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ABSTRACT

The application of artificial intelligence (AI) in healthcare has been witnessing an increasing interest. Particularly, federated
learning (FL) has become favourable due to its potential for enhancing model quality whilst maintaining data privacy and se-
curity. However, the effectiveness of present FL methodologies could underperform under non-IID conditions, characterised
by divergent data distributions across clients. The globally constructed FL model may suffer potent issues by allowing the least-
performing models to equal participation. Thus, we propose a new accuracy-based FL approach (Fed Acc) which only takes into
account the clients' validation accuracy to consider their participation during global aggregation, also called Smart Healthcare
Amplified (SHA). However, with limited supervised data it is challenging to increase the model performance thus concept of
transfer learning (TL) is used. TL enables the global model to integrate knowledge from precomputed systems, resulting in an
efficient model. However, the complexity of the global system is amplified by these TL models, leading to challenges related
to vanishing gradients, particularly when dealing with a substantial number of layers. To mitigate this, we present a Transfer
Learning Domain Adaptation Model (TLDAM). TLDAM employs a two-layered sequentially trained TL model, which contains
approximately 50% fewer layers compared to traditional TL models. TLDAM is trained on multiple datasets such as MNIST
and CIFARIO0, to enhance its knowledge and make it domain-adaptive. Moreover, experimental results conducted on the UCI-
HAR dataset reveal the supremacy of our proposed framework with an accuracy of 94.2990%, F-score of 94.2820%, precision of
94.3058%, and recall of 94.2993% over traditional FL techniques and state-of-the-art techniques.

1 | Introduction by an escalating demand for security and privacy measures.

The development of AI has led to more smart applications in

Healthcare is a growing area of research that has an unmeasur-
able effect to improve the quality of life. It aims at the prevention
and treatment of diseases, and injuries along with monitoring
all the steps to recovery. With enhanced artificial intelligence
(AI) capabilities in the healthcare industry, the landscape of
healthcare is undergoing a remarkable transformation driven
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the medical sector but has also increased the need for security
(Verma et al. 2022).

In addition to that, Internet of Things (IoT) devices play a pivotal
role in transforming the healthcare landscape by offering a mul-
titude of benefits that enhance patient care, medical practices
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and overall healthcare efficiency (El-Sherif et al. 2022; Tam
et al. 2023). They have evolved into independent data sources
with the potential to revolutionise the healthcare sector. The in-
tegration of IoT in healthcare holds the promise of significantly
enhancing healthcare capabilities. They enable the exchange
of data and computational capabilities thus improving health-
care stats (Borgia 2014; Madakam et al. 2015; Sun, Liu, and
Yue 2019), and pharmaceutical manufacturing pipelines and
eventually enabling affordable good healthcare (Choi, Xiao, and
Stewart 2018; Lu et al. 2022a; Unal, Akgun, and Pfeifer 2021).

These devices enable continuous tracking of vital signs, fa-
cilitate remote consultations, provide valuable health trend
data, enhance treatment personalization and optimise health-
care workflows. Wearable health technology empowers indi-
viduals to engage in healthier behaviours, whilst IoT-driven
emergency alerts and medication management systems en-
sure rapid responses and improved adherence. Moreover,
10T devices contribute to medical research, public health sur-
veillance and cost-effective healthcare delivery, ultimately
leading to enhanced patient outcomes, reduced costs and more
patient-centred medical approaches (El-Sherif et al. 2022; Tam
et al. 2023). However, there is not a reliable data source that can
offer all the essential details, and frequently labels are absent
for the vast bulk of training data. Due to the shortage of data
and labels, machine learning (ML) models could not function
properly, which causes a bottleneck for intelligent medical sys-
tems. Medical institutions are not willing to share their data due
to data privacy and security issues. Thus, integrating federated
learning (FL) is a viable approach to overcome the above issues.

FL (McMahan et al. 2017) presents a distributed architecture that
adeptly addresses challenges associated with centralised learn-
ing paradigms (Xiong et al. 2020). These challenges encompass
vulnerabilities like single points of failure and communication
bottlenecks. A distinctive feature of FL is its ability to shift the
computational burden from the central system to the individual
client (Issa et al. 2023; Verma, Breslin, and O'Shea 2022). The
amalgamation of FL within healthcare along with IoT has sig-
nificant potential. FL plays a crucial role in healthcare (Chen
et al. 2020) and smart healthcare systems (Li et al. 2021; Zhang,
Kou, and Wang 2021; Zhou et al. 2022). This novel approach
eliminates the need for data transfer to a centralised system for
further processing and distribution of the workload (Manickam
et al. 2022; Singh et al. 2022). The performance of these FL mod-
els could be then evaluated based on accuracy and communi-
cation rounds (Khan, Glavin, and Nickles 2023). Here, instead
of aggregating data on a centralised server, learning takes place
directly on user devices whilst only sharing model updates en-
suring robustness, scalability and improved accuracy, setting it
apart as a potent solution for contemporary ML challenges.

However, in FL the inherent variability in client data presents a
hurdle, potentially leading to the inclusion of under-performing
models on equal footing during global aggregation (Verma,
Breslin, and O'Shea 2023). To surmount this issue, we propose
FedAcc, a novel approach that selectively considers clients' val-
idation accuracy levels for participation during the global ag-
gregation process. The resulting aggregated system is poised to
foster the development of an improved global framework with
enriched capabilities.

The concept of transfer learning (TL) holds paramount impor-
tance in ML and deep learning (DL) due to its ability to enhance
data efficiency, expedite training, improve generalisation, ad-
dress limited data challenges, facilitate domain adaptation,
aid in feature learning, mitigate over-fitting risks, conserve re-
sources and enable state-of-the-art performance. By leveraging
knowledge from pre-trained models, TL empowers models to
transfer learned features and patterns across tasks and domains,
ultimately advancing the capabilities of various applications and
domains in the field of AL In the realm of healthcare datasets,
TL (Kishor and Chakraborty 2022; Nguyen et al. 2022), has
emerged as a preeminent technique due to its demonstrated su-
periority in performance. TL empowers the global model to har-
ness knowledge from precomputed systems, thereby elevating
its performance levels. However, the integration of TL models
introduces complexities that can lead to challenges, notably the
issue of vanishing gradients, especially within models featuring
a substantial number of layers. To address this concern, we in-
troduce a Transfer Learning-based Domain Adaptation Model
(TLDAM). This model design employs a two-layered sequen-
tially trained TL architecture, boasting a streamlined structure
with approximately 50% fewer layers compared to traditional TL
models. Our TLDAM approach is honed through training on di-
verse datasets, including MNIST and CIFAR10, thereby enhanc-
ing its domain adaptability and performance capacity.

