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ABSTRACT 
Multimodal knowledge graphs have the potential to enhance data 
spaces by providing a unifed and semantically grounded structured 
representation of multimodal data produced by multiple sources. 
With the ability to integrate and analyze data in real-time, multi-
modal knowledge graphs ofer a wealth of insights for smart city 
applications, such as monitoring trafc fow, air quality, public 
safety, and identifying potential hazards. Knowledge enrichment 
can enable a more comprehensive representation of multimodal 
data and intuitive decision-making with improved expressiveness 
and generalizability. However, challenges remain in efectively mod-
elling the complex relationships between and within diferent types 
of modalities in data spaces and infusing common sense knowledge 
from external sources. This paper reviews the related literature 
and identifes major challenges and key requirements for efec-
tively developing multimodal knowledge graphs for data spaces, 
and proposes an ontology for their construction. 

CCS CONCEPTS 
• Computing methodologies → Visual content-based index-
ing and retrieval; Ontology engineering; • Information sys-
tems → Information integration. 
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1 INTRODUCTION 
Data spaces are a growing paradigm in decentralized data man-
agement that facilitate collaboration and sharing of multimodal 
data for enhanced data transparency and open innovation. They 
ofer an environment for businesses and organizations to store, 
manage, and analyze diferent types of data, gaining new insights 
and making better-informed decisions. [11] However, modeling the 
complex relationships between diferent types of data efectively 
can be challenging, along with addressing issues such as data in-
tegration and semantic heterogeneity. With the vast amounts of 
multimodal data generated daily, data spaces are expected to play a 
crucial role in the future of data management in general and smart 
cities in particular. 

Knowledge graphs (KGs) are essential in data spaces as they 
ofer a fexible and extensible way to store, organize, and represent 
data. [18] Multimodal KGs are becoming increasingly signifcant as 
they integrate diferent modalities, including text, image, audio, and 
video data, into a single graph, allowing for a more comprehensive 
representation of complex data. For example, a multimodal KG can 
model relationships between various data sources, such as people, 
vehicles, buildings, and the environment, providing a unifed view 
of the data. Real-time analysis of this data can help identify patterns, 
such as identifying accident-prone areas in trafc fow and detecting 
unusual activities to alert authorities. 

Scene graphs extract and represent objects, attributes, and rela-
tionships within multimedia data [4], providing a structured rep-
resentation of unstructured data for integration into a multimodal 
KG. To address potential bias towards under-represented or unseen 
concepts, external common sense knowledge [29] can be incorpo-
rated to enrich scene graphs and make them more expressive and 
generalizable. Multimodal KGs and knowledge enrichment in data 
spaces have vast applications across multiple industries. In smart 
cities [45], they can enhance infrastructure planning, optimize traf-
fc management and improve public safety by integrating data from 
various sources. Machine learning techniques and event processing 
approaches can then be applied to analyze this data. In healthcare 
[54], they facilitate the integration of patient data and structured 
clinical knowledge, supporting better diagnosis and treatment of 
diseases. Furthermore, multimodal KGs can be used for personal-
ization in recommender systems, marketing, and education and 
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Figure 1: A Motivational Example and Proposed Ontology for Multimodal Knowledge Graphs for Data Spaces. 

can beneft other industries such as fnance, manufacturing, and 
education. 

In this paper, we propose leveraging multimodal KGs to rep-
resent and reason about multimodal data streams in data spaces 
for smart cities and enhancing their expressiveness with external 
common sense knowledge. Figure 1(a-c) provides a motivational ex-
ample that showcases how external background knowledge about 
arms of the person and the ocean can be leveraged to deduce that 
the person is drowning and requires immediate rescue. In Section 
2, we reviewed related literature on data spaces, multimodal data 
representation and enrichment, and smart city ontologies. Section 
3 presents the challenges associated with data spaces that multi-
modal KGs and knowledge enrichment can address, along with the 
key requirements for creating a multimodal KG and the proposed 
ontology. This is followed by conclusion in Section 4. 

2 BACKGROUND 
In this section, we review and summarize the recent literature 
on data spaces, multimodal data representation and knowledge 
enrichment, and smart city ontologies. 

