_Proc.s, std_num_proc.s, Avg_num_cswch.s, std_num_cswch.s, Conn_state,

is_syn_only, Is_SYN_ACK, is_SYN_with_RST, OSSEC_alert, OSSEC_alert_level,

Login_attmp, Succ_login, file_act

NSL-KDD protocol_type, flag, dst_bytes, wrong_fragment, urgent, num_compromised, root_shell,

num_root, num_file_creations, is_host_login, count, srv_serror_rate, srv_rerror_rate,

diff_srv_rate, dst_host_same_srv_rate, dst_host_diff_srv_rate,

dst_host_same_src_port_rate

UNSW-

NB15

spkts, dpkts, sbytes, rate, dttl, sload, sinpkt, dinpkt, sjit, djit, swin, stcpb, dtcpb, dwin,

ackdat, smean, trans_depth, ct_dst_ltm, ct_src_dport_ltm, ct_dst_sport_ltm, ct_srv_dst,

is_sm_ips_ports

Table 7 Performance evaluation

on XIIoTID dataset
Method Recall F1-score Accuracy

NN 90.6796 89.8441 85.4992

KNN 93.1238 92.5003 90.3056

NB 66.1871 75.8097 72.8825

SGD Classifier 90.1103 84.3437 78.5234

DT 94.9705 95.0495 93.6489

SVC 95.9677 97.8036 97.8832

Perceptron 63.2281 74.2072 71.7823

Proposed 96.4549 98.0141 98.1476

Table 8 Time comparison of the

proposed approach on XIIoTID

dataset

Method Training time

NN 00249.1990

KNN 00235.2274

NB 00000.4830

SGD Classifier 00028.4167

DT 00003.6127

SVC 13448.1150

Perceptron 00000.5521

Proposed 00059.1193
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Fig. 5 Comparison of MCC on XIIoTID dataset

Fig. 6 Precision comparison on XIIoTID dataset

Table 9 Performance evaluation

on NSL-KDD dataset
Method Recall F1-score Accuracy

NN 91.6796 89.8441 85.4992

KNN 85.9722 91.9582 92.4636

NB 02.3336 05.5036 50.3371

SGD Classifier 42.9064 37.9031 29.5378

DT 86.5298 92.4015 92.8673

SVC 00.0973 00.1945 49.9290

Perceptron 43.7118 37.4365 26.7743

Proposed 98.6939 98.8499 98.9671
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to 95.9677% which is less in comparison to the proposed approach. In terms of the

F1-score the proposed framework excelled with a score of 98.0141%. The SVC

method was closely followed with a score of 97.8036%. Accuracy, indicating the

overall correctness of the classification, was highest for the proposed framework at

98.1476%, closely followed by SVC with 97.8832%. The proposed method

demonstrates a training time of 59.1193 s as described in Table 8, offering a

perspective on its computational efficiency compared to other techniques consid-

ering both accuracy and training time. These results suggest that the proposed

framework demonstrates competitive performance across these metrics and could be

a promising choice for the given task.

Figure 5 provides a comprehensive comparison of various ML methods based on

the MCC metric, which is commonly used to assess the quality of binary and

multiclass classifications. Among the methods, the proposed framework achieves

the highest MCC score of 96.3235%, highlighting its excellence in binary

classification tasks. Whereas other methods ranges from 48.5008% to 94.8212%,

which shows that the proposed method out performed over them.

Figure 6 offers a comparative analysis based on their precision metric indicating

that the proposed method stands out with the highest precision score of 99.6245%.

These results establish the significance of the precision of the proposed approach in

positive classifications, making it a robust choice for tasks that require accurate

positive predictions.

5.5 Performance comparison using NSL-KDD dataset

Table 9 presents a comparative analysis of techniques on the NSL-KDD dataset.

ABIDS-VEM demonstrates exceptional performance across all metrics. It method

excels in recall with a high score of 98.6939 %. The proposed framework also

achieves the highest F1-score at 98.8499, underlining its balanced precision and

recall for attack and normal requests. Moreover, the proposed framework attains a

remarkable accuracy of 98.9671 %, indicating a high degree of correctness in

classifying attack and normal requests. Among other methods, the KNN also

delivers a commendable performance, showcasing relatively short training time,

high recall, excellent F1-score, and impressive accuracy.