The superiority of our proposed framework which includes
TLDAM and FedAcc methodologies, jointly called Smart
Healthcare Amplified (SHA), is empirically established through
rigorous experimentation on the UCI-HAR dataset. The experi-
mental results of the SHA validate the efficacy of our approach
over conventional FL techniques and state-of-the-art meth-
odologies, reinforcing their potential to reshape and advance
healthcare system paradigms. The contributions of the SHA
framework are as follows:

« Proposed framework SHA adopted FL to enable secure and
efficient distributed computation. By applying FL, the paper
establishes a novel approach that addresses the challenge of
the limited computational capacity of centralised systems,
allowing for distributed model training whilst maintain-
ing data privacy. Thus, exemplifying the potential of FL
to advance healthcare capabilities in a secure and privacy-
conscious manner.

« This work also contributes FedAcc, a novel approach that
leverages clients' accuracy levels for participation in global
aggregation. By selectively considering accuracy, FedAcc
addresses the issue of under-performing models influenc-
ing aggregated results, leading to more accurate outcomes
in healthcare data analysis.

« SHA introduces the streamlined two-layered TLDAM to
overcome complexities in TL. With fewer layers than tra-
ditional models, TLDAM enhances adaptability whilst
effectively integrating knowledge from diverse datasets.
Empirical validation confirms TLDAM and FedAcc's supe-
riority over existing methodologies, promising transforma-
tive healthcare advancements.

The subsequent sections of the paper are structured as follows:
Section 2 delves into an exploration of related work in the field.
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In Section 3, we present the foundational concepts and prelimi-
nary knowledge relevant to our study. The core of our contribu-
tion, the proposed framework, is elaborated upon in Section 4,
where we outline its design and mechanics. Moving forward,
Section 5 conducts a thorough examination of the experimen-
tal results and provides an insightful analysis. Lastly, Section 6
encapsulates the paper by summarising our findings, drawing
conclusions from the study, and suggesting potential avenues for
future research and development.

2 | Related Work

McMahan et al. (2017) introduced a robust methodology that
employs a deep network model to effectively handle decen-
tralised data through an efficient communication system.
This approach demonstrates resilience in the face of chal-
lenges posed by unbalanced and non-IID data distribution.
The concept of non-IID refers to the disparity between a
user's local dataset and the overall population distribution,
often stemming from individual mobile device usage patterns.
Meanwhile, “unbalanced” data pertains to varying levels of
usage amongst users, resulting in unequal local training data.
By tackling these complexities, their proposed method show-
cases the adaptability of deep models in decentralised scenar-
ios, shedding light on their efficacy in real-world applications
with diverse data dynamics.

Jiménez-Sanchez et al. (2023) centre their research on enhanc-
ing the efficacy of computer-aided diagnosis (CAD) systems
for breast cancer detection, a field challenged by the scarcity of
representative positive cases in routine mammography imaging
datasets. Their study introduces a novel memory-aware curricu-
lum learning approach within the context of FL. In this method,
local models operate on their private data to update the global
model. The proposed curriculum guides the sequence of train-
ing samples, giving precedence to those that tend to be over-
looked. This strategy is complemented by unsupervised domain
adaptation, addressing domain shifts whilst ensuring data pri-
vacy. By merging these innovative techniques, the study endeav-
ours to bolster the performance of CAD systems, particularly in
scenarios characterised by data imbalance and domain varia-
tions. Xiong et al. (2021) tackle the challenge of FL with non-IID
data, a common occurrence in real-world contexts. They employ
multiple strategies to address this issue, encompassing data par-
titioning, model aggregation and TL techniques. Subsequently,
the effectiveness of these methods is evaluated across diverse
datasets. This study contributes to the advancement of FL meth-
odologies, shedding light on techniques that can mitigate the
impact of non-1ID data distributions, thereby enhancing the re-
liability and adaptability of FL models across various application
domains.

The proposal by Du et al. (2017) centres on employing Long
Short-Term Memory (LSTM) networks to model system logs as
sequences resembling natural language. Through the acquisi-
tion of log patterns during regular operations, their approach
strives to identify anomalous behaviours by detecting deviations
from the log-generated model established during normal execu-
tion. This method capitalises on LSTM's sequential learning ca-
pabilities to enhance anomaly detection in system logs, thereby

contributing to improved system monitoring and ensuring
timely identification of irregular activities.

In the healthcare landscape, data from diverse sources such as
clinical institutions, patients and insurers are driving the sig-
nificance of ML services. To ensure trustworthy ML models
amid growing privacy concerns, FL gains prominence due to its
ability to preserve data integrity across IoT devices. However,
network instability challenges FLs accuracy. Houssein and
Sayed (2023) present a novel approach using FedImpPSO, an
enhanced Particle Swarm Optimization, for FL model updates.
Their method exhibits improved accuracy and robustness in un-
stable networks, proven with case studies on COVID-19 classifi-
cation and cardiovascular prediction, emphasising its potential
in healthcare and privacy-driven domains.

Gupta et al. (2024) explores MLs transformative role in health-
care, detailing its applications in diagnosis, literature compari-
sons and real-life use cases. It discusses the challenges within
the healthcare system, practical disease prediction implementa-
tions and the future of ML in enhancing global health outcomes,
ultimately improving patient care and reducing costs. Another
article (Puri, Kataria, and Sharma 2024) proposes an Al-enabled
decentralised healthcare framework to address the challenges of
remote patient monitoring, such as security and privacy issues.
Utilising AI smart contracts and public blockchain, it authenti-
cates IoT devices and ensures transparency in patient records
whilst improving system metrics like energy consumption and
latency in a real-time test environment.

