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Abstract

Meaningful feature extraction from multivariate time-series data is still challenging since it takes into account the correlation
between pairs of sensors as well as the temporal information of each time-series. Meanwhile, the huge industrial system has evolved
into a data-rich environment, resulting in the rapid development and deployment of deep learning for machine RUL prediction.
RUL (Remaining Useful Life) examines a system’s behavior over the course of its lifetime, that is, from the last inspection to when
the system’s performance deteriorates beyond a certain point. RUL has been addressed using Long-Short-Term Memory (LSTM)
and Convolution Neural Network (CNN), particularly in complex tasks involving high-dimensional nonlinear data. The main focus,
however, has been on degradation data. In 2021, a new realistic run-to-failure turbofan engine degradation dataset was released,
which differs significantly from the simulation dataset. The key difference is that each cycle’s flight duration varies, so the existing
deep technique will be ineffective at predicting the RUL for real-world degradation data. We present a Self-Attention Transformer-
Based Encoder model to address this problem. The encoder with the time-stamp encoder layer works in parallel to extract features
from various sensors at various time stamps. Self-attention enables efficient processing of extended sequences and focuses on key
elements of the input time series. Self-attention is used in the proposed Transformer model to access global characteristics from
diverse time-series representations. Under real-world flight conditions, we conduct tests on turbofan engine degradation data using
variable-length input. The proposed approach for estimating RUL of turbofan engines appears to be efficient based on empirical
results.
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1. Introduction

For reliable, efficient and successful operation of modern complex mechanical equipment maintenance and prog-
nostic health management (PhM) are of crucial importance. Prediction of Remaining Useful Life (RUL) plays an
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important role in the predictive maintenance of large equipment’s. With the goal of estimating the performance of ma-
chinery over it’s lifetime period and providing a suitable maintenance plan to avoid serious accidents [2]. The rise of
internet of things (IoT) and industrial digitization has gradually transformed present industrial systems into a data-rich
environment. These developments have created an unprecedented opportunities to study and develop advanced meth-
ods to predict the Remaining Useful Life (RUL) of complex machines using machine and deep learning techniques
[1].

Traditional model-based, data-driven, and hybrid methods are the three types of RUL prediction methods. To char-
acterize the degradation trend of components, the model-based method necessitates accurate dynamic modeling of
mechanical equipment or components [3]. Moreover, modern industrial large-scale equipment, on the other hand, is
becoming increasingly complicated, with a variety of nonlinear connections between diverse systems. As a result,
establishing a precise model is challenging. The purpose of the data-driven RUL prediction method is to find a map-
ping link between RUL and target equipment attributes [4]. However for complex mechanical equipment an expert
knowledge and physical modelling is not required [5]. Recently many studies have been proposed for predicting the
RUL prediction methods based on deep learning architectures [6] [8]. However a key issue for RUL prediction is that
more robust methods are required which can extract the features that contain more and useful degradation information.
According to Qin et al [9] attention mechanism is capable of learning different dependencies across multiple sensors
at different time-stamps. Recently many studies have been proposed that attempted to predict RUL by combining the
attention mechanism with CNN and LSTM structures [8] [10]. However these methods have two major problems.
First, the LSTMS and CNN’S fails to capture the long-term dependencies efficiently and secondly the attention mech-
anism in LSTM and CNN suffers from collective influence between the extracted features because the data is fed
sequentially into the network, therefore affecting the RUL prediction.

Recently Transformer architecture [11] were introduced in sequence modelling to process variable input length. It
uses the self-attention mechanism to extract features and captures the long-term dependencies between components in
a sequence without taking into account their distance. And as a result they remain less affected despite the increase in
the sequence length as compared to LSTM and CNN. Our research aims to address the above mentioned challenges by
proposing a transformer based deep learning method to predict the RUL of turbofan engine. The main contributions
of this research can be summarized as follows:

• We propose a self-attention based transformer architecture for predicting the RUL. We use NASA’s 2021 run-
to-failure turbofan engine dataset for experimentation.
• We investigate the abstract feature extraction layer module to incorporate more important features from variable-

length time-stamps without any prior domain knowledge into the attention mechanism.

The rest of the paper is organized as follows. Section 2 introduces related works. Section 3 illustrates the proposed
methodology. Section 4 and 5 demonstrates the effectiveness of the proposed approach and discuss the results. Finally,
section 6 concludes the paper.

