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Abstract— With the advent of Industry 4.0 (I4.0) leading
to the proliferation of industrial process data, deep learning
(DL) techniques have become instrumental in developing
intelligent fault diagnosis (FD) applications. However, de-
spite their potentially superior process monitoring capa-
bilities, DL-based FD models are poorly calibrated and
generate point estimate predictions without the associated
uncertainty estimates. For DL-based FD models, accurate
predictive uncertainty estimates from well-calibrated models
are essential in ensuring industrial process safety and
reliability. This paper proposes Ensemble-to-Distribution
(E2D), an uncertainty-aware combination method for qual-
ity monitoring FD based on an ensemble of deep neural
networks (DNNs). First, E2D addresses safety by providing
accurate uncertainty estimates on model predictions, en-
abling informed decision-making to minimize operational
risks. Second, E2D improves model performance on out-of-
distribution (OOD) detection tasks to facilitate deployments
in the real world. Third, E2D is a post hoc application, im-
plementable at inference time, and compatible with diverse
pre-trained models. Finally, to demonstrate the effectiveness
of E2D, we explore the problem of monitoring the stability of
industrial processes and product quality using case studies
on the steel plates faults and APS failure at Scania trucks
datasets.

Index Terms— Ensemble methods, deep learning, un-
certainty estimation, calibration, fault diagnosis, process
monitoring, safety-critical.

I. INTRODUCTION

INDUSTRY 4.0 (I4.0) has enabled dynamic modern-day
industrial environments through rapid automation and

improved access to real-time data from complex industrial
operations [1]–[5]. Additionally, the systematic integration of
the physical and virtual worlds through the cyber-physical
system (CPS), a core concept of I4.0, enables the construction
of expansive factories with high flexibility, adaptability, and
even self-awareness [6]–[8]. These factories are physically
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interconnected large-scale industrial plants requiring a higher
level of process and quality management strategies to improve
overall production safety and efficiency. The rapidly increasing
high-dimensional and nonlinear historical process data from
large-scale industrial plants pose significant challenges to
traditional process monitoring approaches. As a result, deep
learning (DL) techniques have become the dominant approach
to building intelligent fault diagnosis (FD) applications from
large-scale industrial process data [9]–[11].

Nonetheless, for DL-based FD models deployed in the
real world, accurate predictive uncertainty estimation and out-
of-distribution (OOD) detection from well-calibrated models
are essential in ensuring overall system safety and relia-
bility. Accordingly, the ensemble models are well suited
for developing robust FD applications due to the ability to
obtain improved predictive performance [12]–[18], protect
against adversarial attacks [19], [20], and decompose the total
predictive uncertainty into epistemic and aleatoric uncertainty
[21]–[25].

However, existing ensemble combination methods apply
deterministic point estimation techniques that are ineffective
in capturing the underlying ensemble member diversity and
robustly represent the combined model predictive uncertainty
[21], [26]–[28]. This paper proposes Ensemble-to-Distribution
(E2D), a classifier combination method for an ensemble of DL-
based FD models that applies parameter estimation techniques
to fit a probability distribution over the combined model
output. In particular, E2D is a distribution-based approach that
enhances the ensemble model output capacity by generating a
continuous multivariate probability distribution as the combined
model output.

Following a growing demand for higher-quality products,
reduced rejection rates, and compliance with safety and
environmental regulations, modern-day industrial plants require
effective monitoring and control strategies through intelligent
fault management. FD systems improve production processes
by identifying defect patterns that can lead to rejected products
downstream, unintended downtimes, and insufferable economic
losses. Nonetheless, for DL-based FD applications, exposure to
highly dynamic industrial environments introduces uncertainties
to the FD system. In particular, the sources of uncertainty for
DL-based FD applications include: (i) model fit: uncertainty
from the inherent limitations of a learned model as charac-
terized by the degree of errors in outcomes, (ii) data quality:
uncertainty from training data-related issues such as; noise



in the data, varying quality of data features owing to sensor
limitations, and imbalanced datasets lacking adequate samples
from the uncommon defects [29], and; (iii) scope compliance:
uncertainty resulting from the mismatch between the model
scope of training and application scope (e.g., plant dynamics
varying over time, and the model has to extrapolate beyond
its specialization) [30]. Therefore, DL-based FD applications
in industrial systems primarily depend on insights from model
predictive uncertainty estimates to identify and avoid harmful
unintended behavior during system operation, especially for
safety-critical application domains.

In this paper, we seek to develop a product quality moni-
toring FD application based on an ensemble of DNN models
constructed entirely from process data to help monitor the
stability of industrial processes and product quality. We
focus on addressing the problems of uncertainty estimation
and OOD detection for the DL-based FD applications. In
particular, our approach involves designing an uncertainty-
aware ensemble combination method to generate FD model
predictions accompanied by accurate predictive uncertainty
estimates. Based on our approach, our main contributions can
be summarized as follows:

• We propose E2D, a method that generates a continuous
multivariate probability distribution as the combined DL-
based FD ensemble model output, replacing deterministic
point estimation techniques that are ineffective in capturing
the underlying ensemble model uncertainties.

• We apply differential entropy as a measure of uncertainty
for the output probability distribution, obtaining improved
scores over standard entropy measures for in-distribution
(ID) and OOD sample detection tasks.

• We propose a standard algorithm for E2D, as a post
hoc application implementable at inference time and
compatible with diverse pre-trained models.

The remainder of this paper is structured as follows. In
Section II, we present a review of the literature and related
work on methods used for ensemble classifier combinations.
In Section III, we present the proposed approach. First, we
describe an associated concept of Multinomial and Dirichlet
conjugacy upon which we build our proposed method. We then
detail the data transformations and numerical methods applied
to the distribution estimation problem, including pseudocode
for the E2D algorithm. In Section IV, we present the case study,
outlining the datasets, experiments, and evaluation metrics upon
which we analyze the effectiveness of our proposed method. In
section V, we present the results obtained from the experiments
and a detailed analysis of our findings. Finally, Section VI
concludes the paper with an overview of our main contributions
and potential future work.

II. RELATED WORKS

In this section, we present the related works on ensemble
combination methods and DL-based fault diagnosis.

A. Ensemble Combination Methods
Classifier selection (CS) and classifier fusion (CF) are the two

fundamental approaches used for the combiner module of an

ensemble [31]. In this work, we focus on CF approaches where
the aim is to aggregate predicted posterior probabilities from
the multiple base classifiers through some efficient combiner
module.

Simple averaging [32] is one of the fundamental combina-
tion approaches applied to ensembles by averaging the base
classifier posterior probabilities to obtain a final mean estimate.
Nonetheless, error reduction in simple averaging method holds
the assumption that the errors from the individual classifiers
are uncorrelated, even though for ensembles, training of the
base classifiers on the same problem suggests that the errors
are typically highly correlated [33, p. 69]. Another widely used
approach, the weighted averaging method [34], extends the
idea of simple averaging to incorporate weights that cater to
the varied performance or implied importance of the individual
base classifiers. Averaging based approaches implement point
estimation techniques that do not preserve the diversity of the
ensemble, while approaches such as weighted averaging are
prone to overfitting [33, p. 72]. Kittler et al. [35] propose a
collection of algebraic methods derived from the probabilistic
framework upon which the maximum, minimum, and median
combination rules apply to individual classifiers predicted
outputs as the combined output. Voting [33, pp. 71–77] is a
common combination strategy explored in ensembles where the
base classifiers predict either crisp labels or class probabilities.
Each output prediction from a base classifier is regarded as a
vote, indicating some preferred choice in the final ensemble
decision-making process. However, voting approaches apply a
winner-take-all strategy, thus hindering cooperation amongst
ensemble member classifiers. Kuncheva et al. [36] propose
decision templates combination method based on a decision
profile compiled as a matrix of all the predicted outputs
from ensemble classifiers. Wolpert [37] proposes stacking,
a combination method where predicted outputs from separately
trained base classifiers are aggregated and used as input to
another classifier known as a meta-classifier. However, the meta-
classifier is usually a deterministic classifier that generates point
estimates of individual class probabilities.