Dataspaces. Initially introduced by Halvey et al. [24], data spaces, 
unlike traditional database management systems, provide basic 
search functionality instead of full data control. Local data sources 
store the data, with semantic mappings or integration happening 
when needed. KGs and linked data are commonly used in dataspace 
to establish relationships between data sources. [7, 24] In the con-
text of dataspace querying, [17], [8], and [36] provide insights into 
linked data, context-based querying, and historical data streams. 
Franklin et al. [16] defne the logical components of a dataspace, 
which require "best-efort" and "approximate" answers, as well as 

confict resolution strategies. TIKD [25] is a trusted dataspace that 
utilizes cryptography and blockchain for the secure sharing of 
healthcare-related data through KGs. 

Multimodal Data Representation and Enrichment. Scene graph 
generation is widely used for extracting multimodal features from 
unstructured multimedia data, including images, videos and text, 
for scene understanding and structured representation [4]. It is 
used in semantic image retrieval [51], detection of civic issues in 
multimedia content [34], and visual question answering [33] that 
enable useful smart city applications. Multimodal KGs (MMKG), 
comprehensively reviewed in [37, 58], represent multimodal data 
either in attribute values or as entities. Here are some examples of 
MMKGs: GAIA [35] that extracts knowledge from text and video 
frames from multilingual news reports, RESIN [52] that is a cross-
document cross-lingual, cross-media information extraction sys-
tem with semantic elements extracted from text and images. Other 
MMKGs include IMGpedia [15], Image Graph [40], Richpedia [50], 
VisualSEM [2], NIEL [5]. 

Common sense knowledge infusion in scene graph generation 
is a growing trend that enhances representation quality and down-
stream task performance [29]. Previous approaches relied on lan-
guage [38] and statistical priors [56]; the newer methods leverage 
knowledge graphs [27], while the state-of-the-art methods [30] are 
based on heterogeneous common sense knowledge sources, such 
as the Common Sense Knowledge Graph (CSKG) [26]. Approaches 
such as multimodal scene graphs [19], entity recognition [57], and 
CSKG-based enrichment [30] have been proposed to represent and 
analyze multimodal data. Multimodal event processing [9, 31] is an 
efcient way to handle large amounts of data, enabling real-time 
analytics and useful applications in smart cities. 
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Smart City Ontologies. Espinoza-Arias et al. [14] presented a 
comprehensive survey on smart city ontologies. De-Nicola et al. 
[13] provided ontology design patterns and requirements for seven 
domains, including Public Sector, Administrative Area, KPIs, City 
Object, Topology, Event, and Observations/Measurements. Ontolo-
gies related to smart city include Km4City [3], Fiesta-IoT [1], VITAL 
[28], Smart-City Ontology [32], CityPulse [43], Smart Cities and 
Emergency Management Ontology [12]. In addition, Prosumer-
Oriented Smart Grid [20], Connected Trafc Data Ontology [49], 
and Semantic Sensor Ontology (SSN) [6] are also relevant ontolo-
gies. Ready4SmartCities [42] and Lov4IoT [22] are common catalogs, 
and CityGML [21] specifes 3D city models’ interoperability and 
representation. 

3 MULTIMODAL KNOWLEDGE GRAPHS FOR 
DATA SPACES 

Data spaces provide a more fexible and scalable solution for han-
dling large amounts of heterogeneous data from multiple, multi-
modal sources. By integrating structured sources, such as sensor 
data and databases, with unstructured sources, such as images, 
videos, and text, data spaces can provide detailed insights into 
complex patterns in huge amounts of data. Common sense knowl-
edge enrichment can help reason about the entities in the data 
and their relationships, allowing for the identifcation of events 
that might not be immediately apparent from the data alone. Data 
spaces powered by multi-modal knowledge graphs can be utilized 
for efective trafc management and emergency response in smart 
cities by combining structured data from trafc sensors and GPS 
with unstructured data from trafc cameras and social media feeds. 