Alkhdour et al. (2024) proposed a solution that integrates fuzzy
logic algorithms with blockchain technology to improve authen-
tication security in digital healthcare environments. Fuzzy logic
helps reduce false positives and negatives, enhancing the sys-
tem's defence against various cyber threats. Blockchain offers a
decentralised, tamper-resistant structure for secure data man-
agement, ensuring transparency and trust. This dual approach
not only efficiently handles authentication requests, promoting
scalability, but also lowers communication overheads and im-
proves system responsiveness. Tested against the NIST Special
Database 302, the method shows superior performance, exhib-
iting robustness against attacks like replay, man-in-the-middle,
DoS and impersonation, making it ideal for secure peer-to-peer
cloud interactions.

In the study “Federated Learning for Healthcare Informatics”
Zhang et al. focuses on harnessing FL's capabilities in healthcare
informatics, a field dedicated to analysing medical data from
diverse sources to enhance patient care and results. The paper
delves into the myriad applications of FL within healthcare,
spanning disease diagnosis, drug exploration and personalised
treatment approaches. The authors underscore the significance
of this approach whilst addressing the pertinent challenges
posed by data heterogeneity, privacy concerns and regulatory
adherence. The study also offers potential resolutions to these
challenges and outlines promising avenues for future research,
affirming the role of FL as a transformative tool in the realm of
healthcare informatics.

While FedAvg is effective in various scenarios, challenges like
non-I1ID dataand the need for personalised client models persist
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(Khodak, Balcan, and Talwalkar 2019; Smith et al. 2017; Zhu,
Hong, and Zhou 2021). A comprehensive survey discussing FL
on non-IID data can be found in Zhu et al. (2021). FedProx
(Zhang et al. 2022) addresses non-IID data by allowing par-
tial aggregation and integrating a proximal term with FedAvg.
In Yeganeh et al. (2020), client model weights are aggregated
via L1 distance. Some approaches concentrate on a universal
model shared by all clients, whilst others strive for unique
models for each. Arivazhagan et al. (2019) exchange base
layer information whilst retaining a personalization layer to
mitigate non-IID effects. Dinh, Tran, and Nguyen (2020) em-
ploys Moreau envelopes as client-regularised loss functions,
decoupling personalised model optimization from global
learning. Amid the surge in healthcare-oriented ML, FL gains
traction for privacy-preserving models. FL's efficacy, however,
diminishes with non-IID scenarios. Addressing this, propose
FedAP (Lu et al. 2022b), harnessing batch normalisation layer
stats for client similarity whilst retaining specificity through
local normalisation. Across five healthcare benchmarks,
FedAP outperforms state-of-the-art methods with notably
enhanced accuracy (e.g. >10% for PAMAP2) and accelerated
convergence.

While FedAvg, a commonly used aggregation technique, ex-
hibits effectiveness, it grapples with issues concerning non-
IID data distribution and the need for personalised models.
Thus to overcome above issues we propose a FedAcc and
TLDAM-based framework called SHA. TLDAM, a component
of the SHA framework, introduces a two-layered sequential
TL model with reduced complexity. This architecture enables
the extraction of task-specific features from diverse healthcare
datasets whilst minimising the risk of over-fitting or excessive
model complexity. By leveraging TL techniques, TLDAM fa-
cilitates the adaptation of pre-trained models to new tasks or
domains, thereby enabling the creation of personalised mod-
els that can effectively capture the nuances of individual pa-
tients or medical conditions.

3 | Preliminaries
3.1 | Centralised Learning

Centralised learning refers to a traditional approach in ML
where data from various sources such as IoTs is collected at
a single server to train the model. In this approach, a central
server or processing unit is responsible for aggregating all the
data from different clients or sources, conducting the train-
ing process, and then distributing the trained model back
to the clients. Developments show that with increasing data
size, security concerns and user restrictions day-by-day, it be-
comes arduous to implement a centralised approach (Ferrag
et al. 2022; Haddad, Hedjazi, and Aouag 2022; Namalomba,
Feihu, and Shi 2022).

3.2 | Federated Learning
FLis Google developed method thatbrings the computation to the

client itself. Let there be K clients k € K, and the number of com-
munication rounds be I" and client training data as train,, train,,

traing, ..., train,, ..., train,. Each train, = {train_Xk, trainﬂyk}f:1
and testing dataset as test_X, test_y for all clients. Each training
data has distinct distribution such that P(train,) # P(train,).
Every client has its individual local model 7; and it is trained with
loss function as:

1
train,,w) = —— train_X,, train_y,,w
¢ (trainy, w) [traing | z‘,gk( k  Yew) (D)
where Y, varies for (train_X,,train_y,) € train, and

Ck(train_Xk, train_yk,w) is a specific function to be minimised.
So our goal is to finally aggregate the 7, to obtain global model z,
for each client by maintaining the data privacy:

trainy

K
i Iy _ 1 Y ) )

min = train_X, ), train 2

{Tk}f:IKkZ; | train,, | ; g(fl (train_X,) Vi) @

3.3 | Nesterov Accelerated Gradient Descent

The main idea of Nesterov Stochastic Gradient Descent (NSGD)
is to look ahead before making the gradient update. This helps
to anticipate the future position and adjust the update accord-
ingly, allowing the algorithm to converge faster and with fewer
oscillations compared to traditional Stochastic Gradient Descent
(SGD). This concept is particularly beneficial when dealing
with complex optimization landscapes like those encountered
in Deep Neural Networks (DNN). The main idea of NSGD is to
look ahead before making the gradient update. A standard SGD
works on:

Wiy =w; —n V¢ (traing, w;) ©)]

Y Aul
V¢ (traing, w;) = ==Lk @

K .
D traing

where 7 is the learning rate and Ayl = | train}, | V¢ (train), w')
is the locally computed client gradient and uploaded to server.
However, NSGD works as:

I +1) =yID) +n VW) —y x I) ©)

wi+1)=w(i)—-39@(+1) ©)

where 9 is velocity at ith iteration, and y is momentum parameter
withy € {0,1}.