B. DL-Based Fault Diagnosis

Fault diagnosis methods broadly categorize into model-based,
signal-based, knowledge-based, and hybrid methods [38], [39].
Recently, FD applications have adopted the knowledge-based
approach relying on historical process data to extract the
underlying relationship between faults and process variables. In
particular, the quantitative knowledge-based methods essentially
formulate the diagnostic problem as a pattern recognition
problem, applying techniques such as DL to handle the
complexities of high dimensional nonlinear historical process
data otherwise hard to establish through explicit system models
or expert systems based on human reasoning [11], [39].

Jiang et al. [7] observe that one of the emerging challenges
of industrial CPS (ICPS) monitoring and safety control is
the development of artificial intelligence-based autonomous
decision units able to achieve plant-wide monitoring and control
through transparent process management. From the perspective
of a plant-wide process monitoring system implemented as



a distributed framework, the sequential and temporal depen-
dencies among sub-processes bring about interdependencies
to the individual sub-process level FD models. Notably, a
malfunctioning sub-process FD model can lead to cascading
effects that cause performance degradation of the overall
industrial process [6], [40]. Therefore, this research raises
the following open questions: (i) how to leverage insights
originating from uncertainty estimation to facilitate sub-process
level autonomy and self-awareness, and; (ii) how to integrate
and propagate sub-process level uncertainty estimates through
the distributed modeling framework up to the final plant-wide
monitoring result.

Kamal et al. [9] propose a fault detection and classification
(FDC) system for a nuclear power plant based on wavelet
transform and NNs, resulting in model with enhanced speed
of fault recognition, accuracy and robustness. Wen and Gao in
[10] propose a deep transfer learning (DTL) method for fault
diagnosis using a three-layer sparse auto-encoder (SAE) for
feature extraction and a maximum mean discrepancy (MMD)
term to minimize penalty between source and target features.
Zhao et al. [41] develop a new DL method, deep residual
shrinkage networks (DRSNs) for FD tasks with highly noised
vibration signals. Jia et al. [42] present a DNN-based intelligent
method for diagnosing the faults of rotating machinery. The
proposed DNN models trained on massive datasets are less
dependent on human labor or prior knowledge about signal
processing techniques and diagnostic expertise. We note that
the NN-based FD implementations mentioned above are deep
networks with softmax layers as the network output, resulting in
overconfident model predictions for both ID and OOD samples.
Lu et al. [43] propose a DNN-based model for fault diagnosis
referred to as DAFD to address cross-domain learning problems
in FD. DAFD models trained in a particular source domain are
adoptable in a different but related target domain. Our method
seeks to address, among others, the problem of OOD detection
where samples emerge from unrelated target domains.

Wang et al. [44] propose a data-driven approach based on a
deep belief network (DBN) optimized through a particle swarm
optimization (PSO) algorithm to predict material removal rate
(MRR) during wafer polishing. Zhang et al. [45] enhance the
MRR prediction model through another data-driven approach
based on random forests and residual CNN (ResCNN). For the
industrial hydrocracking process, Yuan et al. [46] propose a
dynamic CNN to learn hierarchical local nonlinear dynamic
features for soft sensor modeling. Further, to enhance soft
sensor modeling capabilities to time series process data,
Yuan et al. [47] propose a spatiotemporal attention-based
LSTM network. Loy-Benitez et al. [48] present a memory-
gated recurrent neural networks-based autoencoders (MG-RNN-
AE) to perform FD on measurements of the multivariate
indoor air quality data in subway stations. Le et al. [49]
propose FDC-CNN, a convolutional neural network (CNN)
model for FDC. In the proposed FDC-CNN model, specially
designed receptive fields in the convolutional layer operate as
fault feature extractors, capturing the structural characteristics
of the multivariate fault data. We observe that FD models
depending on robust feature extraction can be application-
specific, requiring explicit knowledge of relations between

Fig. 1: Schematic description of our approach Ensemble-to-
Distribution. From a diverse set of M base classifiers, the
collection of K-dimensional transformed logit output forms
a dataset upon which the combiner module fits a probability
distribution Dirichlet(θ;α), establishing the final output of
the ensemble.

process variables. Furthermore, the proposed DNN-based FD
models are deterministic, generating point estimates with no
representation of uncertainty. Based on our approach, we seek
to enhance the deterministic models by leveraging an ensemble
of models coupled with an uncertainty-aware combination
method that generates a distribution over distributions as the
combined model output.

III. ENSEMBLE TO DISTRIBUTION

In this section, we present our proposed method, E2D. First,
we begin by outlining a related concept of conjugacy upon
which we build our proposed method. We then outline our
method in the proposed approach section, detailing the data
transformation techniques, numerical methods applied to the
distribution estimation problem, and parameter initialization
routines. Finally, we present the pseudo-code for the algorithm
and a brief discussion of the implementation.

A. Multinomial and Dirichlet Conjugacy

The multinomial distribution of N -independent trials and K
categories has the probability mass function given by:

Mult(N ;θ) =
N !∏K

k=1 xk!

K∏
k=1

θxk

k (1)

where θ = (θ1, . . . , θK) and
∑K

k=1 θk = 1, represents the
distribution parameter vector, a set probabilities that the K



categories occur, while x = (x1, . . . , xK) is a nonnegative
integer count vector of observations where

∑K
k=1 xk = N .

The Dirichlet distribution is the conjugate prior for the
multinomial [50]. Therefore, for x that follows a multinomial
distribution with a Dirichlet prior, the joint distribution given
by:

Mult (N ;θ) ·Dir(θ;α) =
Γ
(
N +

∑K
k=1 αk

)
∏K

k=1 Γ (xk + αk)

K∏
k=1

θxk+αk−1
k

(2)
The posterior distribution of the Dirichlet-multinomial 2

is itself a Dirichlet distribution with the parameters θ ∼
Dir (α1 + x1, . . . , αK + xK) where, the Dirichlet parameters
α act as pseudo-counts that initially allocate some weight on
each of the K categories before the actual data emerges to
reveal the true underlying distribution.

B. Proposed Approach

For an ensemble of M members, let θ̃i ∈ RK be the logit
vector of the ith member output, such that Θ̃ = {θ̃1, . . . , θ̃M}
represents the collection of all member outputs. In this work,
we seek to estimate a probability distribution over all possible
ensemble member outputs through maximum likelihood esti-
mate (MLE). Therefore, we apply data transformation to the
aggregated ensemble logit space Θ̃ to obtain datasets suitable
for the Dirichlet distribution and its compound variant, the
Dirichlet-multinomial [51], [52]:

1) Dirichlet dataset: For the Dirichlet distribution, we trans-
form Θ̃ into a set of multinomial distribution parameter vectors
which we denote ΘDir. Initially, we convert all the logits into
positive by applying the exponential function to the logits.
We then apply a combination of L1 normalization and label
smoothing [53] to obtain zero-avoiding probability vectors as
confidence scores for each of the ensemble member output,
each representing an element on the probability simplex SK

(see Fig. 1).
The Dirichlet distribution, a multivariate probability distri-

bution over the probability simplex is capable of modeling
the categorical data from the ensemble member outputs.
Appropriately, a K-dimensional Dirichlet distribution can be
thought of as a distribution over a (K − 1) simplex SK ,
representing the space of all K-dimensional categorical data
ΘDir. The Dirichlet distribution parameterized by a vector α
has a probability density function given by:

Dir(θ;α) =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

K∏
k=1

θαk−1
k

where
K∑

k=1

θk = 1, θk ≥ 0

(3)

Therefore, given the observed set of categorical data ΘDir,
we seek to obtain the parameters of a Dirichlet distribution
which maximize the likelihood of that data. Estimation of
the α parameters for this Dirichlet distribution is obtained by

maximizing the following log-likelihood function:

log p(ΘDir|α) ∝ M

(
log Γ

(∑
k

αk

)
−
∑
k

log Γ (αk) +
∑
k

(αk − 1) log θ̄k

)
(4)

where log θ̄k = 1
M

∑
i log θik.