For example, during a trafc accident, sensor data might indicate 
heavy trafc congestion. Unstructured data can provide additional 
details such as the exact location, number of vehicles involved, 
and injuries. By enriching the multi-modal representation with 
external knowledge, such as trafc fow patterns or the location of 
nearby hospitals, better decisions can be made on how to respond, 
like rerouting trafc, dispatching emergency services, or notifying 
hospitals to prepare for potential patients. Combining structured 
and unstructured data enriched with external knowledge can pro-
vide a more comprehensive understanding of events in smart cities, 
ultimately leading to better decision-making and problem-solving. 

3.1 Challenges 
Multimodal KGs and knowledge enrichment techniques can help 
address several challenges associated with data spaces: 

(1) Data Integration: One of the primary challenges of data 
spaces is integrating data from multiple sources [25]. Multi-
modal KGs can help integrate information from various struc-
tured and unstructured data sources and external knowledge 
sources, providing a unifed representation of and semanti-
cally rich insights into the data. 

(2) Data Governance: It is also a major challenge to ensure all 
the data is managed to comply with regulations, policies, and 
standards [48]. Knowledge enrichment techniques can be 
used to annotate data in a multimodal KG with metadata that 
describes the provenance, ownership, and usage of data to 

make sure data is managed in compliance with regulations, 
policies, and standards. 

(3) Scalability: As data volumes continue to grow, data spaces 
need to be able to handle increasingly large and complex 
datasets [41]. Multimodal KGs can represent large and com-
plex datasets by efciently organizing data into a network 
of interlinked entities for seamless scalability and efcient 
data retrieval and analysis. 

(4) Interoperability: Data spaces involve integrating data from 
various systems and platforms, which requires data to be 
interoperable and exchangeable seamlessly between systems 
[47]. Multimodal KGs can provide a common data model 
representing data consistently across diferent applications 
and platforms to ensure data interoperability. 

(5) Semantic Interoperability: Semantic interoperability in-
volves ensuring that data is represented in a way that is 
understandable and interpretable by humans and machines 
[46]. Multimodal KGs can help achieve semantic interop-
erability by providing a standardized data representation 
using ontologies and vocabularies to represent data to en-
sure that data is understood and interpreted consistently 
across diferent systems and applications. 

(6) Data Security, Privacy and Ethics: To establish a trusted 
network for data exchange and sharing, it is crucial to ensure 
secure data access and restrictions, including confdential-
ity, digital rights management, and secure access control, 
even within a decentralized peer-to-peer network [25, 53]. 
Multimodal KGs can incorporate digital rights management 
frameworks and access control mechanisms to secure ac-
cess to sensitive data while ensuring confdentiality. Knowl-
edge enrichment techniques can verify user identity and 
authorization, providing an additional layer of security. Stan-
dardized security solutions and exchange protocols can be 
implemented across all nodes and participants in the data-
sharing space. Additionally, ethical and privacy-related ex-
ternal knowledge can be infused into multimodal KGs, such 
as information about data sensitivity, usage restrictions, and 
user consent, to ensure data is collected and used ethically 
and responsibly. 

(7) Data Lifecycle Management: Data lifecycle management 
in data spaces is not designed around sharing. Existing mod-
els need improvement to prepare data for sharing and address 
the complexity of diferent data types. [10] Multimodal KGs 
and knowledge enrichment techniques can provide a stan-
dardized way of representing and annotating data through-
out its lifecycle. By incorporating metadata, improving data 
quality, and enabling cross-domain interoperability, multi-
modal KGs can help prepare data for sharing and improve 
data management in data spaces. 

(8) Data Usage Rights: Data producers need to retain their 
ownership rights to control who can use their data, and 
under which terms and conditions [39]. Multimodal KGs 
can standardize data ownership, access rights, and usage 
restrictions in the representation and knowledge base. By 
identifying and classifying sensitive data, these techniques 
can ensure that usage rights are enforced in compliance with 
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legal and regulatory requirements, enabling data owners to 
manage and control the usage of their data in data spaces. 

