Bluetooth Low Energy Peripherals and
Edge-to-Cloud Data Assessment as a Service,
with Docker, Node-RED, MQTT, Scala, Spark,
Kafka, HDFS, and Android SDK: a demo*

Mirco Soderit[0000-0003=3417=5741] 51,0 John Gerard
Breslin![0000-0001-5790—-050X]

Data Science Institute, University of Galway, Galway, Ireland
{mirco.soderi, john.breslin}@universityofgalway.ie

Abstract. Reconfigurable manufacturing, or resilient manufacturing,
has been a very active research field for more than two decades at today.
It can be described as a complex of technologies that deal with cost-
effective, quick reaction to context changes, including market changes.
Remote and automated reconfiguration of both software and networking
across the three layers of IoT computing (Edge, Fog, and Cloud) is part
of that challenge, and the context for this work. In this manuscript, a
demo is proposed where three components are involved: an IoT device, a
mobile app, and a Cloud analytics server. A local data assessment takes
place in the IoT device, through a K-Means Clustering. Values are sent
to the mobile app via Bluetooth Low Energy (BLE), along with local
assessments. The mobile app forwards the values to the Cloud analyt-
ics server for central assessment, and displays values, and assessments.
All the software in the IoT device and on the Cloud is installed, config-
ured, and run from remote through APT calls, including the creation and
implementation of the BLE service. All software but the mobile app is
containerized. Graphical Integrated Development Environments (IDE),
message brokers, event streaming servers, languages and frameworks for
Cloud computing and analytics, and distributed file systems, are used.

Keywords: Reconfigurable Manufacturing - Resilient Manufacturing -
Internet-of-Things (IoT) - Multi-Agent System - Self-organizing System
- Microservice - API - Bluetooth Low Energy (BLE) - Message Broker -
Events Streaming - Cloud Computing - Cloud Analytics - Cloud Storage
- Containerization - Mobile App - Docker - Node-RED - MQTT - Scala -
Spark - Kafka - HDF'S - Android

* This publication has emanated from research conducted with the financial support
of Science Foundation Ireland under Grant Number SFI/16/RC/3918 (Confirm).
For the purpose of Open Access, the author has applied a CC BY public copyright
licence to any Author Accepted Manuscript version arising from this submission.

2 M. Soderi and J. G. Breslin

1 Introduction

In the early 2000s, reconfigurable manufacturing systems (RMS) were identified
as the key to future manufacturing, a new paradigm designed for rapid adjust-
ment of production capacity and functionality in response to new market condi-
tions, which would have permitted to face the new challenges posed by globaliza-
tion [4] [7]. Few years later, EIMaraghy [2] enunciated the main principles of the
new discipline (modularity, integrability, flexibility, scalability, convertibility, and
diagnosability), and Koren [3] highlighted how RMS differentiated from former
Dedicated Manufacturing Lines (DML), and Flexible Manufacturing Systems
(FMS). In 2010, Koren and Shpitalni [5] introduced a rigorous mathematical
method for designing reconfigurable manufacturing systems. In late 2010s, Bor-
tolini, Galizia and Mora [1] reviewed RMS application areas, key methodologies
and tools, thus identifying five emerging research streams in reconfigurable man-
ufacturing: (i) reconfigurability level assessment; (ii) analysis of RMS features;
(iil) analysis of RMS performances; (iv) applied research and field applications,
where this work falls; (v) reconfigurability toward Industry 4.0 [6] goals.

More recently, Morgan, Halton, Qiao, and Breslin [8] reviewed the research
areas of RMS, Machine Control, and Machine Intelligence, with the aim of
assessing the reconfigurable design and industry adoption, and of identifying
the enabling present and future state technology, so establishing a vision for
next-generation Industry 4.0 manufacturing machines. Soderi, Kamath, Mor-
gan, and Breslin [12], proposed modular and reconfigurable Node-RED applica-
tions, named Service Nodes, to be run in Docker containers, and interconnected
through MQTT brokers, for ubiquitous system integration as a Service in smart
factories. Also, they proposed a containerized Scala + Spark server application
for Cloud analytics, to be integrated into the system outlined in [12], by means
of a Node-RED module to be loaded to the Service Nodes via API calls [13].
For verifying the versatility of the proposed framework, and in consideration of
the importance of real-time Big Data visualization in most smart manufacturing
scenarios, Soderi, Kamath, and Breslin [11], also started the building of an API-
driven infinite cyber-screen for custom real-time display of Big Data streams,
relying on the same building blocks and technologies that were proposed in [13]
and extensively used in [10] for Big Data engineering and analytics. In end,
Soderi and Breslin [9] proposed the Crazy Nodes, which are maximally flexi-
ble Service Nodes that expose APIs not only for loading pre-existing software
modules from a targeted external library node, but also for performing arbitrary
modifications on the node implementation, with immediate effect, and without
any service disruption.

