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Abstract: Systems for monitoring air quality are essential for reducing the negative consequences of
air pollution, but creating real-time systems encounters several challenges. The accuracy and effec-
tiveness of these systems can be greatly improved by integrating federated learning and multi-access
edge computing (MEC) technology. This paper critically reviews the state-of-the-art methodologies
for federated learning and MEC-enabled air quality monitoring systems. It discusses the immense
benefits of federated learning, including privacy-preserving model training, and MEC, such as re-
duced latency and improved response times, for air quality monitoring applications. Additionally, it
highlights the challenges and requirements for developing and implementing real-time air quality
monitoring systems, such as data quality, security, and privacy, as well as the need for interpretable
and explainable AI-powered models. By leveraging such advanced techniques and technologies,
air monitoring systems can overcome various challenges and deliver accurate, reliable, and timely
air quality predictions. Moreover, this article provides an in-depth analysis and assessment of the
state-of-the-art techniques and emphasizes the need for further research to develop more practical
and affordable AI-powered decentralized systems with improved performance and data quality and
security while ensuring the ethical and responsible use of the data to support informed decision
making and promote sustainability.

Keywords: federated learning; multi-access edge computing; air quality monitoring; climate change;
privacy-preserving methods; sustainable urban environments

1. Introduction

With the current technological advances and the concerns raised about pollution and
climate change in modern societies, it is essential to monitor both the interior and outdoor
air quality because the rising levels of air pollutants and toxins present a serious risk
to both human health and the environment. For instance, the ambient air pollution is
estimated to cause 4.2 million premature deaths globally each year, making it one of the
leading causes of death worldwide (https://www.who.int/news-room/fact-sheets/detail/
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ambient-(outdoor)-air-quality-and-health (accessed on 5 January 2023)). Air pollutants
cause contamination or changes in the natural characteristics of indoor and outdoor envi-
ronments through various hazardous physical, chemical, and biological substances; e.g.,
particulate matter (PM10, PM2.5), carbon monoxide (CO), nitrogen oxides (NOx), sulfur
dioxide (SO2), ammonia (NH3), tropospheric (ground-level) ozone (O3), and air toxics.
They can cause adverse health problems, such as respiratory and cardiovascular diseases,
cancer, and early mortality [1–3]. Air quality monitoring systems play a crucial role in
identifying the sources of pollutants in various contexts (e.g., indoor, outdoor, rural, ur-
ban, industrial, etc.), measuring their concentrations in the atmosphere, and assessing the
potential health risks that the public is exposed to. By implementing targeted mitigation
measures, these systems also assist in reducing the negative effects of air pollution on
the ecosystem.

Recently, there has been significant success in addressing air pollution and related
climate change issues through a variety of methods, from policies to technical shifts in indus-
try, transportation, waste management, and renewable energy production [4–6]. However,
the development of accurate, reliable, scalable, and cost-effective air quality monitoring
systems is a challenging task [7–11]. The design criteria should take into consideration
the complex nature of measuring air pollution, the need for real-time monitoring, and the
high cost of deploying and maintaining the monitoring equipment. Moreover, air quality
monitoring is also important to identify areas with high levels of pollution and assess the
effectiveness of mitigation strategies, such as emission control measures, urban planning,
and transportation policies, implemented to reduce pollution levels [6,12]. Current air
quality monitoring systems use stationary sensors, which have limited coverage and can be
impacted by elements such as wind directions and weather conditions [13–19]. Although
these stationary sensors are essential for measuring pollutant concentrations, they repre-
sent only one aspect of air quality monitoring. To gain a comprehensive understanding
of air quality dynamics, it is essential to incorporate data analysis into the monitoring
process. Additionally, data from stationary sensors, along with other sources, such as
weather stations, satellite observations, social media, and mobile devices, provide valuable
information for air quality analysis, forecasting, and decision making. Therefore, a holistic
smart platform that considers both the measurement equipment and the data analysis
process is necessary to advance air quality monitoring systems.

AI-powered systems in air quality monitoring have a variety of possible uses. For
instance, they can be used for air quality forecasting [20,21], source identification [22],
anomaly detection [23,24], fault diagnosis [25], event detection [26], air pollution control in
ITS [27], exposure assessment [28], environmental and health impact assessment [29–31],
and air quality monitoring network optimization [13]. These applications have the potential
to improve the accuracy and efficiency of air quality monitoring and forecasting systems.
Lately, several suggestions have evolved based on mobile edge computing or multi-access
edge computing (MEC), which was previously known as mobile edge computing but
then was generalized and standardized by the European Telecommunications Standards
Institute (ETSI) (https://www.etsi.org/technologies/multi-access-edge-computing (ac-
cessed on 5 January 2023)), to promote digital transformation and low-latency connec-
tivity for urban informatics and environmental monitoring [7,32–35]. MEC integrates
mobile cloud–edge computing to enable distributed computation offloading and real-
time data processing and analysis close to the data source [36,37]. Empowered with
federated learning (FL), which is a recently proposed decentralized machine learning
framework, multiple heterogeneous edge nodes can collaboratively train a shared global
model without sharing the raw data and while preserving data privacy and reducing
the bandwidth required for data transfer [38–47]. FL algorithms, such as federated av-
eraging and federated stochastic gradient descent, have been successfully applied in air
quality monitoring [47]. Various strategies have been proposed in the literature to com-
bine MEC and FL, reducing reliance on centralized systems. Solutions can be designed
based on “AirSense” (https://www.energomonitor.com/airsense/ (accessed on 5 January

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.etsi.org/technologies/multi-access-edge-computing
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2023)), “SmartAir” (https://smartairfilters.com/en/blog/category/air-quality-monitors/
(accessed on 5 January 2023)), or the Highly Accurate and Autonomous Programmable
Platform for Providing Air Pollution Data Services to Drivers and the Public (HAPADS)
(https://www.nilu.com/2021/07/hapads-a-mobile-air-quality-monitoring-platform/ (ac-
cessed on 5 January 2023)) to use edge computing and federated learning for real-time air
quality measurements.

The main goal of this paper is to provide a review and thorough analysis of the
state-of-the-art federated learning frameworks and how they operate with multi-access
edge computing for intelligent air quality monitoring and forecasting. To accomplish
this, we adopted a methodology that included the use of recognized academic databases,
inclusion criteria, screening procedures, and quality assessment to ensure the literature
review was objective and concentrated on the most pertinent studies. We then synthesized
the information extracted from each study to provide a summary of the current state
of research in the field, identify recurring themes and trends, and highlight gaps where
additional research is needed. Thus, the findings from the analysis can function as a
trustworthy source with insightful information for researchers and practitioners in the field.
Additionally, the paper explores prospective research avenues and potential solutions for
addressing various design requirements and challenges in developing and implementing
real-time air quality monitoring systems.

The paper is organized as follows. Section 2 describes the methodology followed in
this paper. Section 3 provides an overview of edge computing and edge intelligence and
their potential applications in monitoring and forecasting air quality. Section 4 presents a
discussion of the design requirements and challenges for developing and implementing
real-time air quality monitoring systems. Section 5 discusses future research directions and
potential solutions. Finally, the paper concludes in Section 6.

2. Search and Screening Methodology

We began with a systematic search to collect related literature on federated learning
and multi-access edge computing for air quality monitoring. Finding pertinent academic
databases that would provide a wide range of research articles on the topic was the first
step in this literature study.

The search for relevant data and information was conducted using the following
digital databases: Mendeley (https://www.mendeley.com/ (accessed on 9 January 2023)),
IEEE Xplore Digital Library (http://ieeexplore.ieee.org (accessed on 9 January 2023)),
ACM Digital Library (http://dl.acm.org (accessed on 9 January 2023)), Science Direct
(http://www.sciencedirect.com (accessed on 9 January 2023)), Scopus (https://www.
elsevier.com/solutions/scopus (accessed on 9 January 2023)), and Google Scholar (https:
//scholar.google.com/) (accessed on 9 January 2023)). These libraries are widely recognized
as reputable and reliable sources of academic literature.

We defined various related keywords and search criteria, as shown in Table 1, and then
we carried out an intensive search in the chosen databases. We used various combinations
of related terms and ended up with more than 60,000 documents, including duplicates.
After limiting the search to the title and abstract and removing duplicates, we found around
2000 publications. We conducted a detailed screening to remove irrelevant documents and
augmented the remaining ones with some papers manually found to provide an overview
of related technologies and machine learning approaches. The final list had 175 publications,
which were distributed over various years, as shown in Figure 1, and of various types, as
shown in Figure 2. We then analyzed the distribution of included references under each of
the categories in Table 1 and the results are shown in Table 2 and Figure 3.

https://smartairfilters.com/en/blog/category/air-quality-monitors/
https://www.nilu.com/2021/07/hapads-a-mobile-air-quality-monitoring-platform/
https://www.mendeley.com/
http://ieeexplore.ieee.org
http://dl.acm.org
http://www.sciencedirect.com
https://www.elsevier.com/solutions/scopus
https://www.elsevier.com/solutions/scopus
https://scholar.google.com/)
https://scholar.google.com/)
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Table 1. Categories and search criteria.