Since the Dirichlet distribution belongs to a larger class of dis-
tributions, the exponential family, the objective log p(ΘDir|α)
is concave in α and thus converges to the global optimum [54],
[55]. To obtain the likelihood estimates, we apply the Newton-
Raphson algorithm. The Newton’s method is an efficient
numerical technique for estimating the Dirichlet α parameters
given the log likelihood. In (4), the gradient of the log-
likelihood with respect to αk is obtained as follows:

gk = ∂ log p(ΘDir|α)
∂αk

= M
(
Ψ(
∑

k αk)−Ψ(αk) + log θ̄k
)

(5)

where Ψ(·) is the diagamma function. The update step is as
follows:

αnew = αold −H−1g (6)

H is the Hessian matrix derived from the second-derivatives
of the log-likelihood, and in matrix form is represented as:

H = Q+ 11⊤z

qjk = −MΨ′ (αk) δ(j − k)

z = MΨ′

(∑
k

αk

) (7)

Ψ′(·) is the triagamma function, while δ(·) is the Dirac
function. Notably, the Newton’s method in this context is
suitable for high dimension data as the Hessian matrix can
be computed in linear time and does not require storing or
explicitly inverting the matrix [56].

2) Dirichlet-multinomial dataset: For second and alternative
case, the Dirichlet-multinomial distribution, we transform Θ̃
into a set of the multinomial count vectors which we denote
ΘDirMult. Initially, we convert all the logits into positive by
applying the exponential function to the logits. We then apply
a combination of L1 normalization and label smoothing [53]
to obtain zero-avoiding confidence scores and convert them
to percentages, generating the categorical nonnegative integer
vector counts for each of the ensemble member output.

Given the observed set of categorical data ΘDirMult we seek
to obtain the parameters of a Dirichlet-multinomial distribution
which maximize the likelihood of that data. Estimation of the
α parameters for this compound distribution is obtained by
maximizing the following log-likelihood function [57, p. 213]:

log p(ΘDirMult|α) ∝ M

{
log Γ

(∑
k

αk

)
−

K∑
k=1

log Γ (αk)

}

+
M∑

m=1

K∑
k=1

log Γ (xmk + αk)

−
M∑

m=1

log Γ

(
Nm +

∑
k

αk

)
(8)

In (8), given ΘDirMult, the Newton-Raphson method accu-
rately computes MLE for the α parameters [51], [52].



For efficient convergence of the proposed algorithm, proper
initialization is deemed vital. Improper initialization causes the
Newton-Raphson algorithm to experience slow convergence
while the final parameter estimates can be outside the permis-
sible range. In our implementation, we observe that initializing
with a vector of K-ones obtains the best results. Further, in
order to avoid overfitting, we perform additive smoothing [58]
on both ΘDir and ΘDirMult before the numerical optimization
step.

C. E2D Learning Algorithm
We outline our proposed algorithmic approach for the E2D in

Algorithm 1. In our implementation, we seek to train a diverse
set of classifiers that will be combined using the E2D technique.
Operations in step one apply the cross-validation (CV) sampling
technique where the choice of the number of folds is equal
to the total number of ensemble base classifiers, therefore
obtaining a unique classifier per fold. Operations in step two,
begin by generating the datasets ΘDir or ΘDirMult from the
combined set of ensemble base classifiers and subsequently fit
a Dirichlet distribution. The final ensemble output is either the
distribution mean, distribution mode, or the mean of random
samples drawn from the generated Dirichlet distribution. A
schematic representation of the E2D Algorithm is presented if
Fig. 1.

IV. CASE STUDY

In this paper, we analyze the effectiveness of our proposed
method on two real-world industrial datasets; APS Failure at
Scania Trucks dataset [59] and the Steel Plates Faults dataset
[60].

A. Steel Plates Faults dataset
In the steel industry, intelligent fault diagnosis during steel

plate production is essential for the timely identification of
defects that directly influence the final product safety and
performance. Notably, fault diagnosis in steel plate production
is challenging due to the complex nature of defects owing
to the dynamic production process and the quality of raw
materials [61]–[63]. The steel-plate surface defect inspection
system involves capturing video images of the steel plates
on the rolling equipment, followed by image processing and
analysis, detecting the area of the defect, extracting features
from the defect area, and finally, defect classification [64].

The steel plates faults dataset consists of a total of 1941
instances meant for the classification of surface defects in
stainless steel plates during industrial production. This is a
labelled dataset where instances are classified into either of the
seven distinct typologies of faults: Pastry, Z Scratch, K Scatch,
Stains, Dirtiness, Bumps, and Other Faults. Each recorded
instance consists of 27 attributes representing the geometric
shape of the fault and its contour. For this dataset, we apply
FD to diagnose the source of the fault from among the seven
commonly occurring faults of the steel plates. The target class
distribution reveals an imbalanced dataset. For OOD detection
evaluation, we generate a set of OOD data based on the Steel
Plates Faults ID dataset using the Gaussian Hyperspheric Offset
method [65] with a mean of 2 and standard deviation 0.3.

Algorithm 1: E2D Learning Algorithm
Input:
M , number of weak base classifiers to be combined.
S, draw sample size for the estimated distribution.
Data:
Dtrain = {xi,yi}N

train

i=1 , set of N train i.i.d. labeled
samples from the training dataset.
Dtest = {xi,yi}N

test

i=1 , set of N test i.i.d. labeled
samples from the test dataset.
Training

Step 1: Train C = {Cm}Mm=1 base learners using
F = {Fm}Mm=1 classifiers on Dtrain

Split Dtrain into M groups{(
Dtrain

1 ,Dvalid
1

)
, . . . ,

(
Dtrain

M ,Dvalid
M

)}
for m = 1 to M do

for i = 1 to N train do
Cm ={

train: Fm(Dtrain
m,i ), validate: Fm(Dvalid

m,i )
}

end
end

end
Testing

Step 2: Test and combine base learners
C = {Cm}Mm=1 on Dtest

for i = 1 to N test do
for m = 1 to M do

pm(ỹi|xi) = {evaluate: Cm(xi)}
end

Stack all the logits from the M classifiers into
P = {p1(ỹi|xi), . . . , pM (ỹi|xi)}

Generate PD = ΘDir(P) or ΘDirMult(P)
Initialize the Dirichlet parameters
(αi,1, . . . , αi,K)

Estimate the Dirichlet parameters from the
ensemble prediction matrix PD

Dir(αi,1, . . . , αi,K) = MLE PD

Calculate pens(yi|xi) as either (i) mode, (ii)
mean, or (iii) mean of S random samples

(i) pens(yi|xi) =
distribution mode of {Dir(αi,1, . . . , αi,K)}

(ii) pens(yi|xi) =
distribution mean of {Dir(αi,1, . . . , αi,K)}

(iii) pens(yi|xi) =
mean of {ps(yi|xi)}Si=1 ∼
{Dir(αi,1, . . . , αi,K)}

end

end

Output:
Class Label Prediction: ŷ(xi) = pens(yi|xi)



B. APS Failure at Scania Trucks dataset

The Air Pressure System (APS) is an essential part of
the vehicle’s pneumatic system consisting of pressurized
compressed air for power distribution [66]. In particular, the
APS control unit intelligently manages pressurized air, engaging
and disengaging the compressor to regulate energy during
braking and gear changes. APS is useful in compressed air
brake systems of large commercial and passenger vehicles
such as trucks, buses, trailers, and railroad trains. As a result,
FD systems involving APS are safety-critical, owing to the
catastrophic consequences of road accidents resulting from
brake system failures.