2. Related Works

RUL estimation for turbofan engines has attracted a lot of research interest due to the importance of its application.
However, many researchers have investigated the advanced method and have primarily relied on simulation datasets
because practically all practical turbofan engine data is extremely valuable and even proprietary. Previously NASA
in 2008 published a turbofan engine dataset knows as C-MAPSS dataset [13]. In 2021 a new run-to-failure turbofan
engine degradation dataset (N-CMAPSS) [12] was published by the Prognostics CoE at NASA in collaboration with
ETH Zurich and PARC. It delivers actual flight data of turbofan engines under real settings ranging from both normal
and fault operation settings as compared to the former dataset.

In literature RNN based architectures and it’s variants such as LSTM and GRU have been widely used for RUL pre-
dictions. Heimes et al [14] used RNN for RUL prediction. The LSTM prediction model for RUL estimation was used
by [15]. A GRU based method for remaining useful life prediction of nonlinear deterioration process was proposed in
[16]. Apart from RNN and LSTM, CNN has also been applied for RUL prediction tasks. A deep CNN was proposed
in [17] which used data normalization and performed convolution across time dimension. In [18] multi-scale CNN
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was proposed for RUL estimation, it focused on keeping the global and local information in balance in comparison
to normal CNN’s. Furthermore, many studies leveraged the combination of CNN and LSTM [19], other studies used
sequence learning and attention based architectures [20] [8] for RUL estimation.

Transformer architecture has recently been used in time-series related jobs due to its effectiveness in modeling
extended sequences. Zhou et al. [21] investigated the use of Transformer in the prediction of long sequence time
series and presented the ProbSparse self-attention technique to reduce time complexity and memory utilization. The
Longformer was proposed by [22], and it has an attention mechanism that grows linearly with sequence length, making
it easier to digest large sequences. Currently only few studies regarding the use of transformer architecture for RUL
estimation are available. In this research, we investigate this direction and present a self-attention based transformer
architecture capable of simultaneously capturing the weight information of various sensors at different time-stamps
and hence improve the overall RUL estimation.

3. Proposed Approach

This section illustrates the proposed approach in detail as shown in Figure 1. The proposed model has been inspired
by Transformer architecture in natural language processing (NLP). The model consists of three substructures self-
attention layer, encoder layer, and prediction layer. Unlike other RUL prediction methods based on RNN and CNN
methods, the proposed model uses a self-attention mechanism to capture long-term dependence information between
sequence inputs and outputs without taking distance into account, so the importance of each work cycle information
is not diminished as time step length increases. We adopt abstract feature extraction strategy based on the Transformer
architecture that is better suited for RUL prediction.

3.1. Transformer Architecture

Transformer architecture was first introduced in 2017 by Vaswani et al [11]. It’s a sequence-to-sequence based en-
coder decoder architecture. The encoder converts the input sequence into a higher-dimensional vector, which is then
fed into the decoder, which produces an output sequence. Transformer, unlike RNNs, develops long-term dependen-
cies via a dot-product-based attention mechanism. Many natural language processing tasks, such as machine trans-
lation [11], named entity recognition, general language understanding, and question answering [23], have achieved
improved results with transformers.

This research proposes a self-attention based transformer architecture for RUL estimation, to address the limitations
of RNN and CNN based methods as explained in section 1. Furthermore, we adopt the self-attention model which is a
normal attention model. It generates the features from the same item of the sequential input and models the sequential
data by adding it to the prior input sequence. And as a result sensitivity of the model to local information is increased.

3.2. Encoder layer

We use transformer encoder layer to capture the long-term and short-term dependencies for RUL estimation. The
encoder layer used in this architecture is based on [24]. It is composed on N multiple sensor encoder layers, time-
stamp layers and input embedding layers. In order to prepare for the feature extraction process, the input embedding
layer transfers the input state monitoring data to a vector using a feed forward network (FFN). A multi-head sensor
self-attention layer and an FFN layer are the two primary sub-layers of a sensor encoder layer. After each sub-layer,
there is a residual connection and normalization layer. The goal of residual connection is to make training a deep
neural network easier. The sensor encoder layer and the time step encoder layer have the same structure. A multi-head
time step self-attention layer and an FFN layer are the two major sub-layers. The distinction is that the time step
encoder layer captures features along the time step dimension, allowing the model to focus on the time steps that
matter most for RUL prediction. We give a brief overview of each module here, please refer to [24] for more details.