The paper is structured as follows. Reconfigurable manufacturing is intro-
duced in Section 1. An overview of our proposed framework for ubiquitous, and
remotely reconfigurable data communication, engineering, visualization, and an-
alytics, is given in Section 2. The demo of Bluetooth Low Energy Peripherals
and Edge-to-Cloud Data Assessment as a Service is presented in Section 3. Con-
clusions are drawn in Section 4.

BLE Peripherals and Edge-to-Cloud Data Assessment as a Service: a demo 3

2 Framework

The entry point for our proposed framework for ubiquitous, and remotely recon-
figurable data communication, engineering, visualization, and analytics, is the
Network Factory. It is distributed as a Docker image, publicly available on
Docker Hub!. It is a Node-RED application that expose APIs for building, and
managing at a high-level, Edge-to-Cloud computation networks. Each node is
deployed as a Docker container. Typical nodes are: (i) Service Nodes, (ii) Crazy
Nodes, (iii) BLE Nodes, (iv) AI Servers, (v) Transformation Libraries, (vi) Ac-
cess Control List (ACL) API nodes for Service and Crazy Nodes, (vii) MQTT
brokers, and (viii) ACL API nodes for MQTT brokers. Containers from arbi-
trary images can be created and customized via API call as well. OpenAPIv3
documentation is available on GitHub?, along with all relevant artifacts. Ser-
vice Nodes are atomic data reading, writing, or transformation steps. They
communicate to peer nodes, and expose their internal status, through MQTT
brokers. When created, all Service Nodes look the same: they implement the
identity function, and expose APIs for their configuration. The implementation
of the task that the node executes is loaded via API call from the Transforma-
tion Libraries, which are extendable shared repositories of reusable software
components (Node-RED subflows). Crazy Nodes are Service Nodes that also
expose APIs for arbitrary modifications to the node implementation, with imme-
diate effect, without service disruption. The possibility of modifying the software
implementation through calls made to APIs that are part of the implementation
itself, reliably, with immediate effect, and without service disruption, is a unique
feature of Node-RED, which makes it particularly suitable for reconfigurable
manufacturing applications. BLE Nodes are reconfigurable Node-RED appli-
cations that turn any device equipped with a Docker engine and a BLE adapter,
into a BLE peripheral. More on BLE Nodes will be said in Par. 3.3. For parallel
computing, Big Data storage and visualization, Machine Learning (ML) models
training and usage, Service and Crazy Nodes interface with AI Server nodes,
relying on a specific module natively available in all Transformation Libraries.
AT Servers are Scala+Spark+Akka HTTP applications. They embed extendable
libraries of parallel/Al tasks. They keep a configuration record for each inter-
facing Service or Crazy Node, which is populated through API calls made to
client nodes, and then forwarded to the server. They get input data or control
signals from client nodes, and provide their outputs back to client nodes, or they
publish to event streaming servers. For security purposes, all APIs make calls
to external ACL APIs to validate incoming requests. Stub implementations of
ACL APIs can be created through API calls to the Network Factory, as ACL
Nodes. An example computation network that can be built, configured and
operated through the above-outlined framework is depicted in Fig. 1.

! https://hub.docker.com/r/msoderi/network-factory
2 https://github.com/mircosoderi/State-of-the-art- Artifacts-for-Big-Data-
Engineering-and-Analytics-as-a-Service

4 M. Soderi and J. G. Breslin

MQTT
Broker

Text File
Gamma

Transformation OPC-UA-enabled

Library Vibration Sensor Text File
Delta
OPC-UA-enabled OPC-UA

Temperature Sensor Server X

Fig. 1. An example distributed system that can be built through our proposed frame-
work. Service/Crazy nodes are depicted each as an orange rectangle; some of them
interface with IoT devices, databases, file systems... (blue labels), while others only
interface with configured brokers (black labels), or with AI servers (bold large label).