Category Related Terms Count

C1: Air quality-related Air quality index (AQI), air pollution, aerosols or particulate matter (PMx), NOx
(nitric oxide, nitrogen dioxide, nitrogen oxides), COx (carbon monoxide, carbon diox-
ide), ammonia (NH3), ozone (O3), toxics, air contamination, emissions of vehicles
and plants, volatile organic compounds, radioactive pollution, thermal pollution,
outdoor/ambient air quality, indoor air quality

117

C2: Domain Health effects, environment impacts, smart city, public safety, security, simulation 37

C3: AI-related Artificial intelligence (AI), machine learning (ML), deep learning (DL), reinforcement
learning (RL), federated learning (FL), data mining, big data, regression, forecasting,
fuzzy control, multivariate time series, anomaly detection

133

C4: System architecture Internet of Things (IoT, IIoT, IoE, IoX), cloud computing, cloud–edge computing, fog
computing, edge computing, sensor network, multi-access edge computing (MEC),
mobile edge computing, computation offloading, federated learning, edge intelligence,
5G edge computing

136

C5: Federated learning-related Federated learning, computation offloading, edge intelligence 78

C6: MEC-related Multi-access edge computing, MEC, mobile edge computing 65

C7 C1 AND C5 AND C6 39

C8 C1 AND C3 AND C4 72

Table 2. Distribution of included publications in terms of years of publication for each included category.

Category 1993 2000 2002 2010 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Total

C1 1 1 1 2 1 2 1 6 9 19 28 34 17 2 124

C2 1 1 1 2 1 4 2 3 3 15 14 20 8 1 76

C3 1 1 1 2 3 5 7 21 31 41 22 1 136

C4 3 5 7 11 22 32 38 20 138

C5 2 1 4 5 14 17 24 11 78

C6 1 4 4 14 16 19 8 66

C7 4 3 6 8 13 5 39

C8 1 1 4 6 8 20 24 9 73

Figure 1. Distribution of selected references per year.
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Figure 2. Distribution of selected references based on the type of publication.

Figure 3. Distribution of selected references per category.

The search results were meticulously screened to eliminate any duplicate or irrelevant
studies. The screening process encompassed a careful review of the titles, abstracts, and
keywords of the articles to guarantee that they fulfilled the requirements for inclusion in
this review paper. Studies that failed to meet the inclusion criteria were excluded from
the analysis. This critical screening process aided in focusing the literature review on the
most pertinent studies while ensuring that all studies included in the analysis were of
high caliber.

Following the initial screening process, the chosen studies were subjected to detailed
reading and analysis to extract relevant information, such as the research method, findings,
and limitations of each study. The extracted information was synthesized to provide an
overview of the current state of research in the field, identify common themes and trends
in research, and highlight areas where further research is needed. This synthesis process
helped to ensure that the literature review was comprehensive, informative, and provided
an in-depth analysis of the state of the art of federated learning and multi-access edge
computing in air quality monitoring and forecasting.

3. Edge Computing and Intelligence for Air Quality Monitoring and Predictions

The rise of edge computing and edge intelligence has stimulated advancements in
air quality monitoring and forecasting [4,48]. Edge computing offers several operational
advantages [47,49]. Primarily, it brings data processing and analysis closer to the source
of data generation, bypassing the need for centralized cloud servers. This proximity aids
in producing real-time insights into air quality, enhancing the efficiency of environmental
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monitoring [50–52]. As illustrated in Figure 4, data collection encompasses a variety of
sources, such as stationary and mobile air quality IoT sensors, meteorological stations,
satellite remote sensing (https://airquality.gsfc.nasa.gov/ (accessed on 25 January 2023)),
and social media platforms [53–58]. These sources offer a plethora of information related
to air quality, the spatial distribution of greenhouse gases, and the factors influencing
air quality, such as traffic flow, meteorological conditions, and human activities [47,59].
However, edge computing also brings new challenges for data collection, integration, and
management due to the heterogeneity of sensing devices used to measure the various types
of pollutants and the related social, meteorological, and ambient conditions. Depending
on the ultimate objective and budget, data can be sampled at different locations and in
different time periods with a sensing system deployed with high density [60].

Figure 4. Air quality monitoring system supported by Internet of Things for data collection and
processing [61].

Figure 5 depicts the main steps in harnessing various data sources and applying
advanced artificial intelligence techniques to monitor and predict air quality. It highlights
the crucial role that a combination of diverse data sources and advanced AI techniques can
play in creating reliable and useful models for predicting and managing air quality. Initially,
the system embarks on an exhaustive data collection phase, wherein it harnesses a variety
of environmental parameters. This is accomplished using numerous types of sensors, which
monitor aspects such as air quality, temperature, and humidity. Additionally, the system
takes advantage of satellite technology with remote sensing data, complementing this with
meteorological data that include parameters like wind speed and precipitation, as well as
outputs from other meteorological models. Such a broad spectrum of data sources bolsters
the comprehensiveness and reliability of the input, thus laying a strong foundation for the
subsequent steps.

https://airquality.gsfc.nasa.gov/
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Figure 5. Flowchart for collecting, preprocessing, analyzing, and predicting air quality data using
edge computing and AI approaches.
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Following the data collection phase, the system dives into a rigorous preprocessing
routine where data cleaning operations are conducted to ensure the removal of any errors,
outliers, or inconsistencies that might compromise the accuracy of the predictions. Further-
more, data normalization procedures are carried out to scale the data to a common range, a
critical step for the efficient training of machine learning models. This phase also includes
a feature extraction process, where the system identifies and extracts the most salient
features from the data set, a move that enhances the efficacy of the models developed later.
Depending on the nature of the data (temporal or spatial), various types of features can be
extracted. For example, for time-series data, it is common to use lag variables and rolling
mean statistics. With deep learning, convolutional neural networks and auto-encoders can
be trained to extract low-dimensional representations and feature maps.

Once the data have been adequately preprocessed, the system progresses to employ
advanced AI techniques for a thorough analysis. This includes the use of federated learning,
which promotes data privacy and the utilization of computational resources at the edge
of the network by training local models on edge devices. These local model parameters
are then aggregated to construct a global model, and the local models are updated with
these global parameters. Deep learning techniques are also applied, with convolutional
neural networks (CNNs) being employed for spatial feature extraction and recurrent neu-
ral networks (RNNs), like long short-term memory (LSTM) networks or gated recurrent
units (GRUs), for temporal feature extraction. Optionally, reinforcement learning might
be used to train a model that learns to interact with the environment and make decisions
to maximize a reward. Following this, the performance of the various models is evalu-
ated. Based on this evaluation, the system proceeds to make critical decisions. These can
include predicting future environmental conditions, issuing alerts for extreme weather
events or high pollution levels, and providing essential insights that can inform and shape
environmental policy.

3.1. Edge Computing Techniques for Air Quality Monitoring and Predictions

The integration of edge computing with intelligent methodologies has emerged as
a transformative tool for optimizing air quality, enhancing efficiency, monitoring, predic-
tion, and ensuring data security and privacy, as evidenced by the studies outlined in the
following sections.

Table 3 summarizes the diverse methodologies in the rapidly evolving field of edge
computing for air quality monitoring. Methods range from container-based virtualization
and federated compressed learning to advanced machine learning algorithms tailored for
edge devices (e.g., [53,54,62,63]). These methodologies have shown promising applications
in various domains, including general environmental monitoring, smart cities, indoor
environments, and even niche sectors like the construction industry (e.g., [54,64–66]).
Notably, these edge computing solutions offer substantial benefits, such as real-time data
processing, high-resolution analysis, reduced power consumption, and enhanced data
security (e.g., [53,54,62,67]). Future research should focus on developing adaptive and
decentralized algorithms that can function efficiently on low-cost edge devices, particularly
in resource-constrained settings. Additionally, the incorporation of game theory and other
mechanisms for trust management will be critical for ensuring the reliability and security
of these systems (e.g., [68]). As air quality monitoring becomes increasingly complex
and critical, edge computing and intelligent methodologies are poised for transformative
growth, warranting more in-depth, multidisciplinary investigations.
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Table 3. Comparative analysis of edge computing methods in air quality monitoring (AQM) studies.