3.4 | Transfer Learning

TL is an DL technique where knowledge gained from training
a model on one task is applied to improve performance on a re-
lated but different task. By leveraging the learned features or
parameters, TL reduces the need for extensive training data and
computation for the new task. This approach is particularly ef-
fective when data is limited, enhancing model accuracy, conver-
gence speed and generalisation. Pre-trained models from large
datasets serve as valuable starting points. Fine-tuning or feature
extraction methods adapt the model for the target task. Here
the layers of the model are frozen and then collaborated (or not)

40f 15

Expert Systems, 2025

85USD17 SUOWILLOD BAIERID B|qedl|dde au) Ag peuenob a1e SR VO 88N JO S3INJ J0} ARG 1T BUIIUO AB]IM UO (SUORIPUOD-PUR-SLLLBHWOD" A3 I ARRIq 1BUIIUO//SANY) SUORIPUOD PU SWB L U3 885 *[9202/T0/9T] U0 ARIgIT8uluO ABIIM ‘AVMTVO ANV T3 40 ALISHIAINN TYNOILYN AQ LZ8ET ASX/TTTT OT/I10p/w00" A8 |1m AReid 1)Ul uo//Sdny wo.y papeoumoq ‘g ‘SZ0Z ‘76E089rT



with different DL models to design domain-specific solutions.
This concept of layer freezing deters the frozen layer weights to
be updated thus enabling the pre-trained model to transfer its
knowledge to the new model.

3.5 | Activation Functions

Activation functions play a pivotal role in neural networks,
shaping their ability to model complex relationships within
data. Three of the used activation functions in SHA are Rectified
Linear Unit (ReLU), Softmax and Scaled Exponential Linear
Unit (SELU). ReLU, a widely employed activation, defined as the
max of zero and the input, effectively introducing non-linearity
whilst disregarding negative values.

ReLu(y) = 6(¥) = max(0,y) )

Softmax, on the other hand, is often employed in multi-class
classification tasks, normalising the input values into a proba-
bility distribution, making it suitable for selecting the most prob-
able class.

Vi
N
i=1

softmax(y) = o(y) =

®

eVi

where x = [y, 95,3, .., Il

SeLu is a self-normalising activation, designed to combat the
vanishing/exploding gradient problem. It maintains mean and
variance stability within layers, enhancing network training
and potentially yielding improved performance. Each activation
function serves a unique purpose, contributing to the neural
network's capacity to model intricate patterns and produce ac-
curate predictions in diverse scenarios.

SeLu(y)= Ay or A(ae’ —a) ©)

depending on y > 0 or y < 0 respectively.

4 | Proposed Work

This section formulates the proposed work. It starts by describ-
ing the need for this approach, and the FL procedure and finally
explains the various components involved in the proposed work.
All the notations used in the proposed system are described in
Table 1.

Existing TL methods in healthcare face several drawbacks that
impede their effectiveness. Firstly, these methods often strug-
gle with domain shifts, as healthcare data can exhibit variations
across different sources and institutions, making it challenging
to adapt models effectively. Secondly, the presence of non-IID
data distribution, where data from different clients or sources
have varying statistical properties, hinders the direct applicabil-
ity of pre-trained models. Moreover, some TL models may suf-
fer from scalability issues, especially when dealing with large
and complex medical datasets, causing training times to in-
crease significantly. To mitigate these challenges, we propose a

TABLE1 | Meanings and notations.

Meaning Notation
TL model local and global 7iand 7,
Moderation index at round r ¢
Total communication rounds r
Total clients K
Scaling factor at round r sf™"
Aggregated weights at round r a,g)
Activation function o
Velocity at ith iteration 9
Momentum parameter 4
Loss function ¢
Weights of local model w
Iterations i

multi-TL concept called TLDAM. This multi-TL concept strives
to enhance the adaptability and performance of TL methods in
healthcare, providing potential solutions to the sector's prevail-
ing challenges.

Additionally, it has been observed and experimentally proved
that centralised approaches for data scrutinization fall
apart and face various issues (Ferrag et al. 2022; Haddad,
Hedjazi, and Aouag 2022; Namalomba, Feihu, and Shi 2022).
Therefore, FL has emerged as a potent solution for seamless
integration into the healthcare sector. FL is a distributed ap-
proach where model training occurs locally on decentralised
devices or clients, preserving data privacy. Models' updates
are then aggregated on a central server, enhancing the global
model collaboratively whilst keeping sensitive data localised
and private.

This section delineates the architecture of the proposed frame-
work which has two components: the TLDAM framework and
FedAcc. The images or data captured by healthcare systems
can serve as inputs to pre-trained TL models, synergistically
amalgamated with DL techniques to formulate innovative
solutions. As illustrated in Figure 1, the FL process within
the healthcare domain is portrayed, specifically focusing on
incorporating FedAcc. This integrated approach harnesses
the power of distributed learning to address healthcare chal-
lenges, underpinned by TL's adaptability and the data-sharing
potential of FL, ultimately culminating in enhanced health-
care outcomes.

Firstly, the TLDAM process commences with training the model
using MNIST and CIFARI10 images. The TLDAM model is
merged with convolutional neural networks (CNNs) and multi-
layer perceptrons (MLPs), producing a global model. The initial-
ization involves sharing initial parameters between the global
model and clients. Following this, clients train their individual
models on personal datasets and transmit both model weights
and validation accuracy to the global server. These validation
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FIGURE 1 | Federated framework. (1) Server initializes the process by sharing model z, for training of each client, (2) Local model 7, are then
trained by each client with their data, (3) Client shares the local model 7, parameters with their accuracy, (4) Server aggregates the local models 7, to
obtain global weights and shares them with clients, and (5) Repeat steps (2)-(4) for communication rounds I'.

accuracy values serve to define the scaling parameters to apply
FedAcc. Leveraging validation accuracy, the server aggregates
the weights of clients using FedAcc. Once a communication
round concludes, the server returns aggregated weights to cli-
ents for subsequent analysis or predictions, embodying a cyclic
and collaborative learning approach.