3 Demo

In this section, the demo of Bluetooth Low Energy Peripherals and Edge-to-
Cloud Data Assessment as a Service is presented. More specifically, the reference
scenario and possible applications of this demo are identified in Par. 3.1. An
overview of the involved components and their interrelations is given in Par. 3.2.
The software installed on the IoT device is described in Par. 3.3. The mobile
app is described in Par. 3.4. The Cloud analytics server is described in Par. 3.5.

3.1 Scenario

The reference scenario for this demo is outlined as follows: (i) multiple identical
IoT devices are deployed across heterogeneous environments for some sensor-
based quality assessment; (ii) both local assessment (performed separately at
each device, based on its only measurements), and central assessment (based on
all measurements from all devices), are relevant; (iii) then, no fixed assessment
criteria can be used, and Machine Learning is needed; (iv) assessment must be
performed at real-time; (v) the device moves along with the user, who uses a
mobile app to display detected values and assessments, or an Android system
is embedded in the device; (vi) some Internet connectivity is available; (vii) the
overall application context is volatile, the evolution is not totally predictable,
and requires immediate countermeasures, so the maximum possible degree of
remote real-time reconfigurability is required. Example fields of application are
environmental or machine monitoring, or wearable devices for biologic parame-
ters monitoring and semi-automated therapy administration.

BLE Peripherals and Edge-to-Cloud Data Assessment as a Service: a demo 5

3.2 Overview

For demo purposes, a notebook equipped with a BLE adapter was used as IoT
device, and a data input Web interface was created inside of it for emulating
the generation of sensor measurements. Generated measurements go through
the local assessment, before being delivered to the Android app via Bluetooth.
For connecting to the IoT device, the mobile app scans a QR code, which bears
the address of the BLE adapter of the IoT device. Once connected, the app
starts receiving values from the IoT device, along with local assessments, and
immediately starts displaying them (the text background color indicates the as-
sessment), and submitting them to the central server for that they could be
stored, and then used for training the central ML model. Meantime, in the back-
ground, via API calls, the app adds some logic to the central server, consisting
in an HTTP input, Kafka clients, Al client, and MQTT client nodes. They all
are client nodes; prediction model and server are shared. Once the generation
is complete, the app starts sending values to the generated central logic. The
app gets central assessments related to its inputted values through a dedicated
MQTT broker/topic, and displays them by setting the background color of the
screen (not to be confused with the background color of the text). For demo pur-
poses, an MQTT broker instance is created, configured, and run in the central
server through API calls made to the Network Factory, along with single node
demo Kafka and HDF'S clusters. The demo was tested with the role of the central
server covered by a second notebook equipped of a Docker engine, connected to
the same local network of the IoT device notebook. A high level representation
of the demo is given in Fig. 2.

loT Device

Web Interface | | |
i for Data Input | | Local Clustering: |
| Emulated Sensor ! | Model Update, |
i Measurement nd Prediction ! LT TS

Cloud Storage

Alserver Node

Mobile
App User X

Y Prediction/Assessment Logic

d Specific for User X
rrrrr

Fig. 2. A high level view of the proposed demo

6 M. Soderi and J. G. Breslin

3.3 IoT Device

The main takeaway from this part is that any device, even a notebook, that runs
a Docker engine and is equipped of a BLE adapter, can be turned into a BLE
peripheral, with all services and characteristics created (and possibly recreated)
from remote. The requests in the Smart Microchip folder of the Postman col-
lection (available on GitHub as SmartXxxxxxxxV2.postman_collection. json)
show how that was done for this demo. What we do there, we (i) create and
run a Network Factory container; (ii) create and run some utility nodes; (iii)
create the data input Web page at https://localhost:2142/ui), to emulate
sensor measurements; (iv) create the Al server, inject the task, trust the (future)
client, and run; (v) create and configure the AI client, which gets input values
from the local broker, interfaces with the AI server via API calls and HTTP
socket, and publishes values and assessments through the local broker; (vi) cre-
ate and configure the BLE node. To be noted that, unlike all other nodes, the
BLE node (container) is run in host networking and with high privileges, for
granting access to the BLE adapter.