(9) Data Decentralization: Decentralized data storage archi-
tectures require standard data exchange protocols to support 
data sharing and processing [55]. By incorporating meta-
data, multimodal KGs can provide a shared understanding 
of data across multiple platforms and enable interoperability 
between them. Knowledge enrichment techniques can help 
ensure the accuracy and completeness of data, enabling reli-
able data processing in decentralized environments. Standard 
data exchange protocols can also be defned based on the 
KG representation, enabling seamless data exchange across 
diferent platforms. 

(10) Data Veracity: Data veracity is crucial for the sustainabil-
ity of data-sharing ecosystems, but weak verifcation and 
provenance support hinder trust and transparency [10]. To 
address this challenge, multimodal KGs can enable traceabil-
ity and transparency in data sharing ecosystems by incor-
porating metadata about data origins, processing steps, and 
algorithms. Knowledge enrichment/infusion techniques can 
also verify data accuracy and integrate provenance tracking 
into the KG, creating a comprehensive audit trail of data 
usage. 

3.2 Requirements 
Key requirements for designing and constructing a multimodal KG 
for data spaces are as follows: 

(1) Structured Representation: To integrate unstructured vi-
sual data with structured sensor and location data in the 
unifed KG, a structured representation of visual data is nec-
essary, which requires accurate detection and efective link-
ing of semantic elements in visual data. 

(2) Formal Ontology: A formal ontology is required to rep-
resent multimodal smart city data efectively in the data 
space. 

(3) Expressiveness: Incorporating an external knowledge base 
is necessary to improve the KG’s expressiveness and align its 
ontology with the external knowledge base for consistency 
and interoperability. 

(4) Optimized Storage and Management: Multimodal KG 
needs to be stored and managed using a graph database opti-
mized for handling graph-structured data and unstructured 
data fles like images and videos need to be stored in an 
object store. 

(5) Efcient and Expressive Querying and Matching: Mul-
timodal KG needs to support efcient querying and match-
ing through a graph query language, allowing for complex 
pattern matching based on various data types and external 
knowledge base. 

(6) Real-time Multimodal Stream Processing: Real-time pro-
cessing of multimodal data streams requires complex event 
processing to analyze large volumes of incoming data, detect 
patterns, and trigger actions based on the detected patterns. 

(7) Visualization and Reporting: Tools for data visualization 
and reporting are necessary to explore and analyze data in 
an intuitive and informative way. 

3.3 Proposed Ontology 
The proposed multimodal KG integrates visual, sensor and location 
data from sensors and cameras in a smart city data space, enriched 
with contextual knowledge from an external knowledge base. The 
ontology, shown in Figure 1(d), serves as a foundation for repre-
senting, querying, and analyzing multimodal data in the data space. 
Existing ontologies, including SSN1, OM [44], OWL-Time2, Geo3, 
GeoSPARQL4, Dublin Core5, and RDFS6, were reused, following 
best practices for ontology design [23]. The ontology defnes the 
main classes and relationships, as well as their properties, for enti-
ties in the multimodal KG as listed below: 

3.3.1 Classes and Properties. 

(1) Related to visual data 
• mmkg:object represents the objects detected by object 
detectors on video data captured by the cameras, for ex-
ample, a person, a car, a building, a tree etc. They are spa-
tial objects as defned in geosparql:SpacialObject and 
have similar properties, hence we link them with the help 
of a "sameAs" relation (owl:sameAs). Furthermore, the 
boundaries of an mmkg:Object are defned with the help of 
a bounding box (mmkg:bounding_box). A bounding box 
is represented by four coordinates forming a rectangle 
or geosparql:coordinateDimension or the number of 
measurements or axes needed to describe the position of 
this geometry in a coordinate system. Other properties of 
mmkg:object are rdfs:label or the label assigned by ob-
ject detectors to the object and mmkg:confidence which 
is the classifcation score between 0 and 1. 

• mmkg:scene represents a scene captured by the camera. A 
scene contains multiple objects inside it (mmkg:in). Other 
properties include dc:identifier and time:instant to 
represent the timestamp when the scene was captured. 

• mmkg:Location represents the geographical location of 
diferent classes of mmkg like mmkg:object, mmkg:scene 
and ssn:SensingDevice using the relation mmkg:locatedAt. 
The location is represented using properties geo:latitude 
and geo:longitude to represent the lattitude and logitude 
of a geographical point (geo:point). 