4.1 | TLDAM Framework

TLDAM is a multi-layered sequential TL model which is trained
on the MNIST and CIFAR10 images and then further used as TL
model to transfer the concept. Figure 2 describes the TLDAM
framework indicating that it is composed of two TL models
combined together and weights transferred sequentially from
the model preceding to the front. Let the TL model one has the
following layers as represented:

&, = ConvlD, (input_shape, activation = relu, filters = 128, kernel_size = 3)

(10)

&, = MaxPoolinglD, (2) (11)

&, = ConvlD,(activation = relu, filters = 64, kernel_size = 3)
12)

&, = BatchNormalization, () 13)

&5 = Flatten, () (14)
&, = Dense, (activation = relu, 64) 15)
&, = Dense,(activation = softmax, 10) (16)

which are trained on MNIST images. Next, these TL model 1
layers &,,¢&,, &5, &, are frozen, that is, the weights of the layers
&,,&5,&, are fixed and set to non-trainable whereas with layer
&, it is experimentally determined to allow it to be trainable for
better systems. Therefore, the batch normalisation layer is set
as trainable, and afterward &,,¢&,, &5, &, are used in TL model 2.
This way TL model 2 will have knowledge of one kind of dataset
and knowledge of TL model 1 will be transferred to TL model
2. Using TL model 1 layers TL model 2 could be constructed as:

ws=& + (&) +&+&,+ConvlD, (32, 3, activation =}selu’) (17)

v = MaxPoolinglD,(2) (18)

v, = BatchNormalization,() (19)
v, = Flatten,() (20)

v = Dense(256, activation = relu) 1)
v, = Dense(128, activation = relu) (22)
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FIGURE2 | TLDAM framework.

y,0 = Dense(10, activation = softmax) (23)

which are trained using the CIFAR10 dataset and categorical
cross-entropy as loss function defined as:

{(train_y, predict_y) = — Ztrain_yi~10g(predict_yi) (24)

Next, layers ys, ¢ and y, are frozen and used as TLDAM model
for future transfers and DL model constructions.

Figure 3 outlines the comprehensive TLDAM construction
procedure. In summary, TL model 1 undergoes training using
MNIST images. Subsequently, a selection of its layers is frozen
and integrated with corresponding layers from TL model 2. This
amalgamated TL model 2 is then subjected to training using
CIFAR10 images, enhancing its overall generalisation capability.
This meticulous training equips the TLDAM model to be seam-
lessly deployable across both centralised and federated scenar-
ios, rendering it adaptable and versatile for diverse application
contexts.

4.2 | FedAcc

In the conventional paradigm of weight aggregation, the poten-
tial influence of poorly performing models is often disregarded,
resulting in suboptimal global models. These outliers can sig-
nificantly undermine the efficacy of the aggregated model. To
overcome this limitation, we introduce a novel approach termed

> A
Sy

/TL Domain
Adaptation
Model

\F/

® - &-E

Transfer Model 2

CIFAR10 Images

[

FedAcc. By incorporating model accuracy as a pivotal criterion,
FedAcc addresses the challenge of under-performing models.
It dynamically adjusts model weights based on their respective
accuracies, thus mitigating the impact of anomalies and enhanc-
ing the overall model robustness. The proposed FedAcc method
effectively scales model weights according to accuracy prior to
initiating the weight aggregation process. Consequently, the
final set of aggregated weights is refined, leading to an improved
global model that is more resilient to the influence of poorly
performing models. Algorithm 1 presents the FL process used
in the proposed framework and steps 4-10 indicate the FedAcc
process. It takes into account only the accuracy of the models
to determine their scaling factor sf and model their weights ac-
cording to it.

5 | Experimental Evaluation

This section outlines the experimental setup and the obtained re-
sults. This section begins by detailing the experimental environ-
ment and dataset utilised. Subsequently, the scenario in which
the experiments were conducted is described in detail. The sec-
tion culminates with a comprehensive analysis of the achieved
results, highlighting the performance and effectiveness of the
proposed technique in comparison to existing methods.

5.1 | Experimental Setup

The experimental results were conducted on the GPU-enabled
Asus Vivobook system which includes an Intel(R) Core(TM)
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FIGURE3 | TLDAM construction flow.

i5-9300H CPU running at a clock speed of 2.40GHz. It is
equipped with 8.00GB of installed RAM, with 7.85GB usable
with a 64-bit operating system and an x64-based processor. The
federated framework and DL models proposed were developed
using TensorFlow and Keras, leveraging their powerful capabil-
ities for building and training sophisticated models.

5.2 | Dataset Description, Experiment Design,
and Performance Metrics

Experimental validation of our proposed approach is carried out
using the UCI Human Activity Recognition (UCI-HAR) dataset,
which is extensively utilised for activity recognition tasks. The
dataset was gathered from 30 individuals, referred to as subjects,
engaged in various activities whilst carrying a smartphone posi-
tioned at their waists. Data collection was facilitated through em-
bedded sensors in the smartphone, specifically an accelerometer
and a gyroscope. To ensure accurate labelling, the entire experi-
ment was video recorded for manual annotation of the activities.
The raw sensor data underwent pre-processing, where noise was
minimised using filters, and the signals were segmented into
fixed-width sliding windows of 2.56 s with a 50% overlap, resulting
in 128 readings per window. This dataset was used by the proposed
model in the process of FL where the sensor collected data of 30
individuals is divided between the clients in the process of FL.

The dataset consists of variety of activities such as walking,
standing and other routine movements. It includes six distinct
activities and a comprehensive range of sensor-derived features,
making the UCI-HAR dataset a robust resource for developing
and evaluating ML models in applications like wearable technol-
ogy, health monitoring and activity tracking. The rich diversity

of labelled activities and detailed sensor data positions it as an
optimal benchmark for testing the efficacy of algorithms tailored
for activity recognition and motion analysis.

Table 2 describes the class names for various class labels. The
dataset is divided into 70-30 train test splits and further, the
training data is divided between the clients for the process of FL.
The results are compared based on the 10 clients and 30 commu-
nication rounds in the FL scenario. Moreover, to understand the
efficacy of the proposed framework, it is also rigorously tested
up to 20 clients as well.