Reference Year Application
Domains

Methodologies Utilized/Proposed Benefits in AQM

[53] 2021 Environmental
monitoring at
universities

Implements container-based virtualization via Docker to iso-
late application environments. Kubernetes is used for orches-
trating these containers, employing a cache-centric design
that utilizes an etcd database for maintaining the cluster state

• Utilizes container-based virtualization to isolate
applications, enabling optimized resource uti-
lization. Leverages Kubernetes’ cache-centric
design for responsive real-time data processing
and distribution

[54] 2021 General en-
vironmental
monitoring

Leverages 5G for low-latency, high-bandwidth data trans-
mission. Utilizes machine learning models, specifically a
support vector machine (SVM) for sensor calibration and
a convolutional neural network (CNN) for hyperspectral
image analysis

• Integrates 5G for ultra-fast data transmission cou-
pled with two distinct AI systems for sensor cali-
bration and hyperspectral image analysis, ensur-
ing real-time, high-resolution, and accurate air
quality analysis

[67] 2018 Domestic and
office environ-
ments

Utilizes low-power IoT sensors coupled with a propri-
etary edge computing framework. Employs dynamic load-
balancing algorithms and thread-pool management to opti-
mize CPU usage with battery-powered sensors

• Applies IoT sensors and edge computing for
real-time monitoring, achieving up to 80%
data precision

• Distributes computational tasks to edge nodes, re-
ducing overall system power consumption by 23%

[64] 2019 Smart cities Deploys Raspberry Pi devices with ARM CPUs running
lightweight Linux distributions serving as edge nodes. Inte-
grates IoT sensors through GPIO pins and utilizes MQTT pro-
tocol for data communication. Edge computing algorithms
are employed for localized data analytics to reduce latency

• Utilizes cost-effective Raspberry Pi devices cou-
pled with edge computing to minimize cloud data
storage costs and latencies

• Facilitates real-time air quality insights for smart
city applications

[68] 2020 Smart cities,
urban environ-
ments

Combines evolutionary game theory and Lyapunov theory
for dynamic trust management. Utilizes Kalman filtering
for noise reduction in data and employs a Markov decision
process for generating dynamic black-and-white lists based
on evolving trust scores

• Introduces a trust management system using evo-
lutionary game theory and Lyapunov theory

• Manages the selection of trustworthy IoT devices
dynamically, enhancing system resilience against
malicious attacks

[62] 2021 Smart cities,
wireless sens-
ing networks

Adopts Federated compressed learning (FCL), which com-
bines compressed sensing with federated learning Employs
orthogonal matching pursuit (OMP) for sparse signal recon-
struction and differential privacy techniques to add noise to
the federated model, ensuring privacy

• Combines compressed sensing techniques with
federated learning under the FCL framework

• Achieves over 95% reduction in data consumption
while ensuring privacy. Optimized for large-scale
wireless sensor networks

[63] 2021 Remote areas,
edge devices

Utilizes nonlinear autoregression with exogenous input
(NARX) as a foundation. Enhances it by incorporating long
short-term memory (LSTM) networks for capturing long-
term dependencies and extreme gradient boosted random
forests (XGBRFs) for an ensemble approach to increase ro-
bustness and reduce variance

• Offers rapid response to air quality changes and
balances between computational speed and pre-
dictive accuracy

• Enables real-time and comprehensive monitoring
and prediction of air quality

[65] 2022 Construction
industry

Integrates edge computing nodes equipped with specialized
ASICs for real-time data processing and building information
modeling (BIM) for 3D environmental modeling. Utilizes
Bayesian networks for prediction and applies decision trees
for generating real-time alerts and responses based on sen-
sor inputs

• Holistic approach to air pollutant monitoring, pre-
diction, and management at construction sites

• Enhances predictive analytics, alerting, and emer-
gency response mechanisms

[66] 2023 Indoor envi-
ronments

Utilizes bi-directional long short-term memory (LSTM) net-
works to model temporal dependencies in IAQ metrics. In-
corporates faster R-CNN for real-time object detection to
identify and monitor potential pollutant sources, feeding
these data back into the LSTM for dynamic modeling

• Real-time prediction of indoor air quality
• Adaptability across various spaces and improves

energy efficiency

3.1.1. Optimization and Efficiency

Centering on the optimization and efficiency of air pollution management, the au-
thors in [53] employed container-based virtualization for achieving optimal efficiency
and real-time data processing at Tunghai University. Simultaneously, in [64], the authors
demonstrated a proficient real-time air pollution detection system using affordable Rasp-
berry Pi devices in Tacoma, highlighting both its cost-effectiveness and potential in smart
city applications. In this context, the cost-effective solution presented in [67] could prove
valuable for domestic offices and industrial settings, enhancing data precision by up to 80%
and reducing power consumption by 23%.

3.1.2. Real-Time Monitoring and Predictive Solutions

The role of real-time monitoring and predictive systems is pivotal in detecting air
pollution and hazards. In this regard, the authors of [54] emphasized the fusion of 5G, edge



Sustainability 2023, 15, 13951 10 of 34

computing, and AI to deliver real-time, high-resolution air quality analysis, highlighting
the significance of prompt interventions for public health. Additionally, the authors of [63]
designed an IoT-enabled system tailored for edge devices and cloud environments that
swiftly responds to shifts in air quality through a hybrid predictive model. Similarly, a
unified platform integrating edge computing and building information modeling (BIM)
technology was introduced in [65], streamlining pollutant monitoring in the construction
industry while enhancing predictive and emergency response capabilities. Furthermore,
the study in [66] proposed an intelligent edge computing-based indoor system that accu-
rately forecasts and monitors key IAQ factors, underlining its adaptable potential across
diverse spaces.

3.1.3. Security and Privacy

When contemplating data processing encompassing numerous interconnected IoT
devices, data security and privacy persist as major challenges that necessitate attention
while conducting environmental air quality monitoring. Consequently, the work in [68] in-
troduced a trust management mechanism for IoT edge computing, enhancing collaboration
and providing robust defense against threats. Similarly, an FCL framework for PM2.5 air
quality monitoring was introduced in [62], placing emphasis on data sparsity and privacy
concerns and remarkably diminishing data consumption by over 95%.

3.2. Multi-Access Edge Computing in Air Quality Monitoring

Multi-access edge computing (MEC) signifies a pivotal paradigm shift in data process-
ing, extending cloud computing capabilities to the edge of the network. This approach
brings computational resources closer to end users and data sources, providing edge
intelligence and significant benefits for air quality monitoring, which requires real-time
processing and analysis of extensive data from environmental and air quality monitoring
sensors [49,69–74].

One key advantage of MEC is its capacity to handle data locally, mitigating latency
and network congestion. This aspect is critical in urban environments where air quality
can fluctuate significantly over short distances [50]. The European Union-funded “CityAir”
project exemplifies this benefit, utilizing MEC to develop a mobile air quality monitoring
system capable of real-time pollutant detection and analysis, thus offering precise, localized
air quality data to city residents and decision makers. It offers value in terms of optimizing
the deployment of environmental sensors and streamlining the energy consumption of
the monitoring systems [75,76]. MEC also shines in its ability for distributed data han-
dling and collaborative processing. These features are crucial in large-scale air quality
monitoring projects involving multiple stakeholders [76,77]. An illustrative example is the
“SmartAQnet” project in the UK, which leverages MEC to construct a distributed air quality
monitoring system. This system promptly delivers air quality data to residents, businesses,
and local authorities, exemplifying MEC’s potential in fostering scalable, flexible, and
interoperable data sharing and collaboration [78]. Despite the remarkable potential of MEC,
its implementation also presents certain challenges. A notable concern is data privacy and
security, given the sensitivity of air quality data, which often include geolocation and other
potentially identifying information. It is therefore essential for MEC systems to incorporate
robust data encryption and access control mechanisms [50].

Table 4 furnishes a detailed overview of MEC strategies alongside their respective
applications within the domain of air quality monitoring. A prominent observation is
the consistent focus on harnessing MEC for real-time data processing, underscoring its
growing importance in facilitating prompt air quality assessments. The studies underscore
MEC’s advantages in mitigating latency, ensuring robust data security, and facilitating
scalable data sharing, particularly within urban contexts. Nonetheless, challenges like
infrastructure expenses, data privacy apprehensions, and the necessity for standardized
orchestration architectures persist. Addressing these challenges while optimizing MEC’s
real-time capabilities is crucial, especially in expansive deployments like 5G networks
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and smart cities, offering substantial potential for advanced researchers. Avenues such as
multi-task learning and open-source edge computing methods could serve as promising
directions for future innovation and research.

In conclusion, MEC offers promising opportunities for enhancing the efficiency and
precision of air quality monitoring by facilitating faster, more accurate, and localized
data processing and dissemination. However, to realize its full potential, addressing key
challenges, including data privacy and security, is of paramount importance. As the field
evolves, further research and technological innovation are necessary to optimize MEC-
based air quality monitoring systems and ensure they meet the requisite privacy and
security standards for their widespread adoption [77,79,80].

Table 4. Summary and comparison of multi-access edge computing (MEC) strategies and applications
in air quality monitoring.

Reference Year Methodology Applications Main Methods Key Findings

[70] 2020 Use of MEC for real-
time processing and
analysis of data from
air quality sensors

Green 5G networks
for evolving air
pollution monitor-
ing systems

Promotes rapid data pro-
cessing, reducing delays
in air quality assessment
and reporting

Implementing this system
across large-scale 5G net-
works may face issues
relating to infrastructure
and cost

[49] 2021 Implementation of
MEC capabilities to
process data at the
edge of the network

Open-source ap-
proaches to intel-
ligent edge com-
puting, used in
diverse applications

Enhanced proximity
to end users and data
sources, resulting in su-
perior service delivery in
data-intensive applications

Full potential of the
open-source approach
to edge computing still
needs exploration

[50] 2021 Application of MEC for
local data handling, re-
ducing latency and net-
work congestion

Review of MEC ar-
chitectures with a fo-
cus on data security
and privacy

Efficient data management
in congested networks, vi-
tal for urban air qual-
ity monitoring

Concerns about data pri-
vacy and security due to
the sensitivity of air qual-
ity data

[81] 2021 Leverage MEC for
computational of-
floading and multi-
task learning

CityAir project in the
European Union, a
mobile air quality
monitoring system

Real-time pollutant detec-
tion and analysis, precise
localized air quality data

Integration of multi-task
learning within MEC sys-
tems needs further re-
search for optimization

[77] 2022 Utilization of MEC’s
distributed data han-
dling and collaborative
processing capabilities

Review of Kubernetes-
based orchestration
architectures for
smart cities

Enables large-scale projects
involving multiple stake-
holders, facilitates scalable
and flexible data sharing

Development of standard-
ized orchestration archi-
tecture for edge comput-
ing remains a challenge

3.3. Federated Learning in Air Quality Monitoring

Federated Learning (FL) has begun to reshape the landscape of decentralized machine
learning, demonstrating applicability to air quality monitoring [82,83]. The profound
potential of this approach stems from its capacity to draw upon distributed datasets while
preserving data privacy and optimizing computational efficiency. Developments in the
federated learning space have been marked by various distinct approaches. Figure 6
graphically outlines the federated learning approach. This visual representation shows
a central cloud server around which numerous local devices, such as IoT sensors and
smartphones, are spread out. Arrows depict the flow of information from the cloud server
to the local devices and vice versa. The server maintains a global model and at each
round shares the model with candidate clients, which in turn use their local data to update
the model. The model’s updates from different clients are sent back to the server to be
aggregated and incorporated into the global model [70,83].