• mmkg:source represents the unstructured data fles re-
ceived from cameras, such as images. Properties used to de-
scribe the source include dc:sizeOrduration, dc:title, 
dc:format, dc:created (represents the date the fle was 
created), time:instant, and mmkg:filepath that repre-
sents the path of the fle. 

• mmkg:visualRelationship represents a visual relation-
ship linking two mmkg:object entities via an mmkg:predicate 
property along with mmkg:confidence and 
mmkg:bounding_box of the visual relationship. 

(2) Related to text data: 

1https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#
2https://www.w3.org/2006/time 
3https://www.w3.org/2003/01/geo/wgs84_pos# 
4http://schemas.opengis.net/geosparql/1.0/geosparql_vocab_all.rdf 
5https://www.dublincore.org/specifcations/dublin-core/dcmi-terms/# 
6https://www.w3.org/2001/sw/wiki/RDFS 
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• ssn:SensingDevice is a device that implements sensing 
and represents the sensors and cameras in the smart city. 
It is modelled by reusing the SensingDevice class of ssn on-
tology (ssn:SensingDevice). The main properties used 
for this class are ssn:MeasurementRange, dc:identifier, 
ssn:frequency and rdfs:label. 

• mmkg:Data represents the data that the sensor outputs. 
This class is modelled using properties ssn:precision, 
ssn:observationValue, ssn:Accuracy, and om:units 
to represent the unit of measurement of the observation 
value. 

• ssn:MeasurementProperty represents the property being 
measured like air quality, water, length etc. 

(3) Related to knowledge extracted from CSKG: 
• mmkg:CSKGentity represents the nodes extracted from 
CSKG that are semantically related to the visual concepts 
in a scene, for example, ’vehicle’ and ’driving’ nodes ex-
tracted from CSKG based on their relevance to a car object 
in a scene. It is defned by rdfs:label. 

• mmkg:CSKGrelation represents the edges extracted from 
CSKG that link mmkg:object and mmkg:CSKGentity based 
on their semantic similarity, for example, the relation 
’isA’ in the link (car, isA, vehicle). It has two properties: 
mmkg:cskg_edge which is based on rdfs:label, and 
mmkg:similarity_score which is the cosine similarity 
between the linked mmkg:object and mmkg:CSKGentity 
(ranging between 0 and 1). 

3.3.2 Relationships. 

(1) mmkg:outputs links a sensing device (ssn:SensingDevice) 
with its corresponding observations (mmkg:data). 

(2) mmkg:hasMeasuringProperty is a relationship between 
a sensing device (ssn:SensingDevice) and the property it 
measures (mmkg:MeasurementProperty). 

(3) mmkg:capturedBy is a relationship between mmkg:scene 
and mmkg:sensor . 

(4) mmkg:in is a relation between classes mmkg:object and 
mmkg:scene to defne the objects present inside a scene. 

(5) mmkg:storedIn is a relationship between mmkg:scene and 
mmkg:source. 

(6) mmkg:locatedAt is a relation between mmkg:location and 
other classes like mmkg:scene, ssn:SensingDevice, 
mmkg:object. 

(7) mmkg:hasSubject links the predicate of a 
mmkg:visualRelationship to its subject mmkg:object. 

(8) mmkg:hasObject links the predicate of a 
mmkg:visualRelationship to its object mmkg:object. 

(9) mmkg:hasNode links an object (mmkg:object) and an en-
tity (mmkg:CSKGentity), or interlinks two entities. 

4 CONCLUSION 
Multimodal KGs enriched with common sense knowledge have 
promising potential to enhance the efectiveness of modern data 
spaces by enabling semantically-rich integration and analysis of 
diverse data types and providing a formal representation of data 
across multiple domains, enabling automated reasoning, and facili-
tating enhanced data interoperability, management and governance. 

This paper provides a comprehensive overview of the literature on 
this line of work and presents the major challenges, key require-
ments and a proposed ontology for building efective multimodal 
KGs with knowledge enrichment for data spaces. 
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