
A Service for Resilient Manufacturing

Mirco Soderi
Data Science Institute
University of Galway

Galway, Ireland

mirco.soderi@universityofgalway.ie

John Gerard Breslin
Data Science Institute
University of Galway

Galway, Ireland

john.breslin@universityofgalway.ie

Abstract—In modern industry, adaptation to market changes,
as well as prompt reaction to a variety of predictable and unpre-
dictable events, is a key requirement. Ubiquitous computing, real-
time analytics, reconfigurable hardware/software components,
often coexist in the complex, internally variegated, and often
proprietary systems that are traditionally deployed to meet
such requirement. However, such tailor-made systems meet only
in part the requirements of openness, security, monitorability,
geographical distribution, and most of all, remote extendability
and changeability, which are crucial for prompt reaction to
unforeseen circumstances. In this work, a containerized service
application named Network Factory is presented. It enables the
remote construction, configuration and operation of resilient com-
putation systems that meet the above-mentioned requirements,
and distinguish for their logical simplicity and for the uni-
form addressing of elaborations and human-computer interfaces,
which are achieved through few reconfigurable components and
communication mechanisms that are used from the production
line up to the Cloud. Source code, documentation, and step-by-
step introductory guides are publicly available in a dedicated
GitHub repository, and distributed under the CC-BY-4.0 license.

Index Terms—Resiliency, Reconfigurable manufacturing,
Ubiquitous computing, Real-time analytics, Open architecture,
Security, Monitorability, Changeable software, Geo-Distributed
system, Containerization

I. INTRODUCTION

In a world that is becoming more and more unpredictable,

being capable to take immediate action to face the unfore-

seen, either automatically or semi-automatically, ensures a

huge competitive advantage to modern industries. Unexpected

orders, service disruptions, cyber attacks, natural events, are

becoming more and more frequent, and not being able to

face them in due time might put factories, communities, and

countries, at high risk. A large and variegated set of require-

ments must be met to be prepared to tackle such extreme

challenges (Fig. 1). Failing to meet just one of them may

compromise the promptness, the efficiency, or the effectiveness

of the countermeasures.

This publication has emanated from research supported in part by a grant
from Science Foundation Ireland under Grant Number SFI/16/RC/3918 (Con-
firm), and also by a grant from SFI under Grant Number SFI 12/RC/2289 P2
(Insight). For the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript version arising
from this submission.

Fig. 1. Requirements

A. Requirements

If immediate action is needed, it cannot be afforded to

wait for any third party, which is one of the motivations

for preferring open software, protocols and architectures. In

many cases, production is physically distributed [1], then for

achieving synchronous timely responses it is necessary to

have standardized mechanisms in place for remote software

installation from shared repositories, configuration, and oper-

ation. This is a variant of the Software-as-a-Service (SaaS) [2]

delivery model, in which the software runs on targeted devices,

instead of on the Cloud. Even beyond, if the issue to be faced is

completely unexpected, no ready-to-use software module may

be available, which is why it is crucial to have mechanisms in

place that enable arbitrary software modifications from remote.

To the best of our knowledge, this has not been addressed in

any previous research work. This implies dealing with security

and stability issues. To mitigate them, the system needs to be



remotely monitorable by design, which is why MQTT brokers

and event streaming servers are used for data transferring

across atomic components deployed in the same device, or

across multiple devices. For being resilient to communication

technology disruptions, standardized mechanisms for the re-

mote deployment of alternative communication technologies

are needed. Soderi and Breslin [3] have demonstrated how

Bluetooth Low Energy (BLE) servers can be instantiated,

configured, and operated from remote. Although highly autom-

atized, all production systems have humans in the loop. Then,

the capacity to build, configure and publish arbitrary user

interfaces from remote makes a big difference. Soderi et al.

[4] have presented a demo where customized Big data charts

are created and configured from remote. For addressing the

most diverse physical devices uniformly, an abstraction layer

is required. This is one of the reasons why containerization

technologies such as Docker are hugely helpful, and used in

our proposal.