Sustainability 2023, 15, 13951 12 of 34

Figure 6. Federated learning approach.

Table 5 presents a summary of various federated learning frameworks that have been
applied in air quality monitoring. Each row represents a distinct study, highlighting the
authors, the specific federated learning framework deployed, the targeted applications, the
primary methods or approaches employed, and the key findings. From advanced deep
learning models, like CNN and LSTM [43,84], to unique client selection strategies [85], the
table shows the breadth and diversity of techniques used within the context of federated
learning. It also emphasizes the impact and benefits of these methods, such as significant
improvements in computational efficiency and accuracy, superior performance compared
to local training, privacy preservation, and secure and efficient data collection. The table
serves as a quick reference for readers seeking to understand the current landscape of
federated learning applications in air quality monitoring.

All these studies underscore the budding potential of federated learning frameworks
in air quality monitoring. They offer promising pathways to addressing data privacy,
transmission efficiency, and cooperative learning among distributed sensors. As we look
ahead, the ongoing research in this area holds the promise of further augmenting federated
learning capabilities, thereby unlocking new possibilities in environmental monitoring and
beyond. Nguyen et al. [34], for instance, developed a framework that hinges on spatial
averaging aggregation. Applied specifically to air pollution prediction, this framework
leverages environmental sensor data and employs convolutional recurrent neural network
(CRNN) models at the server side.

Liu et al. [86] brought forth another approach, creating a lightweight federated
learning-based solution for aerial-ground air quality sensing. This method fuses mul-
tiple machine learning techniques, including convolutional neural networks (CNNs), graph
convolutional networks (GCNs), long short-term memory (LSTM) networks, and fully
connected (FC) layers. The innovation offers scalable, cost-effective, and fine-grained
air quality monitoring, utilizing a swarm of unmanned aerial vehicles (UAVs). Another
remarkable breakthrough came from Putra et al. [62], who presented federated compressed
learning (FCL), a unique edge computing framework. Designed for PM2.5 predictions in
smart city applications, this solution emphasizes security and efficiency in data collection
by integrating compressed sensing (CS) with federated learning (FL).

In a more recent development, Xiang et al. [87] proposed S-KGCN, an edge-driven on-
line IoT data search framework that employs knowledge graph convolutional networks for
edge learning scenarios, including federated learning paradigms. This initiative highlights
the versatility of federated learning in adapting to diverse application domains. An urban
air quality monitoring dataset is used for evaluating the performance of the proposed
method. Another federated learning approach is presented in [83] for imputing missing air
quality data based on conditional generative adversarial networks (CGANs).
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Table 5. Summary of federated learning frameworks applied in air quality monitoring.

Reference Year FL Framework Applications Main Methods Key Findings

[43] 2018 Federated region-
learning

PM2.5 monitoring
in Beijing

Deep learning models like
CNN and LSTM

Threefold improvement in computa-
tional efficiency, 5% increase in accuracy

[83] 2021 Federated GAN
method

Intelligent air quality
monitoring networks

Conditional GAN imputa-
tion method

Federated GAN method shows superior
performance compared to local training

[34] 2021 Spatial averaging ag-
gregation FL approach

Air pollution predic-
tion model training
with sensor data

Federated learning
with CRNN

Proves that new participating areas can
train and quickly obtain optimized lo-
cal models using transferred common
global model

[86] 2021 Lightweight federated
learning-based frame-
work

Privacy-protected AQI
monitoring mobile
application

Federated learning with
a combination of CNNs,
GCNs, LSTM networks, and
FC layers

Proposes a framework for fine-grained
air quality monitoring using UAVs

[62] 2021 Federated compressed
learning (FCL)

PM2.5 air quality mon-
itoring in smart cities

Federated learning with
LSTM network

Demonstrates that the proposed FCL
framework enables efficient data gen-
eration while ensuring data privacy for
PM2.5 predictions

[47] 2021 Federated learning
with autonomous
UAVs

Air quality index
(AQI) prediction in
IoT environment

Hazardous zone detection,
UAV-based data collection,
and FL-based machine learn-
ing models

The proposed federated learning frame-
work effectively identified hazardous
zones and predicted AQI with higher
accuracy and lower latency

[88] 2021 Federated learn-
ing with UAV
swarm networks

Air quality index
(AQI) prediction

UAV swarm-based data col-
lection, FL-based machine
learning models

Feasibility of using UAV swarms for
AQI prediction with federated learning,
which yielded promising results

[89] 2021 General federated
learning

Estimation of
air quality

Standard FL-based machine
learning model

Successful application of FL for air qual-
ity estimation with high accuracy

[83] 2021 Federated conditional
generative adversarial
nets (FedCGANs)

Imputation of missing
air quality data

FedCGAN-based imputa-
tion method

Effectively imputed missing air quality
data, significantly improving the accu-
racy of air quality prediction

[85] 2022 Multi-model federated
learning

Air quality in-
dex prediction

Ranklist-Multi-UCB and
Pareto-Multi-UCB client
selection strategies

Emphasizes the potential of multi-
model federated learning

[90] 2022 Seminal stacked long
short-term memory
networks

PM forecasting SS-LSTM networks for
PM forecasting

SS-LSTM model outperformed all other
models in PM forecasting

[91] 2022 General federated
learning

Air quality index
(AQI) prediction

Review and assessment
of FL-based models for
AQI prediction

Overview of FL techniques for AQI pre-
diction, emphasizing the effectiveness
of such methods

[59] 2022 Federated learning
with BGRU model

Air quality prediction
for smart cities

FL with BGRU model Achieved significant results in predict-
ing air quality for smart cities

[87] 2023 Edge-driven on-
line IoT data
search framework

Air quality monitoring
in urban areas

Knowledge graph convolu-
tional networks (KGCNs)
for IoT data search

Proposes an edge-driven online IoT
data search framework for edge learn-
ing scenarios, including federated learn-
ing paradigms

[82] 2023 Various FL
frameworks

Smart city applications Federated learning and ma-
chine learning algorithms

FL offers privacy preservation and sen-
sitive information protection

[92] 2023 Secure federated learn-
ing with optimized
LSTM

Cross-domain pre-
diction of air pollu-
tant concentration

Secure federated learning
approach combined with op-
timized LSTM

Effective cross-domain prediction of air
pollutant concentrations
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3.4. Integration of FL and MEC in Air Quality Monitoring

The decentralized and collaborative advantages of federated learning (FL) and multi-
access edge computing (MEC) mark the advent of a new era in data processing and com-
putation, with the potential to revolutionize air quality monitoring systems [49,70,91,93].
MEC decentralizes computation and storage, effectively bringing these capabilities closer
to the data source. Combined with FL’s capacity to train machine learning models across a
multitude of decentralized devices, this forms a powerful combination that enhances the
effectiveness and precision of air quality monitoring systems [75,94].

The fusion of FL and MEC offers several benefits. Primarily, it allows efficient han-
dling of large-scale, geographically dispersed data. MEC’s ability to perform localized
data processing alleviates latency and congestion issues, while FL’s decentralized learning
enables model training on edge devices, thereby optimizing predictive capabilities through
the utilization of local data diversity [79,95]. This synergy between FL and MEC not only
boosts computational efficiency but also reduces data transmission requirements, thereby
diminishing network loads. This is especially critical in air quality monitoring systems,
where devices are scattered across extensive geographic areas and data transmission can
become a bottleneck [70,78]. Additionally, this integrated approach offers enhanced pri-
vacy preservation and data security. During the learning process, sensitive air quality
data remain on local devices, bolstering privacy and security [50,96]. Emerging practical
applications of this integrated FL–MEC approach include the utilization of an edge-native
intelligence system for large-scale urban air quality monitoring networks, which provides
real-time, hyper-localized data [35,55].

Despite these benefits, the integration of FL and MEC introduces certain challenges.
For instance, synchronizing FL processes across various edge devices while maintaining
computational efficiency can be complex. Furthermore, despite the inherent data privacy
benefits of FL, complete data security across a distributed network remains a concern,
particularly for air quality data containing sensitive location-specific information [50,97].
In summary, the integration of FL and MEC shows significant promise for enhancing air
quality monitoring systems. By capitalizing on the strengths of both technologies, we
can develop robust, efficient, and secure solutions capable of processing and analyzing
large and diverse datasets in real time. However, addressing these inherent challenges is
paramount for the successful implementation of these innovative approaches. Continuous
research is essential to refine these integrated systems and establish standardized practices
for their optimal use [43,90,98].