The APS Failure at Scania Trucks dataset consists of sensor
data collected from the Air Pressure System (APS) equipment
in heavy Scania trucks mapping out their everyday usage. The
task is to generate a model that predicts whether or not a vehicle
faces imminent failure specific to the APS component or not.
The APS Failure at Scania Trucks dataset is an imbalanced
dataset consisting of 60000 training set instances, where 59000
belong to the positive and 1000 to the negative. The positive
class consists of truck failures linked to a specific component
failure in the APS. On the other hand, the negative class
consists of records of truck failures emerging from failures
in components unrelated to APS. Also included is a test set
consisting of 16000 instances. In total, the dataset has 171
attributes anonymized for proprietary reasons. We apply FD to
diagnose the source of the fault as either from the APS or not.
For OOD detection evaluation, we generate a set of OOD data
based on the APS Failure at Scania Trucks ID dataset using
the Gaussian Hyperspheric Offset method [65] with a mean of
4 and standard deviation 0.7.

C. Experimental Setup

For experiments on the Steel Plates Faults dataset, we utilize
an ensemble of deep feedforward neural networks (DFNNs).
The architecture for each base network consists of four fully-
connected layers (216, 108, 54, and 13 output features), with
each layer followed by a rectified linear unit (ReLU) [67], a
batch normalization layer [68] and a dropout layer [69]. All the
base networks use the cross-entropy (CE) loss function during
training. We apply M -fold CV sampling to the training data,
obtaining a classifier per fold to result in a diverse ensemble
of M base classifiers. In our case, we evaluate for M =
(5, 10, 20, 30, 50, 100); the assortment of base classifiers per
ensemble. We train each base classifier for 100 epochs using the
Adam optimizer [70] and a base learning rate of 0.1. Through
a learning rate scheduler, the base learning rate adaptively
changed to 0.01 at epoch 75 and 0.001 at epoch 90 during
training. For the optimizer tuning, we ultimately settle on
Adam with ϵ values of 10−4. We use a large batch size of
128 for all experiments on the Steel Plates Faults dataset, an
imbalanced dataset, hence increasing the chances of samples
from the minority classes included in each batch during training.
We conduct a thorough empirical evaluation of our proposed
ensemble combination method, E2D, on a real-world industrial
task of defects classification under uncertainty. We compare
E2D against the combination methods; averaging and decision

templates, as baselines. Additionally, we include evaluations
on the same datasets based on evidential deep learning (EDL)
DNNs [71] and Deep belief networks (DBNs) [72]

For experiments on the APS Failure at Scania Trucks dataset,
we utilize an ensemble of DFNNs. The architecture for each
base network consists of three fully-connected layers (492,
328, and 82 output features), with each layer followed by a
rectified linear unit (ReLU) [67], and a dropout layer [69]. All
the base networks use the cross-entropy (CE) loss function
during training. We train the base networks for 10 epochs each,
using the stochastic gradient descent (SGD) [73] optimizer
and a base learning rate of 0.1. Similar to the previous
experiment, the learning rate is adaptively changed through
a learning rate scheduler while the selected batch size is
256, informed by the imbalanced nature of the dataset. We
apply M -fold CV sampling to the training data and obtain
a classifier per fold, resulting in a diverse ensemble with
M = (5, 10, 20, 30, 50, 100) base classifiers.

Notably, ensemble sizes (5, 10) and (50 and 100) produce
similar results, therefore, we report results for M = 5, 100.

D. Evaluation Metrics

For the evaluation of models on predictive uncertainty and
OOD detection, we choose the following metrics1:

1) Accuracy (Acc.): ↑ measures the model performance
as a percentage of correct predictions out of the sum total
predictions made. acc = 1

N

∑N
n=1 1 (yn ̸= ŷn), evaluates the

model’s generalization performance on a hold-out test set.
The higher the accuracy score, the more accurate the model’s
prediction.

2) Expected Calibration Error (ECE): ↓ measures the consen-
sus between classifiers predicted probabilities (confidence) and
empirical accuracy.
ECE =

∑J
j=1

|Bj |
n |acc (Bj)− conf (Bj)| , where n repre-

sents the number of samples and Bj is the bin j [74].
3) Maximum Calibration Error (MCE): ↓ measures the max-

imum discrepancy between classifiers predicted probabilities
(confidence) and empirical accuracy.
MCE = maxj |acc (Bj)− conf (Bj)| , where Bj represents
the bin j [75].

4) Brier Score (BS): ↓ measures the accuracy of predicted
probabilities. BS = 1

N

∑N
i=1 (p̂i − yi)

2, computed as the mean
squared error of predicted probabilities and true classes where
p̂ is a vector of predicted probabilities and y is the one-hot
encoded ground truth [76].

5) Confidence Calibration: measures the correlation between
confidence and correctness of model predictions. For a selected
threshold, the metric is provided by the area under the precision-
recall curve (AUPRC) [77] as follows:

• Aleatoric Confidence (Alea. Conf.) ↑ obtained using
maximum class probability maxk p̂k as the threshold
and a binary set of labels where 1 corresponds to correct
predictions while 0 to incorrect predictions.

• Epistemic Confidence (Epist. Conf.) ↑ For E2D: Dirichlet,
we use maxk α̂k as the threshold, while for averaging

1Arrows next to the evaluation metric indicate which direction is better



Fig. 2: Reliability diagrams (B = 21 bins) and confidence histograms for ensemble size M = 100 evaluated on the Steel Plates
Faults dataset. Reliability diagrams (top) visualize model calibration generated through accuracy as a function of confidence
plots. Confidence histograms (bottom) represent the number of test samples per bin, including two vertical lines indicating the
overall accuracy and average confidence. E2D: Dirichlet performs best with the lowest ECE score.

Fig. 3: Predictive entropy density plots of ID and OOD data for ensemble combination methods on the Steel Plates Faults
dataset. Entropy scores have been normalized into the range [0, 1]. E2D: Dirichlet yields the best divergence between predictive
entropies of ID and OOD samples.

Fig. 4: Contour plots of predictive probabilities against predictive entropies of the combination methods on the Steel Plates
Faults dataset. E2D: Dirichlet attains the best separation between ID and OOD data.



and decision templates combination methods, we use
the inverse empirical variance of the predicted class
p̂k, estimated from M base classifiers predictions as
the threshold against a binary set of labels where 1
corresponds to correct predictions while 0 to incorrect
predictions.

6) OOD Detection: measures the models’ ability to detect
OOD samples. For a selected threshold, the metric is provided
by the area under the precision-recall curve (AUPRC) [77] as
follows:

• Aleatoric OOD Detection (OOD Alea.) ↑ obtained using
maximum class probability maxk p̂k as the threshold and
a binary set of labels where 1 corresponds to in-domain
data while 0 to out-of-domain data.

• Epistemic OOD Detection (OOD Epist.) ↑ For E2D:
Dirichlet, we use α0 =

∑
k α̂k as the threshold, while for

averaging and decision templates combination methods,
we use the inverse empirical variance of the predicted
class p̂k, estimated from M base classifiers predictions
as the threshold against a binary set of labels where 1
corresponds to in-domain data while 0 to out-of-domain
data.