3.4 Mobile App

The Android app is available on GitHub as SmartXxxxxxxx.zip, is the first
example of automated, API-based, event-driven remote software installation,
configuration, and operation, in the literature that we have produced so far in the
context of our proposed framework for ubiquitous, and remotely reconfigurable
data communication, engineering, visualization, and analytics. As soon as the
QR code that bears the BLE device address is scanned, a new subsystem is
generated, configured, and operated from scratch, from remote, via API calls,
on the central system, by the mobile app. The subsystem only accepts inputs
coming from the specific app installation/user by which it was generated, asks
central assessments to the shared Al server (which uses a shared prediction
model), and publishes them on a MQTT broker/topic dedicated to the specific
app installation /user. Notably, the mobile app is a concentrate of communication
technologies: (i) it receives values and local assessments from the IoT device via
Bluetooth LE; (ii) it creates, configures, and operates a new subsystem in the
central server via APT calls; (iii) it receives central assessments via MQTT.

3.5 Cloud Analytics

The API requests in the Smart Central folder of the Postman collection gener-
ate, configure, and run the basic implementation for central assessment. Further
subsystems are then added by the mobile apps via API calls at usage time, as
seen in Par. 3.4. Measurements are stored in a CSV dataset. When the central
administrator decides that it is time to generate or update the prediction (ML)
model, they issue the requests in the HDFS Libsvm folder (which generates a
LIBSVM dataset from the CSV dataset and stores that back to HDFS), and then
those in the Create Model folder (to train a K-Means model using the LIBSVM
dataset, and store the trained model to HDFS).

BLE Peripherals and Edge-to-Cloud Data Assessment as a Service: a demo 7

4 Conclusions

In this work, a demo was proposed where IoT devices perform a local data assess-
ments and expose data and metadata via BLE. Mobile apps connect, forward the
data to a central assessment system, and display data and all related assessments
at real-time. All software is installed, configured, and operated via API requests,
relying on our framework for ubiquitous and reconfigurable data communication,
engineering, and analytics. Principally, the demo shows: (i) the possibility of cre-
ating BLE services via APT calls, and (ii) the possibility of installing, operating,
and modifying remote software, without service disruption.

References

1. Bortolini, M., Galizia, F.G., Mora, C.: Reconfigurable manufacturing systems: Lit-
erature review and research trend. Journal of manufacturing systems 49, 93—106
(2018)

2. ElMaraghy, H.A.: Flexible and reconfigurable manufacturing systems paradigms.
International journal of flexible manufacturing systems 17(4), 261-276 (2005)

3. Koren, Y.: General rms characteristics. comparison with dedicated and flexible
systems. In: Reconfigurable manufacturing systems and transformable factories,
pp. 27-45. Springer (2006)

4. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brus-
sel, H.: Reconfigurable manufacturing systems. CIRP annals 48(2), 527-540 (1999)

5. Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. Journal
of manufacturing systems 29(4), 130-141 (2010)

6. Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. Business
& information systems engineering 6(4), 239-242 (2014)

7. Mehrabi, M.G., Ulsoy, A.G., Koren, Y.: Reconfigurable manufacturing systems:
Key to future manufacturing. Journal of Intelligent manufacturing 11(4), 403-419
(2000)

8. Morgan, J., Halton, M., Qiao, Y., Breslin, J.G.: Industry 4.0 smart reconfigurable
manufacturing machines. Journal of Manufacturing Systems 59, 481-506 (2021)

9. Soderi, M., Breslin, J.G.: Crazy nodes: Towards ultimate flexibility in ubiquitous
big data stream engineering, visualisation, and analytics, in smart factories. 11th
International Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation (ISoLA 2022) p. to appear (2022)

10. Soderi, M., Kamath, V., Breslin, J.G.: A demo of a software platform for ubiquitous
big data engineering, visualization, and analytics, via reconfigurable micro-services,
in smart factories. In: 2022 IEEE International Conference on Smart Computing
(SMARTCOMP). pp. 1-3. IEEE (2022)

11. Soderi, M., Kamath, V., Breslin, J.G.: Toward an api-driven infinite cyber-screen
for custom real-time display of big data streams. In: 2022 IEEE International
Conference on Smart Computing (SMARTCOMP). pp. 153-155. IEEE (2022)

12. Soderi, M., Kamath, V., Morgan, J., Breslin, J.G.: Ubiquitous system integration
as a service in smart factories. In: 2021 IEEE International Conference on Internet
of Things and Intelligence Systems (IoTalS). pp. 261-267. IEEE (2021)

13. Soderi, M., Kamath, V., Morgan, J., Breslin, J.G.: Advanced analytics as a ser-
vice in smart factories. In: 2022 TEEE 20th Jubilee World Symposium on Applied
Machine Intelligence and Informatics (SAMI). pp. 000425-000430. IEEE (2022)