Table 6 encapsulates pivotal findings from a range of studies [34,35,50,55,62,70,78,79,
82,83,91,95–97,99] that underscore the essential integration of FL and multi-access MEC
within the domain of air quality monitoring for smart cities. Thorough examination of the
presented literature clearly reveals that the integration of FL and MEC effectively addresses
crucial research gaps, especially in terms of enhancing data privacy, efficiency, and security,
as highlighted in [70,82,97]. This integration holds the potential to revolutionize data
acquisition methods [62,95] while simultaneously establishing a scalable and sustainable
model [78,79], rendering it particularly pertinent for future research directions. Given
the trajectory of smart city applications and their mounting complexities, forthcoming
research should delve deeper into optimizing this integration [62,96], creating an envi-
ronment where data consumption is minimized, privacy is prioritized, and data quality is
elevated [99]. The synthesis outlined in Table 6 can thus stand as a cornerstone for scholars,
compelling them to build upon these foundational insights and further push the boundaries
in the ever-evolving field of smart city air quality monitoring.
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Table 6. Main features of integrating FL and MEC in air quality monitoring.

Feature Description References

Scalability and efficient
data handling

The integrated FL–MEC approach efficiently handles vast, geographically diverse
data, mitigating latency and congestion issues

[62,79,95]

Reduced network load By minimizing the need for extensive data transmission and enabling localized
data processing, FL and MEC reduce network loads, which is beneficial for
wide-area air quality monitoring systems

[70,78,82]

Privacy and
data decurity

FL keeps sensitive air quality data on local devices during the learning process,
preserving data privacy. Moreover, MEC’s local processing capability reduces
sensitive data transmission, ensuring security

[50,62,96]

Real-time hyper-
localized data

FL–MEC integration provides real-time, hyper-localized data for large-scale
urban air quality monitoring networks, improving predictive capabilities

[35,55,91]

Challenges Reducing operational complexity, synchronizing FL processes across multiple
edge devices, handling stragglers, and maintaining computational efficiency are
inherent in the FL–MEC integration. Despite FL’s data privacy benefits, ensuring
complete data security across a distributed network remains a concern

[34,50,83,97,99]

3.5. Model Construction Paradigms
3.5.1. Machine Learning for Air Quality Monitoring and Forecasting

Artificial intelligence (AI) strategies have emerged as significant enablers in improving
the accuracy and trustworthiness of air quality monitoring and forecasting, capitalizing
on their capacity to handle large datasets and extract underlying pattern. Machine learn-
ing (ML), a core AI discipline, employs a spectrum of statistical algorithms that provide
computer systems with the ability to autonomously learn from data and progressively
enhance their performance in tasks [4,100]. This iterative learning capability without ex-
plicit programming has positioned ML as a pivotal tool in air quality monitoring and
forecasting, delivering innovative methodologies to analyze extensive datasets, extract
complex patterns, and predict future air quality trends [27,101].

In the field of air quality monitoring, ML finds its significance in developing predictive
models. These models leverage historical air quality data to predict future air quality
indices, a process marked by significant complexity due to the involvement of numerous
factors, including meteorological conditions, traffic flow, and emission data [84,102,103].
The integration of these variable datasets through ML algorithms enhances the predic-
tive capability, offering improved accuracy and timeliness in air quality forecasting [104].
Furthermore, researchers have employed ML techniques for source apportionment stud-
ies, an essential aspect of air quality monitoring. By analyzing real-time air quality data,
ML algorithms can determine potential emission sources, distinguishing between nat-
ural and anthropogenic contributors [66,105]. This identification is crucial for targeted
pollution mitigation strategies, significantly improving the effectiveness of air quality
management [102,103].

Various ML techniques, such as regression models, decision trees, and support vector
machines, have been used in the field, each presenting unique strengths. For example, lin-
ear regression models, owing to their simplicity and interpretability, have been extensively
used for continuous data predictions, such as forecasting pollutant concentrations [106]. On
the other hand, decision trees and support vector machines have shown exceptional perfor-
mance in classification tasks, such as identifying pollutant types [107,108]. The effectiveness
of these ML techniques in air quality monitoring, however, is highly dependent on the
quality and quantity of the input data. Data imbalances and irregularities can significantly
impact model performance, leading to inaccurate forecasts or misclassifications [102]. To
counter these issues, various preprocessing techniques have been utilized, such as data
augmentation, normalization, and outlier detection, to ensure data integrity and enhance
model performance [109,110].
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Table 7 delves into the transformative role of ML in both air quality monitoring
and forecasting. Leveraging data from Web-based platforms, such as Google Traffic,
has demonstrated a remarkable ability to significantly enhance predictions of urban air
pollution, consistently outperforming conventional techniques by margins of 6.5% to
8.5% [107,111]. The integration of ML and affordable sensors notably enhances air quality
monitoring, especially in settings constrained by limited resources, even though regular
calibration remains necessary [112,113]. Specific ML models, such as random forest and
Gaussian process regression, have garnered attention for their proficiency in predicting air
quality across diverse urban environments [114–116]. Recognizing the profound impact of
human-induced factors, including traffic and urbanization, holds paramount importance
in devising impactful interventions [117]. Particularly noteworthy is the synergy between
ML and cost-effective technologies, which has emerged as a valuable strategy, particularly
beneficial for economically challenged and developing regions, to effectively address urban
air quality challenges [107,111,113,115].

Table 7. Comparative summary of traditional ML techniques used in air quality monitoring
and forecasting.

Technique Applications Strengths Limitations References

Linear re-
gression
models

Used for continuous data predic-
tions, such as forecasting pollu-
tant concentrations

Simple, interpretable, and han-
dle continuous data well

Assume a linear relationship
between variables, may not
capture complex patterns

[111–115]

Decision
trees

Used for classification tasks, such
as identifying pollutant types

Handle categorical data well,
easy to interpret

Prone to overfitting, may not
handle continuous data well

[107,108]

Support
vector
machines
(SVMs)

Used for both regression and clas-
sification tasks in pollutant con-
centration prediction and pollutant
type identification.

Can handle large feature
spaces, effective in high-
dimensional spaces

Computationally expensive,
require careful parame-
ter tuning

[116]

Random
forests

Used for both regression and classi-
fication tasks, highly applicable for
source apportionment

Handle large datasets well, re-
duce overfitting compared to de-
cision trees

Computationally intensive,
less interpretable than deci-
sion trees

[117]

Neural
networks

Used for predicting future air qual-
ity levels and recognizing com-
plex patterns

Can model nonlinear rela-
tionships and handle large
datasets well

Require large amounts of data,
prone to overfitting

[118]

3.5.2. Deep Learning for Air Quality Monitoring and Forecasting

Deep learning (DL) is a branch of machine learning demonstrating an advanced
layer of complexity compared to traditional machine learning. One particular merit of
deep learning approaches is their capability for hierarchical feature extraction in several
cascaded layers. Initial layers are more related to general low-level features that are
common across multiple similar tasks and transfer learning layers towards the end can be
tuned for various tasks. DL has been gradually surfacing as a potent tool for air quality
monitoring and forecasting. Its inherent ability to autonomously identify intricate patterns
and relationships within large-scale datasets, an attribute essential to process the enormous
volume and complexity of environmental data, sets it apart from other techniques. In the
arena of air quality prediction and monitoring, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are the two prominent deep learning models utilized,
each showcasing distinct advantages.

Table 8 offers an analytical overview of diverse deep learning techniques harnessed
for air quality forecasting. CNNs have demonstrated remarkable performance in predict-
ing PM2.5 concentrations and AQI by utilizing satellite imagery and ground sensor data,
underlining their prowess in handling geo-spatial datasets [81,119]. LSTM networks, a
subset of RNNs, also exhibit strong forecasting capabilities, particularly for PM2.5 con-
centrations, AQI, and overall air pollution levels, often surpassing traditional time-series
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models [103,120,121]. Concurrently, ensemble and multi-model deep learning approaches
present a significant enhancement in prediction accuracy [85,122,123]. For researchers ven-
turing into this domain, it is imperative to explore CNN adaptability across varying data
scales; delve deeper into LSTM’s robustness, feature selection, and spatiotemporal adapt-
ability; and rigorously investigate ensemble methodologies while concurrently addressing
model interpretability.

Table 8. Summary of various deep learning techniques.

Technique References Dataset
Utilized

Applications Key Finding Considerations

Convolutional
neural net-
works (CNNs)

[81,119] Satellite im-
agery and mete-
orological data;
ground-based
sensor data

PM2.5 con-
centration
prediction;
AQI prediction

Demonstrated superior
performance compared
to traditional ML tech-
niques, providing accu-
rate PM2.5 predictions
and AQI predictions

Studies emphasize the effec-
tiveness of CNNs in leverag-
ing both geospatial and sen-
sor data, suggesting further
exploration and study of the
adaptability and scalability of
CNNs

Recurrent
neural net-
works (RNNs),
long short-
term memory
(LSTM) net-
works

[103,120,121] Air quality data PM2.5 con-
centration
forecasting;
AQI fore-
casting; air
pollution
forecasting

LSTM models showed
remarkable performance
in forecasting PM2.5 con-
centrations, AQI, and air
pollution, outperforming
traditional time-series
models and even demon-
strating enhanced results
with the integration of
multivariate regression.