7) Uncertainty Matrix: implements the concept of a confusion
matrix for K classes using the dimensions of accuracy and
uncertainty to yield a K × K matrix with accurate and
inaccurate as rows, certain and uncertain as the columns [78],
[79]. The combination of the rows and columns form four
possible outcomes; accurate and certain (AC), accurate and
uncertain (AU), inaccurate and certain (IC) and inaccurate
and uncertain (IU). The following quantitative performance
metrics objectively quantify predictive uncertainty estimates:

• p(accurate|certain) ↑ metric evaluates the quality of predic-
tive uncertainty estimates through a conditional probability
measure that the model is accurate on its predictions given
it is confident on the same [79]. p(A|C) = nAC/(nAC +
nIC), where n represents the total number of samples in
the given category.

• p(uncertain|inaccurate) ↑ metric evaluates the quality of
predictive uncertainty estimates through a conditional
probability measure that the model is uncertain on its
predictions given it is inaccurate on the same [79].
p(U|I) = nIU/(nIU + nIC), where n represents the total
number of samples in the given category.

V. RESULTS AND DISCUSSIONS

We begin by assessing the calibration of models based on
averaging, decision templates, and E2D classifier combination
methods across ensemble sizes M = 5, 100. In Fig. 2
(top), reliability diagrams visualize model calibration for the
three ensemble combination methods evaluated on the Steel
Plates Faults dataset. We observe that E2D obtains the best
calibration compared to the other methods. In particular, E2D
exhibits the lowest deviation from the perfect diagonal, with an
ECE score of 4.62 indicating better calibration. Additionally,
in Fig. 2 (bottom), the confidence histograms present the
distribution of test samples per bin, including model accuracy
indicated by the black line and average confidence by the

red dotted line. Based on the accuracy-confidence gap, we
observe that model predictions from the averaging and decision
templates combination methods are over-confident (confidence
> accuracy), similar to setting a low decision threshold that is
likely to generate false positives. In contrast, the E2D method
bridges this gap by attaining a more logical proportion where
model confidence and accuracy are equal. Table I presents the
results of ECE, MCE, and Brier scores as quantitative measures
of model calibration. E2D achieves improved ECE and MCE
scores, implying a combination method that generates well-
calibrated predictions. For both Steel Plates Faults and APS
Failure at Scania datasets, E2D consistently achieves the lowest
Brier scores indicating model predictions that are both accurate
and confident. We note that the E2D method generates the best
model for the true-data distribution, evidenced by the lowest
ECE scores across all ensemble sizes.

We then investigate the quality of predictive uncertainty
estimates using conditional probabilities p(accurate|certain)
and p(uncertain|inaccurate) evaluated against the predictive,
mutual and differential entropies as uncertainty thresholds.
Table II presents the conditional probabilities results from the
experiments on the Steel Plates Faults dataset. E2D achieves
improved p(U|I) and p(A|C) scores on all the thresholds.
Crucially, E2D and EDL methods generates a Dirichlet
distribution as the output upon which we apply differential
entropy, a metric that captures elements of data uncertainty
and is suitable for measuring distributional uncertainty [80].
We observe that both E2D and EDL achieves significant
improvements on p(U|I) and p(A|C) scores across all ensemble
sizes based on the differential entropy threshold. Nonetheless,
compared to EDL, E2D has superior score based on differential
entropy. Table III presents the results of these conditional
probabilities on the APS Failure at Scania Trucks dataset. E2D
and the averaging combination methods achieve comparable
performance above the decision templates method on the
predictive and mutual entropy thresholds. Nonetheless, for
differential entropy threshold, E2D achieves the best scores
for both p(U|I) and p(A|C). It is important to note that the
differential entropy from EDL and E2D-based models provides
a reliable measure of uncertainty, especially useful for tasks in
the safety-critical domain.

We also investigate the proposed combination methods
for the task of OOD samples detection. Fundamentally, the
metrics aleatoric and epistemic confidence seek to establish
the likelihood of correct predictions given high confidence
[77]. Table IV presents results from experiments of confidence
calibration and OOD detection evaluated on the Steel Plates
Faults dataset. E2D achieves improved aleatoric and epistemic
confidence scores, indicating that the generated confident
predictions are likely to be accurate. Confidence calibration
in safety-critical systems is essential in providing insight into
the level of trust accorded to system-generated predictions.
Additionally, E2D emerges as the best combination method,
consistently outperforming the other two methods on both the
aleatoric OOD and epistemic OOD scores. Table V presents
results from evaluation on the APS Failure at Scania Trucks
dataset. E2D is the top performing combination method,
achieving perfect scores on OOD detection and confidence



TABLE I: Brier scores, ECE, and MCE test set results in (B = 21 bins) for ensemble (M = 5, 100 base classifiers), DBN and
Evidence DNN evaluated on Steel Plates Fault and APS Failure at Scania Trucks datasets. Best results are in bold.

M Method Steel Plates Faults APS Failure at Scania

Brier ↓ ECE ↓ MCE ↓ Brier ↓ ECE ↓ MCE ↓

5 Averaging 0.0473 5.9445 0.6510 0.0213 2.3839 0.3687
D. Template 0.0614 20.3154 0.6300 0.0603 4.3605 0.2096
E2D: Dirichlet 0.0475 5.2809 0.3463 0.0213 2.2625 0.3438

100 Averaging 0.0471 7.0521 0.3782 0.0214 2.5671 0.4974
D. Template 0.0658 23.1761 0.9255 0.0606 6.0056 0.4311
E2D: Dirichlet 0.0464 4.6168 0.1958 0.0216 1.3018 0.7885

– DBN-Logistic 0.0672 5.8215 0.2885 0.0559 15.6194 0.2080
DBN-SGD 0.1104 3.3971 0.0340 0.0229 0.6690 0.0067
DBN-MLP 0.0553 9.9783 0.3156 0.0154 0.5010 0.1991

– EDL-MSE 0.0896 6.3977 0.8054 0.0241 3.4268 0.0343
EDL-Log 0.0788 6.1832 0.5095 0.0234 2.2143 0.0221
EDL-Digamma 0.0704 13.1888 0.6413 0.0235 2.5663 0.0257

TABLE II: Results of the quality of uncertainty estimates using conditional probabilities p(accurate|certain) and
p(uncertain|inaccurate) evaluated against the predictive, mutual, and differential entropy thresholds across ensemble (M = 5, 100
base classifiers), DBN, and Evidence DNN on the Steel Plates Faults dataset. Best results are in bold.

M Method Predictive Ent. Mutual Ent. Differential Ent.

p(U|I) ↑ p(A|C) ↑ p(U|I) ↑ p(A|C) ↑ p(U|I) ↑ p(A|C) ↑

5 Averaging 0.58 ± 0.37 0.88 ± 0.09 0.58 ± 0.37 0.88 ± 0.09 – –
D. Template 0.24 ± 0.25 0.80 ± 0.06 0.24 ± 0.25 0.80 ± 0.06 – –
E2D: Dirichlet 0.68 ± 0.36 0.90 ± 0.08 0.74 ± 0.31 0.91 ± 0.07 0.91 ± 0.25 0.97 ± 0.06

100 Averaging 0.54 ± 0.36 0.87 ± 0.08 0.54 ± 0.36 0.87 ± 0.08 – –
D. Template 0.11 ± 0.19 0.78 ± 0.04 0.11 ± 0.20 0.79 ± 0.05 – –
E2D: Dirichlet 0.67 ± 0.34 0.90 ± 0.08 0.71 ± 0.30 0.91 ± 0.07 0.85 ± 0.29 0.94 ± 0.07

– DBN-Logistic 0.62 ± 0.39 0.77 ± 0.21 0.62 ± 0.39 0.77 ± 0.21 – –
DBN-SGD 0.00 ± 0.00 0.37 ± 0.00 0.00 ± 0.00 0.37 ± 0.00 – –
DBN-MLP 0.52 ± 0.35 0.84 ± 0.09 0.52 ± 0.35 0.84 ± 0.09 – –

– EDL-MSE 0.92 ± 0.21 0.92 ± 0.10 0.93 ± 0.21 0.94 ± 0.11 0.93 ± 0.21 0.94 ± 0.11
EDL-Log 0.88 ± 0.20 0.89 ± 0.10 0.91 ± 0.21 0.93 ± 0.11 0.92 ± 0.21 0.94 ± 0.11
EDL-Digamma 0.80 ± 0.22 0.90 ± 0.08 0.88 ± 0.21 0.93 ± 0.08 0.88 ± 0.22 0.94 ± 0.08

TABLE III: Results of the quality of uncertainty estimates using conditional probabilities p(accurate|certain) and
p(uncertain|inaccurate) evaluated against the predictive, mutual, and differential entropy thresholds across ensemble (M = 5, 100
base classifiers), DBN, and Evidence DNN on the APS Failure at Scania Trucks dataset. Best results are in bold.

