
Synchronized Sub-Second Arbitrary Changes to
Decoupled Components for Ultimate Resilience in
Cross-Platform Geo-Distributed Smart Factories

Mirco Soderi
Data Science Institute
University of Galway

Galway, Ireland

mirco.soderi@universityofgalway.ie

John Gerard Breslin
Data Science Institute
University of Galway

Galway, Ireland

john.breslin@universityofgalway.ie

Abstract—Modern manufacturing systems characterize for the
multiple dimensions of their complexity. They are numerically
complex, as they consist of several components. They are logically
complex, as multiple and variegated links exist among the
different components. They are technologically complex, as a mix
of different hardware and software technologies and architectures
is typically found. They are geographically complex, as they
often extend across multiple physical locations and sometimes
involve multiple organizations. However, resilience to predictable
and unpredictable events through timely, efficient, and effective
reconfiguration of the whole manufacturing ecosystem remains a
key objective, being it a key enabler of industry competitiveness.
In this work, an innovative approach based on API request
collections, containerization technologies, and past research about
remotely reconfigurable distributed systems, is proposed for
achieving ultimate resilience in modern industry.

Index Terms—Resilience, Reconfigurable Manufacturing,
Software-as-a-Service, Distributed System, Cross-Platform, Geo-
Distributed, API Collection, Containerization Technology

I. INTRODUCTION

Software-as-a-Service (SaaS) has been extensively dis-

cussed in the literature [1] [2] [3]. In SaaS, the software

provider makes the application available over the Internet,

and the customer connects to that through thin clients. The

model is suitable for slowly-changing applications with loose

time constraints and low-to-moderate data volumes exchanged

between clients and server. Indeed, in real-time data-intensive

applications, the overhead imposed by the data transfer over

the Internet is not tolerable.
In reconfigurable manufacturing, multiple and possibly geo-

distributed equipment and software components interact and

evolve over the time to promptly adapt to the changing context,

with the context being typically represented in the form of

huge and variegated data streams to be processed at real-time

or nearly-real-time. Because of that, traditional SaaS cannot

be applied to reconfigurable manufacturing.

This publication has emanated from research supported in part by a grant
from Science Foundation Ireland under Grant Number SFI/16/RC/3918 (Con-
firm), and also by a grant from SFI under Grant Number SFI 12/RC/2289 P2
(Insight). For the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript version arising
from this submission.

However, the idea of relying on software repositories where

applications can be changed producing immediate effects

on all their replicas across heterogeneous and possibly geo-

distributed equipment would find application in modern in-

dustry, and especially in reconfigurable manufacturing.

In this work, an approach is proposed for the implemen-

tation of such idea, which is based on: (i) containerization

technologies; (ii) past research on remote building, configura-

tion and operation of distributed systems for data engineering,

analytics, visualization, and human interaction; (iii) remotely

reconfigurable software modules that run API collections.

A. Background

Soderi, Kamath, Morgan, and Breslin [4], have proposed re-

motely reconfigurable containerized Node-RED applications,

named Service Nodes, for ubiquitous system integration as

a Service in smart factories. Also, they have proposed a

containerized reconfigurable Scala + Spark server application

for parallel computing and Cloud analytics, named AIS Node
[5], which integrates into the system presented in [4] thanks

to a Node-RED module, named ai, which can be loaded to

any Service Node from a shared repository of Node-RED

modules (the Transformation Factory), through an API request

made to the node itself, so turning the node into a client

application for the AIS Node. Soderi, Kamath, and Breslin

[6] have developed and made natively available in the AIS

Nodes a set of modules targeted to enable the building of

API-driven infinite cyber-screens for custom real-time display

of Big Data streams, relying on the same building blocks and

technologies presented in [5]. A demo [7] has been given,

which also includes the remote building and configuration

of Web interfaces. More recently, Soderi and Breslin [8]

have proposed the Crazy Nodes, which expose APIs for

performing arbitrary and immediately effective modifications

on the node implementation. A containerized Node-RED ap-

plication named Network Factory, distributed as a Docker

Image, can be used for creating, organizing, and controlling

the different kinds of nodes. Considering that containers can

be run from Docker Images through API requests made to



the Docker Engine, the mentioned work cumulatively enables

the (re)creation, (re)configuration and operation from scratch,

and from remote, via API requests, of potentially any software

application, on any hardware device where a Docker engine

is in operation.

B. Paper structure

In Section I the context, motivation and enabling research

for this work are described. In Section II, API request collec-

tions are introduced. In Section III a design for the remotely

reconfigurable software module targeted to run API request

collections is proposed. In Section IV the suitability of the

outlined building blocks for addressing the stated problem is

discussed. In Section V, conclusions are drawn.