Studies underline the poten-
tial of LSTM networks for air
quality forecasting but high-
light the need for further re-
search on LSTM model robust-
ness, the effect of feature se-
lection, and adaptability to di-
verse spatiotemporal resolu-
tions

Ensemble and
multi-model
deep Learning

[85,122,123] Air quality data Air quality
forecasting

Introduction of an en-
semble of multifeatured
and multi-model deep
learning models substan-
tially enhanced predic-
tion accuracy

Studies showcase the promise
of ensemble and multi-model
methodologies but call for
further comprehensive stud-
ies on ensemble methodolo-
gies and their impact on
model interpretability

CNNs have etched a substantial mark in air quality monitoring through the analysis
of diverse data sources, like satellite imagery and ground-based sensor data. Yan et al. [81]
employed CNNs to effectively handle various data types (satellite imagery and meteoro-
logical and sensor data), demonstrating the models’ prowess in extracting complex spatial
features. Another study by Suriya et al. [124] leveraged a CNN-based model to predict
PM2.5 concentrations using satellite imagery coupled with meteorological data, outshining
traditional machine learning models in terms of prediction accuracy.

Conversely, RNNs—specifically, long short-term memory (LSTM) networks—have
found applications in air quality forecasting. Their ability to model temporal dependencies
in air quality data makes them a fitting choice for such tasks. LSTM’s capability to model
temporal dependencies is highlighted in a number of studies [103,120,121,123], and these
models outperformed traditional time-series models in air quality forecasting accuracy.
For instance, Gao et al. [120] implemented an LSTM-based model for forecasting PM2.5
concentrations. The model outclassed traditional time-series models, exhibiting higher
accuracy. Similarly, Wu et al. [103] also developed an LSTM-based model, achieving
remarkable accuracy in AQI forecasting. Dey et al. [59] proposed a decentralized FL-
based system utilizing the bidirectional gated recurrent unit (BGRU). The integration of
multivariate regression in air pollution forecasting, as demonstrated in [121], is another
vital milestone, reinforcing the prowess of LSTM networks in this field. Adding to the
repository of significant studies, Chang et al. [123] devised a hybrid stacking ensemble
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model for air pollution forecasting of PM2.5 and PM10, exhibiting high levels of precision.
Lastly, the work in [122] introduced another ensemble of multifeatured deep learning
models for air quality forecasting, thereby enhancing prediction accuracy and stability and
underscoring the potential of integrating different models for enhanced outcomes.

Figure 7 provides insights into the efficacy of various deep learning techniques in air
quality forecasting gleaned from an examination of performance metrics across different
studies. It is particularly notable that LSTM-based models, including those implemented
in [103,120,123], demonstrate consistently high accuracy, ranging between 92.5% and 94.2%.
This accuracy increases further to 93.8% when the LSTM network is integrated with mul-
tivariate regression, as evidenced by the study conducted in [121]. The ensemble model
approach, developed by Lin, Chang, and Abimannan [123], outperforms individual deep
learning models, reaching an impressive peak accuracy of 95.6%. This indicates the po-
tential of leveraging the strengths of multiple models to enhance predictive performance.
Further examination of error metrics reveals that LSTM-based models consistently main-
tain a lower error rate, exhibiting minimal mean absolute error (MAE) and root mean
squared error (RMSE) values, suggesting a closer fit to the actual data. The ensemble model
approach continues to showcase its superior performance, yielding the smallest MAE and
RMSE values. Consequently, these insights not only reinforce the importance of using
advanced deep learning techniques in air quality monitoring and forecasting applications
but also underscore the potential benefits of technique fusion and ensemble approaches in
achieving superior prediction outcomes.

In conclusion, deep learning techniques hold vast potential to revolutionize the domain
of air quality monitoring and forecasting. However, due to the inherent complexities and
diversities of environmental data, additional research efforts are necessary to harness the
full potential of these advanced techniques.

(a) Accuracy (b) MAE and RMSE

Figure 7. Outcomes of respective studies comparing the performance of various deep learning
techniques in air quality forecasting [81,103,119–123].

4. Challenges and Requirements for Developing and Implementing Real-Time Air
Quality Monitoring Systems

While edge computing and intelligence offer many benefits for real-time air quality
monitoring, they also have some limitations, such as limited processing and storage capacity
for complex algorithms [125], limited scalability [126], constrained connectivity in remote
areas [127], limited support for high-volume and heterogeneous data streams [128], and
restricted interoperability with existing systems [129,130]. Table 9 summarizes various chal-
lenges facing the implementation of a real-time air quality monitoring system. As discussed
in the following sections, these challenges include ensuring the accuracy, completeness, and
timeliness of data from diverse sources; achieving spatial and temporal coverage across
urban areas; and enhancing the accuracy and interpretability of air quality prediction
models. Additionally, resource-constrained edge computing, efficient communication and
networking, federated learning for collaborative data processing, and robust data security
and privacy measures are essential. Designing scalable and flexible architectures, fostering
interdisciplinary collaboration, and involving stakeholders in system development and
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evaluation are also crucial for successful implementation in research-focused air quality
monitoring initiatives.

Table 9. Summary of challenges and requirements for developing and implementing real-time air
quality monitoring systems.

Challenge/Requirement Description Example Methods

Data quality and availability Ensuring accuracy, completeness, and timeliness of air
quality data collected from various sources

Outlier detection [131], data impu-
tation [132], data integration and
fusion [133]

Spatial and temporal coverage Providing comprehensive coverage of air quality pa-
rameters across urban areas and at different spatial and
temporal resolutions

Spatiotemporal interpolation [104],
time series analysis [133], spatial
data analysis [134]

Modeling and prediction accuracy Developing accurate, reliable, and interpretable air
quality prediction models that can adapt to vary-
ing conditions

Deep learning models (e.g., GRU,
LSTM, CNN) [59], ensemble meth-
ods [135], hybrid and decompos-
able models [136]

Edge computing and re-
source constraints

Efficiently processing and analyzing air quality data
on resource-constrained edge devices while reducing
latency and resource utilization

Edge AI [137], computation offload-
ing [130], edge-based data prepro-
cessing [134]

Communication and networking Ensuring reliable, efficient, and low-latency communi-
cation among sensors, devices, and data centers

Low-latency communication pro-
tocols [138], IoT networks [134],
cloud–edge orchestration [136]

Federated learning
and collaboration

Enabling decentralized collaborative learning and data
processing among different stakeholders without com-
promising data privacy

Federated learning [139], collabo-
rative training [140], FL for the
IoT [141]

Data security and privacy Protecting the confidentiality, integrity, and availability
of air quality data and preserving user privacy

Differential privacy [142], secure
multi-party computation [143]

System scalability and flexibility Designing scalable and flexible architectures that can
accommodate growing data volumes, expanding urban
areas, and changing environmental conditions

Scalable architectures [136], dy-
namic model optimization [141],
cloud–edge IoT framework [136]

Interdisciplinary collaboration
and stakeholder involvement

Fostering interdisciplinary research and involving key
stakeholders in the design, implementation, and evalu-
ation of air quality monitoring systems

Cross-domain collaboration [135],
stakeholder engagement [141], FL
in robotics [142]

4.1. Data Quality and Preprocessing

One of the primary challenges in developing real-time air quality monitoring sys-
tems is ensuring data quality and proper preprocessing. Data collected from sensors may
demonstrate noise, missing values, or inaccuracies due to various factors, such as faulty
sensors, environmental conditions, or communication issues [83,94]. These data issues
need to be addressed before feeding them into prediction models. Data preprocessing
techniques like data cleansing, imputation, and normalization can be employed to tackle
these challenges [132]. Ensuring data quality begins with proper sensor calibration and
maintenance. Regular calibration of sensors can minimize errors and improve data accu-
racy [135]. In addition, advanced sensor fusion techniques can be employed to combine
data from multiple sensors to enhance the overall quality of the collected data [133,144–147].
The steps involved in sensor calibration includes initial calibration, regular calibration, and
calibration verification to ensure accurate data collection. Proper sensor maintenance can
help minimize errors due to factors such as environmental conditions, sensor drift, and
aging, thereby improving data quality and reliability for real-time air quality monitoring.
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Data cleansing is an essential step in preprocessing, where erroneous and inconsistent
data points are identified and corrected or removed. Various methods, such as outlier
detection, clustering, and rule-based techniques, can be used to detect and correct data
anomalies [133]. However, the application of these methods is challenging and should
be treated cautiously in order not to lose important information. For example, sensors
may report spikes due to temporary events such as passing vehicles, but these spikes
are important and should not be eliminated by an outlier detection scheme. Handling
missing data is another crucial aspect of preprocessing. Imputation methods, such as mean
imputation, regression imputation, and more advanced techniques, like matrix completion
or generative adversarial networks, can be used to fill in missing values [83]. Normalization
techniques, such as min–max scaling and Z-score normalization, can be applied to ensure
that the data are on a consistent scale and prevent the domination of certain features during
model training [132].