Table 10 Time comparison of

proposed approach on NSL-

KDD dataset

Method Training time

NN 0249.1990

KNN 0010.8241

NB 0000.5259

SGD Classifier 0000.8898

DT 0001.5004

SVC 4097.928

Perceptron 0000.7055

Proposed 0013.1976
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On the other hand, methods like NN, DT, and NB exhibit varying degrees of

performance in different metrics. Meanwhile, the SGD Classifier, SVC, and

Perceptron methods demonstrate relatively lower performance across these metrics.

The proposed framework has a moderate training time of 13.1976s as indicated in

Table 10, showcasing a reasonable training duration. These results highlight the

robust performance of the proposed framework across various evaluation criteria,

making it a promising choice for applications demanding strong performance in

intrusion detection.

Figure 7 provides an MCC comparison, where higher scores indicate better

performance. ABIDS-VEM stands out with a remarkable MCC score of 97.9162 %,

showcasing its outstanding quality in classification tasks. It exhibits a high level of

agreement between predicted and actual classifications. The DT method also

achieves a notable MCC score of 86.4427 %, showing its effectiveness in

Fig. 7 MCC comparison on NSL-KDD dataset

Fig. 8 Precision comparison on NSL-KDD dataset
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classification tasks. On the contrary, the KNN method demonstrates a

respectable MCC score of 85.664, implying its strong performance in classification.

However, several methods, such as NN, NB, and SVC, exhibit relatively lower

MCC scores, suggesting less effective performance in classification. Notably, the

SGD Classifier and perceptron methods display negative MCC scores, signifying a

significant discord between predicted and actual classifications. In contrast, the

Table 11 Performance

evaluation using UNSW-NB15

dataset

Method Recall F1-score Accuracy

NN 90.9093 89.8441 85.4992

KNN 93.1238 92.5003 90.3056

NB 66.1871 75.8096 72.8825

SGD Classifier 90.1103 84.3438 78.5233

DT 94.9705 95.0495 93.6489

SVC 92.1943 91.2986 88.012

Perceptron 63.228 74.2072 71.7823

Proposed 96.6264 96.2352 94.1327

Table 12 Time comparison for

UNSW-NB15 dataset
Method Training time

NN 0249.1999

KNN 0235.2274

NB 0048.3004

SGD Classifier 0028.4167

DT 0003.6127

SVC 6335.2206

Perceptron 0000.5520

Proposed 0023.0519

Fig. 9 MCC comparison for UNSW-NB15 dataset
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proposed framework excels in terms of MCC, making it a promising choice for

applications requiring precise and reliable classifications.

Figure 8 showcases a comparison of precision scores across various methods,

with the proposed framework achieving an outstanding precision score of 99.0063

%. Close behind, DT method records a precision score of 96.1281 %, while the

KNN method impresses with a score of 98.8401 %, and NN posts a commendable

score of 91.5188 %. On the other hand, methods like SVC and NB register relatively

lower precision scores. Particularly, the SGD and perceptron methods exhibit the

lowest precision scores, highlighting their propensity for a higher frequency of false

positives in their classifications. Contrarily, the proposed framework distinguishes

itself by its superior precision, rendering it an exemplary option for scenarios

demanding highly accurate identification of positive samples.

5.6 Performance comparison using UNSW-NB15 dataset

Table 11 presents an evaluation of ML methods on the UNSW-NB15 dataset, with

Table 12 describing the training time. It indicates that the proposed framework has a

training time of 23.0519 s, a recall of 96.6264 %, an F1-score of 96.2352 %, and an

accuracy of 94.1327 %. Whereas other methods achieved training time ranging in

between 0.5520 to 6335.22 s and recall ranges from 63.228 % to 94.9705 %.

Similarly, for other metrics such as F1-Score and accuracy, results lie between

74.2072 % and 95.0495 %, respectively, for other methods.

Figure 9 illustrates that the proposed method outshines all others with an MCC

score of 82.9617 %, surpassing the performance of alternative techniques, which

achieve MCC scores ranging from 48.500 % to 81.193 %. Consequently, in terms of

efficacy in managing the UNSW-NB15 dataset for intrusion detection tasks, the

proposed approach stands as the superior option.

Figure 10 displays precision values and demonstrates that the proposed

framework achieves the highest precision of 95.8471 %, indicating a strong ability

Fig. 10 Precision comparison using UNSW-NB15 dataset
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to make accurate positive predictions. DT follows closely with a precision value of

95.1287 %, showcasing robust classification performance. KNN achieves a

precision value of 91.8851 %, signifying its accuracy in positive predictions. Other

methods, including NN, SVC, and NB, exhibit precision values of 81.6213,

85.3078, and 88.7061, respectively, showing their ability to make accurate positive

predictions. SGD Classifier and perceptron show precision values of 79.2709 and

89.8004, respectively, providing insights into their performance in handling the

UNSW-NB15 dataset for intrusion detection applications.