M Method Predictive Ent. Mutual Ent. Differential Ent.

p(U|I) ↑ p(A|C) ↑ p(U|I) ↑ p(A|C) ↑ p(U|I) ↑ p(A|C) ↑

5 Averaging 0.90 ± 0.20 1.00 ± 0.00 0.90 ± 0.20 1.00 ± 0.00 – –
D. Template 0.29 ± 0.20 0.95 ± 0.01 0.29 ± 0.20 0.95 ± 0.01 – –
E2D: Dirichlet 0.89 ± 0.23 1.00 ± 0.01 0.87 ± 0.25 1.00 ± 0.01 0.93 ± 0.21 1.00 ± 0.00

100 Averaging 0.82 ± 0.27 1.00 ± 0.01 0.82 ± 0.27 1.00 ± 0.01 – –
D. Template 0.11 ± 0.20 0.94 ± 0.01 0.11 ± 0.20 0.94 ± 0.01 – –
E2D: Dirichlet 0.88 ± 0.25 1.00 ± 0.01 0.86 ± 0.27 1.00 ± 0.01 0.93 ± 0.21 1.00 ± 0.00

– DBN-Logistic 0.53 ± 0.21 0.87 ± 0.14 0.53 ± 0.21 0.87 ± 0.14 – –
DBN-SGD 0.00 ± 0.00 0.98 ± 0.00 0.00 ± 0.00 0.98 ± 0.00 – –
DBN-MLP 0.62 ± 0.22 0.99 ± 0.00 0.62 ± 0.22 0.99 ± 0.00 – –

– EDL-MSE 0.56 ± 0.21 0.98 ± 0.24 0.56 ± 0.21 0.98 ± 0.21 0.91 ± 0.24 0.98 ± 0.21
EDL-Log 0.57 ± 0.20 0.98 ± 0.22 0.57 ± 0.20 0.98 ± 0.22 0.92 ± 0.22 0.98 ± 0.22
EDL-Digamma 0.53 ± 0.23 0.98 ± 0.21 0.53 ± 0.23 0.98 ± 0.21 0.89 ± 0.22 0.98 ± 0.21



TABLE IV: Results of accuracy, confidence calibration, and OOD detection for ensemble (M = 5, 100 base classifiers), DBN,
and Evidence DNN evaluated on the Steel Plates Faults dataset. Best results are in bold.

M Method Acc ↑ Alea Conf ↑ Epist Conf ↑ OOD Alea ↑ OOD Epist ↑

5 Averaging 76.16 93.40 62.33 34.50 64.10
D. Template 75.13 92.52 59.78 82.80 39.50
E2D: Dirichlet 76.16 92.98 92.54 87.40 84.10

100 Averaging 76.50 93.79 61.73 33.6 69.50
D. Template 76.32 91.20 63.02 89.35 34.72
E2D: Dirichlet 76.67 93.58 92.54 89.40 88.40

– DBN-Logistic 63.98 85.51 50.20 50.0 50.0
DBN-SGD 36.71 36.71 36.71 50.0 50.0
DBN-MLP 73.58 90.92 60.70 50.0 50.0

– EDL-MSE 38.25 79.86 79.86 66.88 66.88
EDL-Log 51.97 92.02 92.00 67.69 67.70
EDL-Diagamma 57.97 90.98 90.98 71.23 71.23

TABLE V: Results of accuracy, confidence calibration, and OOD detection for ensemble (M = 5, 100 base classifiers), DBN,
and Evidence DNN evaluated on the APS Failure at Scania Trucks dataset. Best results are in bold.

M Method Acc ↑ Alea Conf ↑ Epist Conf ↑ OOD Alea ↑ OOD Epist ↑

5 Averaging 97.66 99.92 91.68 50.00 95.60
D. Template 93.18 91.98 88.35 35.16 95.37
E2D: Dirichlet 97.66 99.92 99.92 97.70 97.70

100 Averaging 97.66 99.97 91.19 50.0 100.0
D. Template 93.75 97.80 86.95 99.06 32.29
E2D: Dirichlet 97.66 99.97 99.97 100.0 100.0

– DBN-Logistic 96.51 93.89 93.97 50.0 50.0
DBN-SGD 97.66 97.66 97.66 50.0 50.0
DBN-MLP 97.88 99.87 92.40 50.0 50.0

– EDL-MSE 97.52 97.66 97.30 50.0 50.0
EDL-Log 97.77 97.86 97.56 50.0 50.0
EDL-Diagamma 97.78 97.56 97.50 50.0 50.0

calibration for all the ensemble sizes M . DBN and EDL
perform poorly on the task of OOD detection, possibly because
they lack the additional insight available to ensemble classifiers.

In Fig. 3, we illustrate the divergence between the predictive
entropies of in-domain and OOD sample predictions from
an ensemble (M = 100 base classifiers) using the three
combination methods. E2D yields the best divergence in
predictive entropies among the three methods, with OOD
samples predominantly obtaining high entropies while ID
obtaining low entropies. This divergence highlights the E2D
model’s ability to distinguish between ID and OOD samples
through the measure of entropy. For an industrial use case
scenario, we select a normalized entropy threshold of 0.4,
the lowest, most feasible setting across the three combination
methods, based on the plots in Fig. 3. E2D model is more
robust as it can operate under higher threshold levels, increasing
the accuracy of OOD detection while still minimizing the
number of false negatives. In particular, setting the threshold
at 0.6 for E2D ensures only the high entropy samples are
classified as OOD, reducing the likelihood of incorrectly
declaring ID data as OOD data. Further, we report additional
visualizations of the predictive entropies divergence in Fig. 4.
E2D model achieves the best separation between ID and OOD
samples, evidenced by the centers of the contours appearing
furthest apart. Therefore, E2D is the most effective method

for distinguishing between ID and OOD samples, especially
with OOD samples typically yielding high predictive entropies.
We observe that E2D predictions are more reliable as the
OOD samples rarely attain high probabilities. For safety-critical
systems, it is much easier to introduce threshold strategies
under which the system can distinguish between ID and OOD
samples.

VI. CONCLUSION

In this paper, we have presented E2D, an uncertainty-
aware ensemble combination method for an ensemble of DL-
based FD models to help monitor the stability of industrial
processes and product quality. In particular, E2D generates
a continuous multivariate probability distribution as the com-
bined model output, replacing deterministic point estimation
techniques that are ineffective in capturing the underlying
model predictive uncertainties. Further, E2D is a post hoc
application, implementable at inference time, and compatible
with diverse pre-trained models. E2D enables robust uncertainty
estimates through differential entropy, particularly useful in
generating application-grounded interpretability of the model
predictions, further enhancing the safety of the end task. From
experiments on the steel plates faults and APS failure at Scania
trucks datasets, we demonstrate that E2D achieves high-quality
uncertainty predictions, improved model calibration, and OOD



detection. In future work, we aim to extend the combiner
module to a more general implementation that includes different
probability distributions. We also intend to evaluate the method
on additional ensemble-type strategies such as bagging and
boosting.
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M. Woźniak, “Ensemble learning for data stream analysis: A survey,”
Information Fusion, vol. 37, pp. 132–156, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1566253516302329

[13] T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems. Springer, 2000, pp.
1–15.