II. API REQUEST COLLECTIONS

An API request collection is a sorted sequence of API

requests. Each API request is described by its (i) HTTP

method, (ii) URL, (iii) body, (iv) headers, (v) preconditions;

(vi) verification logic. Requests can be organized in folders. In

all of the mentioned parts, variables can be used. Variables can

be set by the consumer when starting the collection execution,

or they can be automatically set during the execution as a part

of the verification logic. For example, during the verification

of the response received for a given request, a variable can be

set to the value of the response and used for the next request.

For running an API collection, it is necessary to rely on

a software tool that interprets the textual serialization of the

API collection, uses the user input for actualizing variables,

and then for each request verifies the preconditions, then sends

the request if it is the case, then executes the verification.

As requests can be organized in folders, the tool should also

accept as optional input the name of the folder to be executed.

Postman and Newman are well-known tools for API collection

development, testing, serialization, and execution.

III. RECONFIGURABLE API COLLECTION EXECUTION

The reconfigurable application responsible for the execution

of the API request collection should include three modules: (i)

I/O configuration; (ii) execution configuration; (iii) business

logic. It should act as a wrapper for the API collection

execution engine. The I/O configuration module should expose

APIs for setting the data source and destinations. From the data

source, values come that are to be used for setting the variables

used in the collection. Multiple destinations are advisable for

differentiating the standard from error outputs. The execution
configuration module should expose APIs to be used for

setting parameters that are specific to the API collection

execution engine, including the URL where the collection to

be executed locates. The business logic module, for each input

coming from the data source: (i) retrieves the most up-to-date

version of the collection, relying on mechanisms such as the

ETag for avoiding unnecessary network traffic and reducing

the time of response; (ii) runs the execution engine with

the configured engine-specific parameters, setting execution

variables according to the input received from the data source.

IV. DISCUSSION

If the application for reconfigurable API collection execu-

tion is distributed as a Docker Image or as a Docker Volume

backup meant to be mapped to the /data path of a Node-

RED container, a container for such application can be created

and run through requests made to a Network Factory or

directly to a Docker Engine. That means that one or more

remote API collections can be run on any equipment where a

Docker Engine is in operation. According to what described in

Section III, if the remote collection is updated, all devices will

download and use the new version when the next input will

come from their data sources, without the need of any third

party or usage tracking mechanism. The remote collection

can include requests made to the local host, for example for

building and configuring a software application from scratch

on each of the devices where the collection is configured for

usage, according to what described in Subsection I-A. The

collection can also include calls to external services, in which

case the implementation of those services can be changed at

any moment with immediate effect even without generating

a new version of the collection. Thanks to containerization

technologies, the approach is applicable to the most inter-

nally variegated manufacturing systems. Being based on API

requests, the approach is applicable across multiple physical

locations relying on VPNs, or the Internet.

V. CONCLUSIONS

In this work, an approach has been proposed for introducing

a variant of Software-as-a-Service in reconfigurable manufac-

turing, so enabling software changeability also in real-time

data-intensive internally variegated and often geographically

sparse systems such as those in use in modern industry.

REFERENCES

[1] Dubey et al., ”Delivering software as a service,” The McKinsey Quar-
terly, vol. 6, no. 2007, p. 2007, 2007.

[2] Tsai et al., ”Software-as-a-service (saas): perspectives and challenges,”
Science China Information Sciences, vol. 57, pp. 1–15, 2014.

[3] Ma, ”The business model of software-as-a-service,” in Ieee international
conference on services computing (scc 2007). IEEE, 2007, pp. 701–702.

[4] Soderi et al., ”Ubiquitous system integration as a service in smart
factories,” in 2021 IEEE International Conference on Internet of Things
and Intelligence Systems (IoTaIS). IEEE, 2021, pp. 261–267.

[5] Soderi et al., ”Advanced analytics as a service in smart factories,”
in 2022 IEEE 20th Jubilee World Symposium on Applied Machine
Intelligence and Informatics (SAMI). IEEE, 2022, pp. 000 425–000 430.

[6] Soderi et al., ”Toward an api-driven infinite cyber-screen for custom real-
time display of big data streams,” in 2022 IEEE International Conference
on Smart Computing (SMARTCOMP). IEEE, 2022, pp. 153–155.

[7] Soderi et al., ”A demo of a software platform for ubiquitous big
data engineering, visualization, and analytics, via reconfigurable micro-
services, in smart factories,” in 2022 IEEE International Conference on
Smart Computing (SMARTCOMP). IEEE, 2022, pp. 1–3.

[8] Soderi et al., ”Crazy nodes: towards ultimate flexibility in ubiquitous
big data stream engineering, visualisation, and analytics, in smart
factories,” in Leveraging Applications of Formal Methods, Verification
and Validation. Practice: 11th International Symposium, ISoLA 2022,
Rhodes, Greece, October 22–30, 2022, Proceedings, Part IV. Springer,
2022, pp. 235–240.