To evaluate the proposed approach the metrics used for com-
parison are: Accuracy, Precision, Recall, F-score, Loss and
time taken.

TP+ TN
Accuracy =
TP + FP + TN + FN
.. TP
Precision = ————
TP + FP
Recall (TPR) = _TP
TP + FN
TNR = — 1IN __
TN + FP
2(precision x recall
F-1score = (P )

precision + recall

A true positive (TP) occurs when the model correctly identifies in-
stances of the positive class, reflecting cases where the predicted
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ALGORITHM1 | Federated Framework.

Input: Clients K, Communication rounds (I")
Output: Federated Fed Acc Framework
1:forrinI’s:

At client side
2: for client k:

history = 7. fit(train_X, train_y, validation_split = 0.15, verbose = 1)
y=1

k. send(rfr). localweights(), history | val_accuracy | )
3: end

At server side
4. ifris 0: ©
sf list" = [%] , moderation_index(¢”) = 0.15
k=1

val_accuracy,_, = val_accuracy,

> else:
6: for client k:
if(val_accuracy,_l <val_accuracy,: sf_list k| O = of list [K] N (Sf_list " O ))
if(val_accuracy,_, > val_accuracy,:sf list[i]” = sf tist[k]” ~ (sf_tist[k] " x <))
7 end
Tuning sf and weight scaling
8 sf list[k| o _ _sflis[k]”

ZJ.K:I sfflist[j]m
9: for client k:

weight[k] ® = sf list [k] “ % weight[k] ®
10: end
11: a)(g') = aggregate(weight[k] Ik;)
12: rg). set_weights (a)?)

13: server. distribute (w(g') )

At client side
14: r{r). set_weights(a)(gr) )
15: r=r+1
16: end

TABLE 2 | Classencoding and description.

Class label Class name Volume Percentage
Class 1 Laying 136,865 18.3%
Class 2 Sitting 126,677 16.9%
Class 3 Standing 138,105 18.5%
Class 4 Walking 122,091 16.3%
Class 5 Stair up 116,707 15.6%
Class 6 Stair down 107,961 14.4%

outcome aligns with the actual positive outcome. Conversely, a
true negative (TN) denotes instances where the model accurately
identifies the negative class, reflecting correct predictions of ab-
sence or non-occurrence. On the other hand, false positives (FP)
arise when the model incorrectly identifies instances as positive

when they are actually negative, constituting errors of Type I.
False negatives (FN) occur when the model fails to identify in-
stances of the positive class, marking errors of Type II, as it pre-
dicts a negative outcome when the actual outcome is positive.

5.3 | Proposed Solution Scenario Discussion

The proposed solution for analysing the UCI-HAR dataset in-
troduces a hybrid paradigm that combines CNNs and MLP with
the innovative TLDAM in association with FL FedAcc. This ap-
proach aims to extract meaningful insights from the intricate
sensor data within the dataset. The utilisation of CNNs facili-
tates robust feature extraction from the complex sensor inputs,
enabling the model to capture relevant patterns and nuances. On
the other hand, TLDAM's streamlined architecture stands as a
testament to its efficiency in adapting to domain shifts and com-
plexities. FedAcc additionally enables clients with greater perfor-
mance to have a bigger contribution factor.
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By integrating CNN, MLP and TLDAM, the proposed solution
capitalises on their respective strengths. CNNs excel in process-
ing visual data, which is pertinent given the nature of sensor in-
puts in the UCI-HAR dataset. Meanwhile, TLDAM's proficiency
in domain adaptation ensures that the model learns and genera-
lises effectively even in the presence of variations and challenges
specific to the healthcare context.

This amalgamated approach holds the potential to enhance
the accuracy and depth of analysis of the UCI-HAR dataset by
considering the valid participation of each client. The synergy
between CNN, MLP and TLDAM aligns with the intricacies of
the dataset, catering to the unique intricacies of human activity
recognition and motion analysis. By leveraging these advanced
techniques, the proposed solution aspires to uncover deeper in-
sights, optimise model performance using FedAcc and contrib-
ute to the refinement of healthcare applications through robust
analysis of the UCI-HAR dataset.

5.4 | Results Analysis

In this section, a comprehensive analysis of the results is pre-
sented, covering various exhaustive phases. These analyses
serve to assess the effectiveness and performance of the pro-
posed framework across multiple scenarios. The examination of
the framework's outcomes from different perspectives contrib-
utes to a holistic understanding of its capabilities and its adapt-
ability to diverse contexts.

5.4.1 | Performance of Individual Client in
Proposed Framework

Experimental results display the performance of each client par-
ticipating in the FL process. Each client trains the collaborated
TLDAM, CNN and MLP model and sends their model gradients
to the global server along with their validation accuracy. The
global server in turn aggregates the weights based on their accu-
racies as described in Algorithm 1.

Table 3 presents a detailed overview of individual client per-
formance over 30 communication rounds. The study involves
up to 20 clients used in the proposed framework and assesses
various metrics mentioned above. Each client's performance is
evaluated, providing valuable insights into the behaviour of the
proposed framework across multiple rounds of communication.

The accuracy values for each client range from 96.73% to 99.73%,
highlighting the clients’ diverse proficiency in making accurate
predictions. Clients 2, 3, 5, 9, 14, 15 and 17 consistently achieve
accuracy levels above 99%, showcasing their proficiency in
model training. On the other hand, clients like 6 and 19 exhibit
slightly lower accuracies, suggesting potential areas for im-
provement in their training methodologies.

The loss values reflect the extent of discrepancy between pre-
dictions and actual values, with values varying from 0.1797 to
0.3214. Notably, F-score values range from 88.1982% to 93.485%
for different clients.

TABLE 3 | Individual clients performance for 30 communication rounds.