[14] R. Saini and S. Ghosh, “Ensemble classifiers in remote sensing: A review,”
in 2017 International Conference on Computing, Communication and
Automation (ICCCA), 2017, pp. 1148–1152.

[15] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1249, 2018.

[16] Y. Liu, “How to find different neural networks by negative correlation
learning,” in Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., vol. 5. IEEE, 2005, pp. 3330–3333.

[17] Y. Liu and X. Yao, “Ensemble learning via negative correlation,” Neural
networks, vol. 12, no. 10, pp. 1399–1404, 1999.

[18] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
transactions on pattern analysis and machine intelligence, vol. 12, no. 10,
pp. 993–1001, 1990.

[19] A. Malinin and M. Gales, “Reverse kl-divergence training of prior
networks: Improved uncertainty and adversarial robustness,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[20] L. Smith and Y. Gal, “Understanding measures of uncertainty for
adversarial example detection,” 34th Conference on Uncertainty in
Artificial Intelligence 2018, UAI 2018, vol. 2, pp. 560–569, 2018.

[21] A. Malinin, B. Mlodozeniec, and M. J. F. Gales, “Ensemble distribution
distillation,” in 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. [Online]. Available: https://openreview.net/forum?id=BygSP6Vtvr

[22] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 6405–6416.

[23] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” Advances in neural information
processing systems, vol. 30, 2017.

[24] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft, “De-
composition of uncertainty for active learning and reliable reinforcement
learning in stochastic systems,” stat, vol. 1050, p. 11, 2017.

[25] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft,
“Decomposition of uncertainty in bayesian deep learning for efficient
and risk-sensitive learning,” in International Conference on Machine
Learning. PMLR, 2018, pp. 1184–1193.

[26] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[27] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015. [Online]. Available:
http://arxiv.org/abs/1503.02531

[28] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,” Machine
learning, vol. 51, no. 2, p. 181, 2003.

[29] J. Kafunah, M. I. Ali, and J. G. Breslin, “Handling imbalanced datasets
for robust deep neural network-based fault detection in manufacturing
systems,” Applied Sciences, vol. 11, no. 21, p. 9783, 2021.

[30] M. Kläs and A. M. Vollmer, “Uncertainty in machine learning appli-
cations: A practice-driven classification of uncertainty,” in Computer
Safety, Reliability, and Security: SAFECOMP 2018 Workshops, ASSURE,
DECSoS, SASSUR, STRIVE, and WAISE, Västerås, Sweden, September
18, 2018, Proceedings 37. Springer, 2018, pp. 431–438.

[31] K. S. Woods, W. P. Kegelmeyer, and K. Bowyer, “Combination of
multiple classifiers using local accuracy estimates,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 19, pp. 405–410, 1997.

[32] D. M. Tax, M. Van Breukelen, R. P. Duin, and J. Kittler, “Combining
multiple classifiers by averaging or by multiplying?” Pattern recognition,
vol. 33, no. 9, pp. 1475–1485, 2000.

[33] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
press, 2012.

[34] G. Fumera and F. Roli, “Performance analysis and comparison of linear
combiners for classifier fusion,” in Joint IAPR International Workshops
on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR). Springer, 2002, pp. 424–432.

[35] J. Kittler, “Combining classifiers: A theoretical framework,” Pattern
Anal. Appl., vol. 1, no. 1, pp. 18–27, 1998. [Online]. Available:
https://doi.org/10.1007/BF01238023

[36] L. I. Kuncheva, J. C. Bezdek, and R. P. Duin, “Decision templates
for multiple classifier fusion: an experimental comparison,” Pattern
recognition, vol. 34, no. 2, pp. 299–314, 2001.

[37] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[38] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and
fault-tolerant techniques—part i: Fault diagnosis with model-based and
signal-based approaches,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 6, pp. 3757–3767, 2015.

[39] G. Zhiwei, C. Carlo, and D. S. X., “A survey of fault diagnosis and fault-
tolerant techniques—part ii: Fault diagnosis with knowledge-based and
hybrid/active approaches,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 6, pp. 3768–3774, 2015.

[40] Z. Ge and J. Chen, “Plant-wide industrial process monitoring: A
distributed modeling framework,” IEEE Transactions on Industrial
Informatics, vol. 12, pp. 310–321, 2016.

[41] M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep residual
shrinkage networks for fault diagnosis,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 7, pp. 4681–4690, 2019.

[42] F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, “Deep neural networks: A
promising tool for fault characteristic mining and intelligent diagnosis of
rotating machinery with massive data,” Mechanical systems and signal
processing, vol. 72, pp. 303–315, 2016.

[43] W. Lu, B. Liang, Y. Cheng, D. Meng, J. Yang, and T. Zhang, “Deep
model based domain adaptation for fault diagnosis,” IEEE Transactions
on Industrial Electronics, vol. 64, no. 3, pp. 2296–2305, 2016.

https://doi.org/10.1146/annurev-chembioeng-061114-123255
https://doi.org/10.1146/annurev-chembioeng-061114-123255
https://doi.org/10.1146/annurev-environ-021512-110549
https://doi.org/10.1146/annurev-control-053018-023652
https://doi.org/10.1146/annurev-control-053018-023652
https://www.sciencedirect.com/science/article/pii/S1566253516302329
https://openreview.net/forum?id=BygSP6Vtvr
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/BF01238023


[44] P. Wang, R. X. Gao, and R. Yan, “A deep learning-based approach to
material removal rate prediction in polishing,” CIRP annals, vol. 66,
no. 1, pp. 429–432, 2017.

[45] J. Zhang, Y. Jiang, H. Luo, and S. Yin, “Prediction of material removal
rate in chemical mechanical polishing via residual convolutional neural
network,” Control Engineering Practice, vol. 107, p. 104673, 2021.

[46] X. Yuan, S. Qi, Y. Wang, and H. Xia, “A dynamic cnn for nonlinear
dynamic feature learning in soft sensor modeling of industrial process
data,” Control Engineering Practice, vol. 104, p. 104614, 2020.

[47] X. Yuan, L. Li, Y. A. Shardt, Y. Wang, and C. Yang, “Deep learning
with spatiotemporal attention-based lstm for industrial soft sensor model
development,” IEEE Transactions on Industrial Electronics, vol. 68, no. 5,
pp. 4404–4414, 2020.

[48] J. Loy-Benitez, S. Heo, and C. Yoo, “Soft sensor validation for monitoring
and resilient control of sequential subway indoor air quality through
memory-gated recurrent neural networks-based autoencoders,” Control
Engineering Practice, vol. 97, p. 104330, 2020.

[49] K. B. Lee, S. Cheon, and C. O. Kim, “A convolutional neural network
for fault classification and diagnosis in semiconductor manufacturing
processes,” IEEE Transactions on Semiconductor Manufacturing, vol. 30,
no. 2, pp. 135–142, 2017.

[50] J. Lin, “On the dirichlet distribution,” Department of Mathematics and
Statistics, Queens University, pp. 10–11, 2016.