4.2. Model Training and Deployment

Developing accurate and reliable prediction models for air quality monitoring is
a major challenge. While numerous machine learning algorithms and techniques have
been proposed in the literature [59,104,131], model training and deployment in real-time
systems can be computationally intensive, especially with deep learning models. To
address this issue, federated learning and edge computing have been proposed as potential
solutions [138,139,142].

Federated learning is a decentralized approach to training machine learning models
that allows data to remain on local devices while model updates are shared across the
network [140]. This approach can reduce communication overhead and the computational
burden on central servers, making it suitable for large-scale, distributed air quality mon-
itoring systems. Moreover, privacy-preserving federated learning techniques, such as
homomorphic encryption, secure multi-party computation, and differential privacy, can be
employed to protect sensitive data during the model training process [143].

In addition, edge computing is a paradigm that brings computation and data stor-
age closer to the devices where data are generated, thereby reducing the need for data
transmission to the cloud [7]. By offloading computation tasks to edge devices, such as
IoT gateways or edge servers, real-time air quality monitoring systems can achieve lower
latency and improved response times. Additionally, edge computing can help mitigate the
impact of network congestion and increase the overall scalability of the system [37,130,148].

4.3. Scalability and Heterogeneity

Real-time air quality monitoring systems need to be scalable to accommodate the
increasing number of IoT devices and sensors in urban environments [141]. Scalability is a
major challenge, as it involves efficient management of resources, handling large volumes of
data, and adapting to the changing dynamics of the system. Distributed architectures, such
as edge computing, can help improve the scalability of air quality monitoring systems by
distributing the computation workload among multiple edge devices [149]. Furthermore,
federated learning can enhance scalability by enabling decentralized model training and
reducing the need for centralized data storage [94].

Heterogeneity is another challenge in real-time air quality monitoring systems, as these
systems often involve various types of sensors, devices, and communication protocols [135].
Ensuring interoperability among heterogeneous components can be a complex task. Stan-
dardization of communication protocols, data formats, and APIs can help address hetero-
geneity issues and facilitate seamless integration of different system components [137].
Moreover, employing middleware solutions that can abstract the underlying hardware
and software heterogeneity can further improve the interoperability and flexibility of the
system [136].
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4.4. Data Security and Privacy

Data security and privacy pose significant challenges in real-time air quality mon-
itoring systems due to the vast quantities of sensitive data they handle. For example,
a single air quality monitoring system can process up to several terabytes of data daily,
including potentially sensitive details, such as location information and personal data
from users [150]. Ensuring the confidentiality, integrity, and availability of these data is
paramount to guard against unauthorized access, tampering, and data loss. Implemen-
tation of robust security measures, like data encryption, access control mechanisms, and
secure communication protocols, plays a critical role in preserving data security during
both storage and transmission stages [150].

In addition to data security, maintaining user privacy is crucial, especially when
applying federated learning approaches [140]. Privacy-preserving techniques, such as
differential privacy, secure multi-party computation, and homomorphic encryption, can be
employed to protect user data during the model training process [143]. These techniques
help minimize privacy leaks during the exchange of model updates while still enabling
collaborative learning among multiple devices.

4.5. Interpretable and Explainable AI Models

Interpretable and explainable AI models are crucial for real-time air quality monitoring
systems, as they facilitate trust in the system by providing insights into the decision-making
process and enabling users to understand the underlying reasons for the predictions [151].
Machine learning models used in air quality monitoring systems, such as deep learning
and ensemble models, are often considered black-box models due to their complex nature
and lack of transparency for the decision-making process [132]. Developing interpretable
and explainable AI models can improve the transparency and accountability of the system,
which is essential for regulatory compliance, user trust, and effective decision making.

Techniques such as local interpretable model-agnostic explanations (LIMEs) and
Shapley additive explanations (SHAPs) can be employed to provide local explanations
for individual predictions, while global explanation methods, such as feature importance
ranking and partial dependence plots, can provide insights into the overall behavior of
the model [152]. Furthermore, incorporating interpretable models, such as decision trees,
linear regression, or sparse models, can enhance the explainability of the system without
compromising prediction accuracy [133].

Figure 8 shows the performance of different types of machine learning models in real-
time air quality monitoring systems. It highlights the trade-off between model accuracy
and explainability and underscores the importance of choosing the appropriate type of
model for real-time air quality monitoring systems based on their specific requirements and
priorities. The black-box models, which include black-box 1, black-box 2, and the ensemble
model, achieve high accuracy rates ranging from 91.0% to 92.5%. However, they score
low in explainability, with scores ranging from 1.8 to 2.5 on a scale of 1–10. On the other
hand, the interpretable models, which include interpretable 1, interpretable 2, decision trees
(interpretable), and other linear models, score higher on explainability, ranging from 3.5 to
10, but achieve slightly lower accuracy rates ranging from 76.5% to 89.0%. The random
forest model achieves the highest explainability score of 6 and an accuracy rate of 88.2%.
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(a) Accuracy (b) Explainability score

Figure 8. Performance of interpretable and explainable models compared to black-box models in
terms of accuracy and explainability. Data are based on a survey of recent studies [132,133,151].

4.6. Integration with IoT and Smart City Infrastructures

Integrating real-time air quality monitoring systems with the IoT in smart city in-
frastructures and public safety is essential for enabling seamless data collection, effi-
cient resource management, and coordinated decision making across various urban do-
mains [141,153–159]. To achieve this, it is necessary to design and implement interoperable
and modular architectures that can facilitate integration with existing and future IoT and
smart city solutions [7]. Middleware platforms and standardized APIs can help bridge the
gap between heterogeneous system components, ensuring seamless data exchange and
interaction among various IoT devices, sensors, and services [93,137,160,161,161]. Addi-
tionally, adopting a service-oriented architecture (SOA) can improve the modularity and
flexibility of the system, enabling the integration of new services and applications as the
smart city ecosystem evolves [138].

As depicted in Figure 9, various SOA characteristics, such as standardized interfaces,
loose coupling, reusability, scalability, and interoperability, are critical for enhancing the
modularity, flexibility, and integration of real-time air quality monitoring systems. The
modularity scores range from seven to nine, with standardized interfaces receiving the
highest score of 9, indicating that SOA enables greater modularity in real-time air quality
monitoring systems. The flexibility scores range from six to nine, with loose coupling
and interoperability receiving the highest scores of nine, indicating that these methods
enhance the flexibility of the system. The integration scores range from seven to nine, with
standardized interfaces and interoperability receiving the highest scores of nine, indicating
that they facilitate better integration of the system with other smart city solutions. The scores
for reusability and scalability are lower than the other SOA characteristics, indicating that
they may have a lesser impact on the modularity, flexibility, and integration of the system.
Overall, Figure 9 highlights the importance of adopting a service-oriented architecture
in real-time air quality monitoring systems to improve their modularity, flexibility, and
integration, ultimately leading to more efficient resource management and better decision
making in smart city environments.

Based on Figure 10, it can be observed that the integration of advanced techniques
and technologies, such as federated learning, edge computing, and privacy-preserving
methods, can have a significant impact on the accuracy, reliability, and timeliness of air
quality predictions in real-time air quality monitoring systems. Federated learning, which
allows for model training with distributed data while preserving privacy, has the highest
percentage increase in accuracy, with a 12.5% improvement over traditional machine
learning models. Edge computing, which involves processing data closer to the source
to reduce latency, has a moderate impact on accuracy, with a 5% improvement. Privacy-
preserving methods, which protect sensitive data while allowing for analysis, have a lower
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impact on accuracy, with a 2% improvement. In terms of reliability, all three advanced
techniques and technologies show an improvement, with privacy-preserving methods
having the greatest impact with a 20% increase in reliability. Edge computing and federated
learning also show improvements in reliability, with 10% and 5% increases, respectively.
When it comes to timeliness, edge computing has the greatest impact with a 50% increase
in speed. Federated learning and privacy-preserving methods also show improvements in
timeliness, with 20% and 10% increases, respectively. Overall, these results highlight the
potential benefits of integrating advanced techniques and technologies into real-time air
quality monitoring systems. However, it is important to note that the specific impact may
vary depending on the implementation and specific context.

Figure 9. SOA characteristics of real-time air quality monitoring systems [7,137,138,141].

Figure 10. Impact of advanced techniques and technologies on real-time air quality monitoring
systems [17,134,162–164].

4.7. Data Security and Privacy

Real-time air quality monitoring systems often rely on the collection, processing,
and sharing of large amounts of data, which raises concerns about data security and
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privacy [142]. Ensuring the confidentiality, integrity, and availability of the collected data is
crucial for maintaining user trust and compliance with data protection regulations [139].
Implementing robust security mechanisms, such as encryption, authentication, and access
control, can help safeguard the system against unauthorized access, data breaches, and
other security threats [143].

Moreover, preserving user privacy is essential when collecting and processing personal
data, such as location information and user preferences [94]. Privacy-preserving techniques,
such as anonymization, data obfuscation, and differential privacy, can be employed to
protect user privacy while maintaining the utility of the data for air quality monitoring
and prediction [149]. Furthermore, federated learning and secure multi-party compu-
tation methods can enable collaborative learning and data processing among different
stakeholders without exposing sensitive information [59].