Client Accuracy Loss F-score Precision Recall Time (ms)
Client 1 99.18 0.2990 88.1982 89.9983 88.2932 31
Client 2 99.46 0.1803 93.455 93.457 93.485 32
Client 3 99.46 0.1797 93.373 93.435 93.417 32
Client 4 98.64 0.1857 93.287 93.366 93.315 30
Client 5 99.46 0.222 92.462 92.727 92.501 35
Client 6 96.73 0.3214 88.626 91.039 88.734 35
Client 7 98.64 0.2272 92.234 92.626 92.297 34
Client 8 97.82 0.2383 91.562 92.654 91.72 34
Client 9 99.46 0.2094 92.61 93.263 92.637 32
Client 10 99.18 0.1838 93.351 93.375 93.381 33
Client 11 99.18 0.186 92.775 92.991 92.84 32
Client 12 98.64 0.2684 90.494 91.461 90.702 31
Client 13 98.64 0.2412 92.234 93.104 92.331 30
Client 14 99.46 0.1894 93.476 93.624 93.519 31
Client 15 99.73 0.2248 91.473 92.079 91.517 37
Client 16 98.91 0.1908 93.266 93.526 93.315 35
Client 17 99.73 0.1904 93.485 93.515 93.485 34
Client 18 99.46 0.2001 93.057 93.259 93.078 33
Client 19 98.09 0.1926 92.364 92.546 92.365 32
Client 20 99.18 0.2593 91.016 92.091 91.211 31
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The time taken per step, showcases the training time for each
client in milliseconds for each training step, vary from 30 to
37ms. While the differences in training times are relatively mar-
ginal, they provide insights into the computational efficiency of
each client's device during the FL process.

The diverse range of values across accuracy, loss, F-score and
training time offer a multifaceted understanding of client be-
haviour, enabling us to fine-tune training strategies, address
challenges and optimise the overall efficacy of the FL system.
The performance trends observed across these metrics over 30
rounds offer insights into convergence trends, potential im-
provements and the stability of the model across different com-
munication iterations.

5.4.2 | Multi-Class Comparison of Proposed Work With
Varying Clients

This section entails the multi-class proficiency of the proposed
work with a varying number of clients. It describes the efficiency
of each class present in the UCI-HAR dataset.

A detailed breakdown of results for multi-class classification
across different scenarios is shown in Table 4. The evaluation is
carried out for varying numbers of clients, with each class dis-
playing distinct performance characteristics.

Across different scenarios involving varying numbers of clients,
consistent trends emerge in precision, recall and F-score values.
For instance, in the case of two clients, precision ranges from
0.90 to 1.00, with Class 6 achieving perfect precision, whilst re-
call values span from 0.88 to 1.00, and F-scores between 0.91
and 1.00 indicate a balance between precision and recall. These
results underscore the approach's scalability and robustness
across different client numbers.

5.4.3 | Comparison of the Proposed Framework
for Various Communication Rounds With
Different Clients

This section provides insights into the effect of communication
rounds on the global FL system. Additionally, it lays the overall
accuracy of the global model built in the FL process.

A comprehensive analysis of the effect of varying communication
rounds on different numbers of clients in a multi-class classifica-
tion setting is shown in Table 5. The table is structured to highlight
the performance metrics for different scenarios, combining the
factors of the number of clients and the communication rounds.

In the scenario say, involving two clients, accuracy ranges from
92.9420% to 95.1140%, indicating models’ proficiency in accu-
rate predictions across communication rounds. Corresponding
loss values decrease from 1.1306 to 1.0966, suggesting improved
model convergence. F-score values span 92.9379%-95.0953%,
highlighting the balance between precision and recall. Precision
and recall remain consistent, reflecting stable predictions. As
communication rounds increase, performance generally im-
proves, demonstrating the models' learning capacity.

TABLE 4 | Multi-class classification results.

Number of

clients Class Precision Recall F-score

2 Class 1 0.95 0.98 0.97
Class 2 0.94 0.96 0.95
Class 3 0.96 0.9 0.93
Class 4 0.95 0.88 0.91
Class 5 0.9 0.96 0.93
Class 6 1 1 1

5 Class 1 0.96 0.98 0.97
Class 2 0.92 0.94 0.93
Class 3 0.95 0.89 0.92
Class 4 0.95 0.87 0.91
Class 5 0.90 0.96 0.93
Class 6 0.99 1.00 1.00

10 Class 1 0.98 0.96 0.97
Class 2 0.92 0.96 0.94
Class 3 0.92 091 0.91
Class 4 0.93 0.88 0.91
Class 5 0.92 0.94 0.93
Class 6 0.98 1.00 0.99

15 Class 1 0.92 0.99 0.95
Class 2 0.92 0.91 0.92
Class 3 0.94 0.87 0.90
Class 4 0.95 0.86 0.90
Class 5 0.90 0.96 0.93
Class 6 0.99 1.00 0.99

20 Class 1 0.95 0.97 0.96
Class 2 0.92 0.94 0.93
Class 3 0.92 0.88 0.90
Class 4 0.94 0.87 0.90
Class 5 0.90 0.95 0.92
Class 6 0.99 1.00 0.99

Consistently across scenarios involving 5, 10, 15 and 20 cli-
ents and 30 communication rounds, a notable trend unfolds
the metrics of accuracy, loss, F-score, precision and recall all
demonstrate a marginal dip with each increase in the client.
Despite this slight decline, the overarching trend underscores
the resilience and effectiveness of the proposed framework. The
robustness of the system is evident, as it manages to enhance
performance metrics despite encountering challenges asso-
ciated with scaling up to larger client populations. This trend
highlights the adaptability and potency of the framework in
accommodating diverse scenarios and scaling gracefully with
increasing client numbers.

11 of 15

85USD17 SUOWILLOD BAIERID B|qedl|dde au) Ag peuenob a1e SR VO 88N JO S3INJ J0} ARG 1T BUIIUO AB]IM UO (SUORIPUOD-PUR-SLLLBHWOD" A3 I ARRIq 1BUIIUO//SANY) SUORIPUOD PU SWB L U3 885 *[9202/T0/9T] U0 ARIgIT8uluO ABIIM ‘AVMTVO ANV T3 40 ALISHIAINN TYNOILYN AQ LZ8ET ASX/TTTT OT/I10p/w00" A8 |1m AReid 1)Ul uo//Sdny wo.y papeoumoq ‘g ‘SZ0Z ‘76E089rT



TABLE 5 | Effect of communication rounds on different number of clients.