[51] T. Minka, “Estimating a dirichlet distribution,” 2000.
[52] M. Sklar, “Fast mle computation for the dirichlet multinomial,” arXiv

preprint arXiv:1405.0099, 2014.
[53] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[54] G. Ronning, “Maximum likelihood estimation of dirichlet distributions,”
Journal of Statistical Computation and Simulation, vol. 32, pp. 215–221,
1989.

[55] N. Wicker, J. Muller, R. K. R. Kalathur, and O. Poch, “A maximum
likelihood approximation method for dirichlet’s parameter estimation,”
Computational Statistics & Data Analysis, vol. 52, no. 3, pp. 1315–1322,
2008. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167947307002848

[56] M. Giordan and R. Wehrens, “A comparison of computational approaches
for maximum likelihood estimation of the dirichlet parameters on high-
dimensional data,” Sort-statistics and Operations Research Transactions,
vol. 39, pp. 109–126, 2013.

[57] K. W. Ng, G.-L. Tian, and M.-L. Tang, Dirichlet and related distributions:
Theory, methods and applications. John Wiley & Sons, 2011.

[58] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques
for language modeling,” Computer Speech & Language, vol. 13, no. 4,
pp. 359–394, 1999.

[59] D. Dua and C. Graff, “UCI Machine Learning Repository: APS
Failure at Scania Trucks Data Set,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[60] D. Dheeru and G. Casey, “UCI Machine Learning Repository: Steel Plates
Faults Data Set,” 2017. [Online]. Available: http://archive.ics.uci.edu/ml

[61] E. C. ÖZKAT, “A method to classify steel plate faults based on ensemble
learning,” Journal of Materials and Mechatronics: A, vol. 3, no. 2, pp.
240–256.

[62] L. Yang, X. Huang, Y. Ren, and Y. Huang, “Steel plate surface defect
detection based on dataset enhancement and lightweight convolution
neural network,” Machines, vol. 10, no. 7, p. 523, 2022.

[63] Z. Hao, Z. Wang, D. Bai, B. Tao, X. Tong, and B. Chen, “Intelligent
detection of steel defects based on improved split attention networks,”
Frontiers in Bioengineering and Biotechnology, vol. 9, p. 1478, 2022.

[64] N. Chen, J. Sun, X. Wang, Y. Huang, Y. Li, and C. Guo, “Research
on surface defect detection and grinding path planning of steel plate
based on machine vision,” in 2019 14th IEEE Conference on Industrial
Electronics and Applications (ICIEA). IEEE, 2019, pp. 1748–1753.

[65] F. Möller, D. Botache, D. Huseljic, F. Heidecker, M. Bieshaar, and B. Sick,
“Out-of-distribution detection and generation using soft brownian offset
sampling and autoencoders,” in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2021, pp. 46–55.

[66] B. Karanja and P. Broukhiyan, “Commercial vehicle air consumption:
Simulation, validation and recommendation,” 2017. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209657

[67] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th International Conference
on Machine Learning (ICML 2010), Haifa, Israel, 2010.

[68] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds.,
vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp. 448–456. [Online].
Available: http://proceedings.mlr.press/v37/ioffe15.html

[69] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, no. 1, p. 1929–1958,
Jan. 2014.

[70] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings, pp. 1–15, 2015.

[71] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning
to quantify classification uncertainty,” Advances in neural information
processing systems, vol. 31, 2018.

[72] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[73] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural networks: Tricks of the trade. Springer, 2012, pp. 9–48.

[74] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International conference on machine
learning. PMLR, 2017, pp. 1321–1330.

[75] M. P. Naeini, G. F. Cooper, and M. Hauskrecht, “Obtaining well calibrated
probabilities using bayesian binning,” in Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence (AAAI-15), Austin Texas, USA.,
vol. 2015. AAAI Press, 25–30 Jan 2015, pp. 2901–2907.

[76] G. W. Brier et al., “Verification of forecasts expressed in terms of
probability,” Monthly weather review, vol. 78, no. 1, pp. 1–3, 1950.

[77] B. Charpentier, D. Zügner, and S. Günnemann, “Posterior network:
Uncertainty estimation without ood samples via density-based pseudo-
counts,” Advances in Neural Information Processing Systems, vol. 33,
pp. 1356–1367, 2020.

[78] H. Asgharnezhad, A. Shamsi, R. Alizadehsani, A. Khosravi, S. Nahavandi,
Z. A. Sani, D. Srinivasan, and S. M. S. Islam, “Objective evaluation of
deep uncertainty predictions for covid-19 detection,” Scientific Reports,
vol. 12, no. 1, pp. 1–11, 2022.

[79] J. Mukhoti and Y. Gal, “Evaluating bayesian deep learning methods for
semantic segmentation,” ArXiv, vol. abs/1811.12709, 2018.

[80] A. Malinin and M. Gales, “Predictive uncertainty estimation via prior
networks,” Advances in neural information processing systems, vol. 31,
2018.

Jefkine Kafunah received a B.Sc. degree in
Actuarial Science from the Jomo Kenyatta Uni-
versity of Agriculture and Technology, Kenya in
2008. Since 2019, he has been working toward
the Ph.D. degree in computer science from the
College of Science and Engineering, University
of Galway, Ireland. His research interests include
data analytics, data-driven process monitoring,
fault diagnosis and prognosis, industrial cyber-
physical systems, and artificial intelligence. Je-
fkine’s homepage: jefkine.com

Muhammad Intizar Ali is an Assistant Professor
in the School of Electronic Engineering, Dublin
City University. He received the Ph.D. (Hons)
degree from the Vienna University of Technology,
Austria, in 2011. His research interests include
semantic Web, data analytics, Internet of Things
(IoT), linked data, federated query processing,
stream query processing, and optimal query pro-
cessing over large scale distributed data sources.
He is actively involved in various EU funded and
industry-funded projects aimed at providing IoT

enabled adaptive intelligence for smart applications. He serves as a PC
Member of various journals, international conferences, and workshops.
Ali’s homepage: intizarali.org

https://www.sciencedirect.com/science/article/pii/S0167947307002848
https://www.sciencedirect.com/science/article/pii/S0167947307002848
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209657
http://proceedings.mlr.press/v37/ioffe15.html


John Breslin (M’94–SM’16) is a Professor in
Electronic Engineering at the University of Gal-
way, where he is Director of the TechInnovate
and AgInnovate entrepreneurship programmes.
Associated with three SFI Research Centres, he
is a Co-Principal Investigator at Confirm (Smart
Manufacturing) and Insight (Data Analytics), a
Funded Investigator at VistaMilk (AgTech), and
a Principal Investigator on the Horizon 2020 CSA
OntoCommons. He has co-authored around 300
publications, including the books "The Social

Semantic Web", "Social Semantic Web Mining", "Old Ireland in Colour"
and "Old Ireland in Colour 2". He co-created the SIOC framework,
implemented in hundreds of applications (by Yahoo, Boeing, Vodafone,
etc.) on at least 65,000 websites with 35 million data instances. He is
co-founder of the PorterShed, boards.ie and adverts.ie.


	Introduction
	Related Works
	Ensemble Combination Methods
	DL-Based Fault Diagnosis

	Ensemble to Distribution
	Multinomial and Dirichlet Conjugacy
	Proposed Approach
	Dirichlet dataset
	Dirichlet-multinomial dataset

	E2D Learning Algorithm

	Case Study
	Steel Plates Faults dataset
	APS Failure at Scania Trucks dataset
	Experimental Setup
	Evaluation Metrics
	Accuracy (Acc.)
	Expected Calibration Error (ECE)
	Maximum Calibration Error (MCE)
	Brier Score (BS)
	Confidence Calibration
	OOD Detection
	Uncertainty Matrix


	Results and Discussions
	Conclusion
	References
	Biographies
	Jefkine Kafunah
	Muhammad Intizar Ali
	John Breslin