Figure 10 reveals that the DT method demonstrates its effectiveness with a

precision of 95.1287 %, indicating a high level of accurate classifications. The KNN

method, with a precision of 91.8851 %, also proves to be reliable in predicting

positive outcomes accurately. Other methodologies like NN, SVC, and NB register

precision scores of 81.6213 %, 85.3078 %, and 88.7061 %, respectively,

underscoring their proficiency in making correct positive predictions. The SGD

Classifier and perceptron, with precision scores of 79.2709 % and 89.8004 %,

respectively, offer insights into their relative effectiveness when applied to the

UNSW-NB15 dataset in intrusion detection scenarios, illustrating a spectrum of

accuracy in identifying true positives across different techniques. However, the

proposed framework outperforms all and leads at 95.8471 %, indicating its superior

capability in accurately identifying true positive instances.

5.7 State-of-art comparison

Table 13 offers a comparative analysis between the ABIDS-VEM and various

state-of-the-art models. The proposed model exhibits significant improvements

Table 13 State-of-art

comparison with proposed

approach

Dataset Model Accuracy MCC Recall F1-score

XIIoT-ID [54] 93.5 – 87.9 93.3

[60] 99.8 – 99.7 99.6

[61] 91.07 – – –

Proposed 98.1 96.3 96.4 98.0

NSL-KDD [52] 93.2 – 93.2 93.1

[53] 86.5 – 79.2 87.0

[54] 95.9 – 95.0 95.9

[60] 99.5 – 99.4 99.4

[62] 91.5 – – -

Proposed 99.0 98.0 99.0 99.0

UNSWNB-15 [54] 82.2 – 74.3 81.8

[50] 77.4 – 71.3 75.5

[62] 99.2 – – –

[63] 95.3 – 98.9 97.4

Proposed 94.1 83.0 96.6 96.2
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across all performance metrics, indicating a substantial enhancement in intrusion

detection capabilities. However, the studies cited in [60, 62, 63] employ DL models,

which perform better than the proposed approach. Nonetheless, the emphasis of this

paper lies in presenting a proposed method characterized by low computational cost,

suitable for deployment in resource-constrained environments. The training and

deployment of ML-based ensemble models is faster and more cost-effective

compared to DL, which frequently necessitates the use of GPUs. ML ensembles

offer greater ease of implementation in low-resource settings compared to intricate

deep-learning models. These consistent improvements across diverse datasets

suggest that the proposed approach is not merely incrementally better but potentially

represents a transformative advancement in intrusion detection capabilities.

5.8 Ablation study

Table 14 presents the performance evaluation of various feature selection

techniques on the XIIoTID dataset. The proposed method, EO ? VEM, outperforms

other techniques in terms of recall (96.4549) and accuracy (98.1476), while

achieving a competitive F1-score of 98.0141. ANOVA ? VEM attains the highest

F1-score (98.0268) but slightly lower recall (96.3836) and accuracy (98.0982)

compared to the proposed approach. Other techniques, such as MI ? VEM, Pearson

Table 14 Performance

evaluation for various feature

selection techniques on XIIoTID

dataset

Method Recall F1-score Accuracy

EO 1 VEM (Proposed) 96.4549 98.0141 98.1476

MI ? VEM 96.6156 97.5642 97.6566

Pearson coefficient ? VEM 96.5895 97.9736 98.0621

RFE ? VEM 95.1918 96.4179 96.5536

RF ? VEM 96.1638 97.2687 97.3753

ANOVA ? VEM 96.3836 98.0268 98.0982

Fig. 11 MCC comparison for various feature selection techniques on XIIoTID dataset
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coefficient ? VEM, and RF ? VEM, exhibit strong performance, though they fall

short of EO ? VEM in overall accuracy. RFE ? VEM shows the lowest recall

(95.1918) and accuracy (96.5536), indicating it may be less effective.

Figure 11 presents a comparison of MCC indicating that the proposed EO ?

VEM method achieves the highest MCC score (96.3235), indicating superior model

performance. ANOVA ? VEM (96.2212) and Pearson coefficient ? VEM

(96.1537) also perform well but fall slightly short of the proposed approach. MI

? VEM (95.324) and RF ? VEM (94.7665) demonstrate moderate MCC values,

while RFE ? VEM records the lowest MCC (93.1271), suggesting weaker

predictive capability. These results highlight the effectiveness of EO ? VEM in

optimizing feature selection for improved model performance.