B. Related works
Kombaya Touckia et al. [5] have proposed a design for a

digital twin framework for reconfigurable manufacturing sys-

tems (RMSs) targeted to ensure prompt reactions to unforeseen

circumstances. Hajjem et al. [6] have discussed the challenges

and requirements of digital twin frameworks for reconfigurable

manufacturing systems, and identified the remote installation,

configuration and operation of plug and play software as

“the path to be followed in order to produce high-quality

product and to meet the market requirements”. Kurniadi and

Ryu [7] have proposed a conceptual framework for IoT-based

RMS, emphasizing the role of human operators. Haddou et

al. [8] have proposed a digital twin modular framework for

reconfigurable manufacturing systems that includes reusable

components that recall those that can be created through our

proposed Factory Service. Cannata et al. [9] have proposed

SOCRADES, a framework for intelligent manufacturing sys-

tems based on Service Oriented Architectures (SOA).

C. Paper structure
In Section I the objectives, requirements, and related works

are presented. In Section II, the Network Factory is described,

its suitability for the outlined purpose is discussed, and direc-

tions to get started with it are briefly provided; full details are

available in the GitHub repository1. In Section III, conclusions

are drawn.

II. NETWORK FACTORY

The Network Factory is a containerized Node-RED applica-

tion meant to add extensive remote reconfiguration capabilities

to any device on which it runs, so enabling system resilience.

At today, it includes 30+ APIs (Fig. 2) for (i) logical organiza-

tion and isolation of the reconfigurable distributed application,

(ii) creation, configuration and control of the atomic software

components (nodes), (iii) management of module repositories,

and (iv) inspection and update of the security mechanisms.

1https://github.com/mircosoderi/State-of-the-art-Artifacts-for-Big-Data-
Engineering-and-Analytics-as-a-Service

Fig. 2. Network Factory

A. Service

A fence is a possibly empty set of containerized applications

that (i) refer to each other by name, (ii) cannot be accessed

from outside the fence unless ad-hoc configurations are set,

and (iii) have mediated access to system resources. Fences

contribute to application and hosting system security, and to

software maintainability. At present, user-defined Docker net-

works are used for implementing fences. The Network Factory

exposes APIs for fence creation, inspection, modification, and

deletion.

The Network Factory exposes APIs for creating, pausing,

resuming, starting, and stopping a variety of reconfigurable

containerized applications, also named nodes, such as Service

Nodes [10], Crazy Nodes [11], BLE Nodes [3], Transforma-

tion Libraries [10], MQTT brokers [10], Artificial Intelligence

Server (AIS) Nodes [12], Log Nodes (Apache Flume server

instances), and generic nodes. Although different endpoints

are exposed for the creation of the different types of nodes,

the execution flow is similar for the creation of any of them

(Fig. 3).

Applications created through the Network Factory are mod-

ular by design. Service and Crazy Nodes expose an API

to set the task to be executed, which accesses an external

repository (Transformation Library), retrieves the task im-

plementation and copies it into the Service or Crazy node

itself for execution. AIS Nodes have internal tasks libraries.

The Network Factory exposes APIs for extending or updating

Transformation Libraries and AIS Node internal libraries.

In end, the Network Factory exposes APIs for inspecting

and updating the security mechanisms that are applied to any

request made to the the Network Factory itself.



Fig. 3. Node creation

B. Discussion

Based on requirements, the strengths of this work follow. All

source code and documentation materials are open-source and

distributed under the CC-BY-4.0 licence. All APIs are exposed

over HTTPS, with access control delegated to external APIs.

All reconfigurable nodes created through the Network Factory

run tasks retrieved from remotely extendable libraries. In the

specific case of Crazy Nodes, immediate (semi-)automated

response to unforeseen events is possible by operating arbitrary

modifications on the task implementation from remote. Ap-

plications built through the Network Factory are monitorable

by design, as nodes are meant to exchange data by means

of MQTT brokers or streaming servers, and integration with

Apache Flume is supported. An example of communication

as a service is provided, which consists in the creation and

configuration of a BLE server from remote. User interfaces

can be built and updated from remote [4]. All nodes, and

the Network Factory itself, are deployed and run in Docker

containers, which ensures portability, and isolation. The main

weaknesses are: (i) lightweight security protocols [13], MQTT

brokers [14], and other, are not yet supported; (ii) integration

with Kubernetes is still lacking; (iii) extensive benchmarking

and application in production environments is still lacking.

C. Usage

To get started, the reader is invited to go through a Postman

collection of extensively documented API requests made to

Docker, to the Network Factory and to the created recon-

figurable nodes, which also includes information to produce

and use customized artifacts. A simple alerting system is

created, using a pre-configured threshold first, and introducing

a clustering model later. A user interface is also added. Further

details can be found in the GitHub repository.