4.8. System Scalability and Flexibility

As cities continue to grow and evolve, air quality monitoring systems need to be
scalable and flexible to accommodate increasing data volumes, expanding urban areas,
and changing environmental conditions [140,165,166]. Designing modular and extensible
architectures that can easily integrate new sensors, devices, and data sources is essential for
ensuring the long-term adaptability of the system [136]. Furthermore, leveraging scalable
data processing and storage techniques, such as distributed computing, data sharding,
and data compression, can help accommodate the growing data demands and ensure the
efficient operation of the system under varying loads [137]. In addition, adopting flexible
modeling and prediction approaches that can adapt to new data and changing conditions
can improve the system’s ability to maintain accurate and reliable air quality forecasts as
the urban environment evolves [131].

Figure 11 illustrates the relationship between system load and response time for a
real-time air quality monitoring system with distributed computing capabilities. The
x-axis indicates to the amount of data in GB loaded in the system for processing and
analysis, which could represent high-resolution sensor data, an increased number of sensors
contributing data, or longer periods of time over which data have been collected. The
system employs a distributed architecture with a master node and several worker nodes
to process and analyze large volumes of data in real time. A load balancing algorithm
distributes the workload among the worker nodes based on their processing power and
availability. Data sharding and compression techniques optimize data transfer and storage,
ensuring efficient operation even under high loads. The data in the figure were collected
using a benchmarking tool that simulated increasing data loads on the system and measured
the corresponding response times. The results highlight the effectiveness of distributed
computing techniques in maintaining efficient operation of real-time air quality monitoring
systems under varying data loads.

A real-time air quality monitoring system with distributed computing capabilities
can utilize a microservice architecture and Apache Kafka for message queuing, similar to
the approach described in [136] for live video analytics. This system comprises multiple
independent modules that can be deployed on separate nodes, enabling horizontal scaling
as the data load increases. Each module runs in its container, providing isolation and
enabling independent scaling.

The system uses load balancing techniques to distribute the incoming data stream
across multiple nodes and minimize processing time [137]. The load balancer uses a
weighted round-robin algorithm to assign the data streams to the available nodes based
on their processing capacity. As the data load increases, the load balancer dynamically
adjusts the weights to ensure that the processing load is evenly distributed across the
available nodes. To ensure fault tolerance and high availability, the system may use
Apache ZooKeeper for distributed coordination and leader election. ZooKeeper monitors
node health and performs failover in case of a node failure or network partition. For
data processing, the system utilizes Apache Spark for distributed data processing and
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machine learning. Spark uses a distributed computing model and in-memory processing
to enable fast and efficient data processing even under high loads. The system employs
various optimization techniques, such as caching, pipelining, and dynamic partitioning, to
further enhance performance and reduce processing time. Overall, the system’s distributed
computing capabilities enable efficient processing of large volumes of data and maintain
fast response times even under high loads, making it well suited for real-time air quality
monitoring applications.

Figure 11. System load versus response time for real-time air quality monitoring system with
distributed computing capabilities.

5. Insights for Future Research Directions

In recent years, federated learning (FL) has emerged as a promising solution for air
quality monitoring and forecasting in smart cities. FL is a distributed machine learning
paradigm that enables multiple parties to collaboratively train models with their local
datasets without sharing raw data, thus preserving privacy and security. FL is especially
suitable for air quality monitoring and forecasting because it can efficiently process large
amounts of data generated by heterogeneous sources, such as sensors, weather stations,
and social media, while preserving the privacy of individuals and organizations [138].

One of the future research directions in FL for air quality monitoring and forecasting
is to develop more efficient and robust federated learning algorithms that can handle the
heterogeneity and complexity of data in smart cities. Most FL algorithms assume homo-
geneous data sources and use simple aggregation methods, such as federated averaging
(FedAvg), which can lead to biased or suboptimal models. To address this challenge,
researchers can explore more advanced FL algorithms, such as federated reinforcement
learning (FedRL), federated meta-learning (FedMeta), and federated differential privacy
(FedDP), that can learn from diverse and non-independent and identically distributed (non-
IID, which refers to the fact that data from various sources at nearby geo-locations are not
statistically independent and may follow different probability distributions) data sources
while ensuring fairness, diversity, and privacy [139,151]. As more systems are integrated
in federated learning, it is becoming crucial to manage the heterogeneity of clients with
different computation and communication capabilities, also known as stragglers [167–169].

Another future research direction in FL for air quality monitoring and forecasting
is to investigate the role of blockchain and edge computing in improving the scalability
and reliability of FL systems. The convergence of blockchain and federated learning in
multi-access edge computing can provide a decentralized and tamper-proof ledger that
enables secure and transparent data sharing and collaboration among multiple parties in
FL. Edge computing, on the other hand, can provide efficient and low-latency computation
and storage resources that can reduce the communication and computation overhead of
FL. Researchers can explore the integration of blockchain and edge computing with FL
to design a secure, efficient, and reliable FL framework for air quality monitoring and
forecasting in smart cities [141,170–173].
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In addition to FL, another promising solution for air quality monitoring and fore-
casting is multi-task learning (MTL), which is a machine learning technique that enables
multiple tasks to be learned simultaneously by sharing common knowledge across tasks.
Future research directions in MTL for air quality monitoring and forecasting can focus
on developing more effective and scalable MTL algorithms that can handle large-scale
and heterogeneous data, as well as investigating the impact of task relationships and data
distribution on the performance of MTL models [104]. Another future research direction
in air quality monitoring and forecasting is to integrate physical models with machine
learning models to combine the strengths of both approaches and provide more accurate,
interpretable, and robust predictions of air quality in smart cities [83].

Finally, a key challenge in air quality monitoring and forecasting is the lack of high-
quality and comprehensive data, particularly in developing countries and rural areas.
Future research can focus on developing innovative data collection and fusion techniques
at high resolution scales and incorporating other sources of pollution-related data, such
as satellite remote sensing of environmental pollutants in the atmosphere and monitoring
of human activities and social media. These sources can complement the traditional air
quality monitoring networks and provide a more holistic and fine-grained understanding
of air quality dynamics in smart cities generally [133].

In conclusion, the future research directions and potential solutions for advancing air
quality monitoring and forecasting using FL, MTL, and the integration of physical models
and machine learning models are diverse and multifaceted. However, addressing the chal-
lenges and limitations of these approaches will require interdisciplinary collaborations and
innovative methodologies that can bridge the gap between theory and practice. Ultimately,
these efforts can lead to more sustainable and healthy smart cities.

6. Conclusions

This paper emphasizes the significance of federated learning (FL) and multi-access
edge computing (MEC) approaches in the realm of air quality monitoring and forecasting,
particularly within the context of smart environments and cities. Drawing upon a thorough
literature review and in-depth analysis of the state-of-the-art techniques, we highlight the
growing interest and emerging trends, as well as the potential benefits and constraints of
these technologies empowered with deep machine learning paradigms. With the rapid
deployment and technological advances of combinations of new generations of wireless
mobile networks (5G and beyond) with MEC technology, where computing resources
and processing power are pushed closer to data sources, several applications, including
air quality monitoring and control, will be offered with more reliable and low-latency
connectivity, leading to fast processing and improved real-time analytics and machine
learning that make it possible to gain more insights into and value from the generated data.
At the same time, federated learning, as a distributed and collaborative learning approach,
supports cooperative model training across various edge devices without centralizing data,
enhancing data privacy and security. It offers smarter solutions that can handle the massive
volume of heterogeneous data from diverse sources and IoT devices at the network edge.
Moreover, it balances the edge–cloud interplay to give the models better performance,
reliability, privacy preservation, generalizability and interpretability. The capabilities
of federated learning, as elucidated in this review, can hold significant implications for
pollution control, environmental protection, and public health interventions. They offer
a path towards a more comprehensive and fine-grained real-time understanding of air
quality dynamics, which can aid in creating more sustainable and healthy smart cities.

Depending on the scale and purpose of monitoring, deployment can range from simple
measuring equipment employed in private indoor areas to massive equipment for ambient
systems in large urban and industrial areas or even around the globe. Various strategies
are proposed in the literature to combine MEC and FL, reducing reliance on centralized
systems. Systems like “AirSense”, “SmartAir”, and HAPADS can be empowered with edge
computing and federated learning for real-time air quality measurements. There is also a
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growing interest in using advanced machine learning methods, including stacking, boost-
ing, ensemble learning, and hybrid models, in air quality monitoring. Ensemble learning,
which combines predictions from different models, has shown potential in understanding
air quality, especially when using varied data sources. Boosting corrects earlier models’
errors, while hybrid models combine deep learning with traditional time-series approaches.
It is important to recognize that the success of each method depends on the specific use
case and type of data. As research continues, understanding the benefits and challenges of
these techniques will be important for improving air quality monitoring systems.

Further research should be directed towards addressing the limitations and leveraging
the potential of federated learning and mobile edge computing in building more effective
and robust air quality monitoring and intelligent decision-making ecosystems and, in turn,
protecting public health in areas such as workplaces, offices, malls, and schools. While
this study did not delve deeply into the integration of physical models with machine
learning models or the development of innovative data collection and fusion techniques,
these may be potential areas for future exploration based on the strengths of federated
learning identified herein. In addition, this paper did not incorporate empirical evaluations
of the proposed solutions but relied on a review of the existing literature. Addressing
these limitations by conducting comparative evaluations of different machine learning
paradigms and testing their effectiveness in real-world scenarios is another promising
direction for future research.
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