Figure 12 presents a comparison of precision scores. ANOVA ? VEM (99.4024)

and Pearson coefficient?VEM (99.398) demonstrate strong precision values, though

slightly lower than the proposed approach (99.6245). MI?VEM (98.5316) and RF?

VEM (98.3994) follow with moderate performance, while RFE ? VEM records the

lowest precision (97.6759). These results highlight the effectiveness of EO?VEM in

achieving superior precision compared to alternative feature selection methods.

5.9 Computational complexity analysis

The computational complexity of an EO is described by a function that correlates

the algorithm’s execution time with the input problem’s size. In this context, the

widely used Big-O notation is employed. The complexity is influenced by several

factors, including the no. of particles, the no. of dimensions, the no. of iterations

‘‘itr‘‘, and the cost of function evaluation.

OðEOÞ ¼ OðpdÞ þ OðinitÞ þ OðitrðfeÞÞ þ OðitrðmsÞÞ þ OðitrðcuÞÞ ð32Þ

where, pd=problem definition, init=initialization, fe=function evaluations,

ms=memory saving, cu=concentration update, itr=iterations, um=update mechanism.

Fig. 12 Precision comparison for various feature selection techniques on XIIoTID dataset
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Neglecting less influential terms such as O(pd), and combining the terms

OðitrðmsÞÞ þ OðitrðcuÞÞ to O(um), Eq. (32) could be given as,

OðEOÞ ¼ OðinitÞ þ OðitrðfeÞÞ þ OðumÞ ð33Þ

Consider P as the number of particles, D as dimensionality, Eq. (33) could be given

as,

OðEOÞ ¼OðP � DÞ þ OðP � feÞ þ OðP � DÞ per iteration ð34Þ

OðEOÞ ¼Oð2 � P � DÞ þ OðP � feÞ per iteration ð35Þ

OðEOÞ ¼OðP � ðDþ feÞÞ per iteration ð36Þ

For I iteration Eq. (36) could be given as,

OðEOÞ ¼ Oðitr � P � ðDþ feÞÞ per iteration ð37Þ

The overall computational complexity of the proposed framework could be ana-

lyzed as:

OðProposed frameworkÞ ¼ OðEOÞ þ OðmodelgÞþ ð38Þ

O(Voting)
This can be simplified to,

OðProposed frameworkÞ ¼ Oðitr � P � ðDþ feÞÞ þ OðmodelgÞ þ OðN � VÞ ð39Þ

where N is the number of classifiers and V is the time for each classifier.

Therefore, the overall computational complexity is of the polynomial order.

6 Conclusion and future work

The proposed Anomaly-Based Intrusion Detection System using the Voting-based

Ensemble Model (ABIDS-VEM) exhibits exceptional efficacy across diverse

datasets, positioning it as a formidable solution for fortifying network infrastruc-

tures against emerging cyber threats. Rigorous evaluation on the XIIoTID, NSL-

KDD, and UNSW-NB15 benchmarks demonstrates its superiority over traditional

machine learning paradigms, including neural networks, k-nearest neighbors, Naive

Bayes, stochastic gradient descent, decision trees, support vector classifiers, and

perceptrons. The framework’s remarkable performance is evidenced by its high

recall rates, peaking at 98.6939%, which underscores its proficiency in minimizing

false negatives and effectively identifying intrusions. Moreover, the model achieves

F1-scores exceeding 98.8499%, indicative of an optimal balance between precision

and recall. With accuracy metrics surpassing 98.9671%, ABIDS-VEM showcases

unparalleled prowess in discriminating between benign and malicious network

activities. These compelling results underscore the model’s potential as a critical

component in next-generation cybersecurity architectures, capable of adapting to
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and mitigating evolving threat landscapes. Future research directions include

enhancing the framework’s resilience against adversarial AI-based attacks and

exploring its applicability in real-time, high-throughput network environments. In

parallel, we recognize that our initial experiments were conducted on an Asus

Vivobook gaming laptop equipped with an NVIDIA 1650 GPU and 8GB RAM-a

setup that, while sufficient for research, prompts questions about the model’s

scalability in large-scale industrial networks. Moving forward, we plan to

investigate the memory and processing time requirements in production environ-

ments, incorporate additional metrics for a more comprehensive evaluation, and

compare our approach with traditional balancing techniques.
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