III. CONCLUSIONS

A containerized Node-RED application named Network

Factory has been presented. It can used by human opera-

tors (through appropriate interfaces) and automated agents

for creating, configuring/linking, and operating a variety of

reconfigurable software components from remote and with un-

precedented flexibility. It is meant to be used in reconfigurable

manufacturing, and any scenario where timely reactions to

unforeseen events are required. It is extensively documented,

and distributed open-source under CC-BY-4.0 licence.

REFERENCES

[1] T. M. Rupp and M. Ristic, “Fine planning for supply chains in semicon-
ductor manufacture,” Journal of materials processing technology, vol.
107, no. 1-3, pp. 390–397, 2000.

[2] A. Dubey and D. Wagle, “Delivering software as a service,” The
McKinsey Quarterly, vol. 6, no. 2007, p. 2007, 2007.

[3] M. Soderi and J. Gerard, “Ble servers and ubiquitous analytics aas,”
AICS 2022 Digital Book of Abstracts, 2022.

[4] M. Soderi, V. Kamath, and J. G. Breslin, “Toward an api-driven infinite
cyber-screen for custom real-time display of big data streams,” in 2022
IEEE International Conference on Smart Computing (SMARTCOMP).
IEEE, 2022, pp. 153–155.

[5] J. Kombaya Touckia, N. Hamani, and L. Kermad, “Digital twin
framework for reconfigurable manufacturing systems (rmss): design
and simulation,” The International Journal of Advanced Manufacturing
Technology, vol. 120, no. 7-8, pp. 5431–5450, 2022.

[6] E. Hajjem, H. H. Benderbal, N. Hamani, and A. Dolgui, “Digital
twin framework for reconfigurable manufacturing systems: Challenges
and requirements,” in Advances in Production Management Systems.
Artificial Intelligence for Sustainable and Resilient Production Systems:
IFIP WG 5.7 International Conference, APMS 2021, Nantes, France,
September 5–9, 2021, Proceedings, Part II. Springer, 2021, pp. 553–
562.

[7] K. A. Kurniadi and K. Ryu, “Development of iot-based reconfigurable
manufacturing system to solve reconfiguration planning problem,” Pro-
cedia manufacturing, vol. 11, pp. 965–972, 2017.

[8] H. Haddou Benderbal, A. R. Yelles-Chaouche, and A. Dolgui, “A digital
twin modular framework for reconfigurable manufacturing systems,”
in Advances in Production Management Systems. Towards Smart and
Digital Manufacturing: IFIP WG 5.7 International Conference, APMS
2020, Novi Sad, Serbia, August 30–September 3, 2020, Proceedings,
Part II. Springer, 2020, pp. 493–500.

[9] A. Cannata, M. Gerosa, and M. Taisch, “Socrades: A framework
for developing intelligent systems in manufacturing,” in 2008 IEEE
International Conference on Industrial Engineering and Engineering
Management. IEEE, 2008, pp. 1904–1908.

[10] M. Soderi, V. Kamath, J. Morgan, and J. G. Breslin, “Ubiquitous system
integration as a service in smart factories,” in 2021 IEEE International
Conference on Internet of Things and Intelligence Systems (IoTaIS).
IEEE, 2021, pp. 261–267.

[11] M. Soderi and J. G. Breslin, “Crazy nodes: towards ultimate flexibility
in ubiquitous big data stream engineering, visualisation, and analytics,
in smart factories,” in Leveraging Applications of Formal Methods,
Verification and Validation. Practice: 11th International Symposium,
ISoLA 2022, Rhodes, Greece, October 22–30, 2022, Proceedings, Part
IV. Springer, 2022, pp. 235–240.

[12] M. Soderi, V. Kamath, J. Morgan, and J. G. Breslin, “Advanced analytics
as a service in smart factories,” in 2022 IEEE 20th Jubilee World
Symposium on Applied Machine Intelligence and Informatics (SAMI).
IEEE, 2022, pp. 000 425–000 430.

[13] W. Jung, S. Hong, M. Ha, Y.-J. Kim, and D. Kim, “Ssl-based lightweight
security of ip-based wireless sensor networks,” in 2009 International
Conference on Advanced Information Networking and Applications
Workshops. IEEE, 2009, pp. 1112–1117.

[14] W. Pipatsakulroj, V. Visoottiviseth, and R. Takano, “mumq: A
lightweight and scalable mqtt broker,” in 2017 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN).
IEEE, 2017, pp. 1–6.