Number of clients Communication rounds Accuracy Loss F-score Precision Recall
2 2 92.9420 1.1306 92.9379 93.0710 92.9420
5 94.0960 1.1102 94.0485 94.4413 94.0957
10 94.6390 1.1036 94.6084 94.8043 94.6386
15 95.1140 1.0966 95.0953 95.1644 95.1137
20 94.8420 1.0977 94.8173 94.9346 94.8422
25 94.9440 1.0965 94.9231 95.0062 94.9444
30 94.8420 1.0965 94.8189 94.9202 94.8422
5 2 91.3470 1.1503 91.2811 91.3785 91.3471
5 93.7900 1.1166 93.7413 93.8722 93.7903
10 94.0620 1.1087 94.0142 94.2622 94.0618
15 94.2990 1.1060 94.2629 94.4265 94.2993
20 94.2650 1.1049 94.2237 94.3943 94.2654
25 94.1970 1.1038 94.1602 94.2631 94.1975
30 94.3330 1.1021 94.3016 94.4008 94.3332
10 2 87.4790 1.1907 86.9712 88.9526 87.4788
5 92.0260 1.1464 91.9334 92.3031 92.0258
10 93.4170 1.1233 93.3819 93.4517 93.4170
15 94.164 1.1129 94.125 94.211 94.164
20 93.078 1.1174 93.015 93.244 93.078
25 93.926 1.1101 93.888 93.932 93.926
30 94.2990 1.1054 94.2820 94.3058 94.2993
15 2 82.3890 1.3556 82.1664 83.4642 82.3889
5 87.75 1.1881 87.345 89.476 87.75
10 92.094 1.1396 91.991 92.438 92.094
15 92.908 1.273 92.864 92.937 92.908
20 93.112 1.1209 93.073 93.125 93.112
25 93.451 1.1175 93.41 93.473 93.451
30 93.417 1.1173 93.367 93.495 93.417
20 2 85.5450 1.3081 85.0982 86.3269 85.5446
5 89.99 1.1742 89.809 90.482 89.99
10 91.11 1.1533 90.965 91.557 91.11
15 92.637 1.1364 92.576 92.841 92.637
20 93.519 1.1275 93.479 93.638 93.519
25 93.756 1.1237 93.715 93.949 93.756
30 93.655 1.1192 93.618 93.661 93.655

5.4.4 | Comparison of Proposed With ML and DL
Techniques in Centralised Approach

This section tests the robustness of the proposed work with the
centralised ML and DL techniques.

Figure 4 showcases a comparison of different techniques based
on their performance metrics in a classification task. It com-
prises five techniques: Logistic Regression (LR), Support Vector
Machine (SVM), K-Nearest Neighbours (KNN), Random Forest

(RF) and the proposed technique. The performance of these
techniques is evaluated based on key metrics.

Overall, Figure 4 provides a clear comparison of different clas-
sification techniques based on their performance metrics, high-
lighting the strengths and weaknesses of each method. The
proposed technique performs competitively with other methods,
showing promising results in the evaluated metrics. Although
it is seen that the proposed framework achieves lower perfor-
mance as compared to centralised settings, it accounts for the
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fact that the centralised ML settings fail to resolve the security
and privacy issues of the clients which limits this centralised ap-
proach to a very small scale.

Figure 5 provided is a comparison of different DL techniques in
terms of their performance metrics. The techniques being com-
pared are CNN, MLP, LSTM and the proposed approach.

The proposed technique achieves an accuracy of 94.2990%, an
F-score of 94.2820%, a precision of 94.3058% and a recall of
94.2993%. These values suggest that the proposed approach per-
forms better across all metrics compared to the other ML tech-
niques, making it a promising choice for the given task. While the
centralised DL settings in the experiment exhibit superior per-
formance metrics compared to the proposed work, it is essential
to recognise that these centralised approaches often come at the
expense of security and computational efficiency. The proposed
work, on the other hand, prioritises security and computational
efficacy by utilising FL. This highlights the importance of strik-
ing a balance between performance and security considerations.

5.4.5 | Comparison With Other Federated Techniques

We compared the efficacy of FedAcc over existing FL tech-
niques. This section describes the power of FedAcc over other
techniques in federated scenarios with 10 clients for 30 commu-
nication rounds.
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FIGURE 6 | Comparison with other federated techniques.

Figure 6 presented is a comparison of different FL techniques
and the proposed approach based on their performance met-
rics. The techniques being compared are Federated Averaging
(FedAvg), Federated Proximal (FedProx) (Zhang et al. 2022),
Dynamic Weighted Federated Averaging (DW-FedAvg)
(Chaudhuri, Nandi, and Pradhan 2023) and the proposed frame-
work which uses FedAcc.

It is evident that the proposed method outperforms the other
techniques in terms of accuracy, F-score, precision and recall.
The proposed technique achieves an accuracy of 94.2990%, an
F-score of 94.2820%, a precision of 94.3058% and a recall of
94.2993%. These values indicate that the proposed approach
performs significantly better across all metrics compared to the
other FL techniques evaluated, demonstrating its potential ef-
fectiveness in addressing the challenges of FL scenarios.

6 | Conclusion and Future Work

The proposed work has delved into the intricacies of TL, FL and
their applications across various domains. We explored the chal-
lenges posed by domain shifts, non-IID data and scalability issues
in existing TL methods, and introduced the innovative TLDAM as
a potential solution. The FL framework's advantages in preserv-
ing data privacy and promoting computational efficiency were
also underscored, achieving the client's accuracy of 99.73% on
an average and high precision, recall and F-score values in multi-
class classification. Through meticulous experimental setups, we
witnessed the efficacy of the proposed techniques in comparison
to traditional methods in terms of accuracy (94.2990%), F-score
(94.2820%), precision (94.3058%) and recall (94.2993%). Future
work focuses on improving the TLDAM model's adaptability and
training it for TL on domain-specific healthcare datasets to ensure
its applicability and effectiveness in real-world medical settings.
Additionally, exploring advanced communication strategies in FL
and devising techniques for handling heterogeneous data distribu-
tion amongst clients remain promising areas for further research.
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