3.3. Attention blocks

Transformer architecture uses multi-head attention to access the features in the encoder and decoder based on
the sequence to sequence model, rather than CNN or RNN Networks. Word embedding is used to process the input
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Fig. 1. Overall architecture of the proposed model.

sequence, as well as positional embedding, which introduces the positional link between elements. Self-attention
captures the global and simultaneous dependencies between all parts. As a result, during the training phase, parallel
computation becomes possible.

3.3.1. Multi-head attention
Multi-head attention is actually composed of several heads of self-attention. A mapping and query is established

by each head of the attention modules from the key-value pairs to the output by an attention function where the query,
keys, and values are all matrices made up of vectors transformed from the previous output. It’s worth to note that
self-attention mechanism i used here. The result is a weighted sum of the values, with the weights allocated to each
value determined by the query’s compatibility function with the relevant key. An attention function on a given set of
query vectors and key-value pairs is calculated as follows:
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Kj = fWj
k (1)

Vj = fWj
v (2)

Qj = fWj
q (3)

Where f Wj
k, f Wj

v, f Wj
q are trainable weighted matrix. The derived output from each module is the weighted sum

of the values. A scaled dot-product attention is applied on the derived weights K j, V j, and Q j.

t j
attention = Softmax

(
QjKj

T

√
dk

)
Vj (4)

Furthermore, we concatenate the information from multiple sub-spaces at different locations. The multi-head at-
tention can be formulated as follows:

hmh = Concat
(
hj

1, hj
2, ..., hj

H
)

Wo (5)

where Wo is also a matrix.

3.4. Abstract feature extraction

We proposed a local abstract feature extraction layer to map raw sensor data into distributed semantic represen-
tations and provide information regarding the local features to the upper layers at each time step, also taking into
account the neighboring time steps in a time sequence that may have stronger dependencies. This layer extracts the
important features from the sensor encoder and time-stamp encoder. The resulting features are combined together into
a new feature map called abstract feature map. The sensor encoder and time-stamp encoder contain sub-layers of senor
or time-stamp layers. This layer extracts features from both the encoders at the same-time as they are designed in a
parallel fashion. This helps to avoid the mutual influence of information which improves the overall RUL estimation.
Simultaneously the self-attention mechanism captures the long-term dependency information.

3.5. Feed forwards network (FFN)

The FFN involves two linear transformations with a ReLU activation function. A residual connection is applied to
increase the convergence before the features are transmitted through FFN. It can be formulated as follows:

FFN(x) = ReLU(W1x + b1) +W2 + b2 (6)

3.6. Regression layer

Finally we implement the regression layer which gets input from the attention blocks. The regression layer rp is
represents the output of the encoder with respect to the input data sequence. The RUL is estimated as follows
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gt = σ(ωorp + bo) (7)

where gt is the estimated RUL σ denotes the sigmoid activation function and ω and bo are the scalar objects. The
model uses mean square error to calculate the model loss and min-max normalization. The loss function is calculated
as follows:

MSE =
∑ N

i=1(r̂ − ri)2

N
(8)

4. Experiments

4.1. N-CMAPSS Datatset

The N-CMAPSS dataset [12] simulates the run-to-failure deterioration trajectories of a fleet of turbofan engines
with uncertain initial health states under real-world flight conditions. The N-CMAPSS dataset currently contains eight
subsets of data from 128 units, as well as seven possible failure scenarios that affect the flow (F) and/or efficiency (E) of
all rotating sub-components. The overall useful life has been set to 100%. The label for each flight cycle is calculated
by dividing the current cycle’s index by the unit’s total number of cycles. The label is a positive decimal between 0
and 1 in this fashion. The higher the number, the more cycles the engine will be able to support. Table 2 gives the
overview of the dataset.

We consider DS03 dataset for our experiment. As shown in Table 2, DS03 has 9.8 million rows, 15 Units (i.e. data
for 15 different turbofan engines), 3 flight classes and 1 failure modes. The input to the model is the data from the
measurements, virtual sensors, and model health parameters. Data for multiple modalities may be missing due to a
diversity of flight conditions and the inequality of flight length during each flight cycle. The data set is partitioned in
the following fashion during the training phase. 70% of the data is used in training, 10% for testing and the remaining
10% is used for validation.

Table 1. A detailed overview of the N-CMAPSS dataset.

Name Units Flight Classes Failure Modes Size

DS01 10 1,2,3 1 7.6 M
DS02 9 1,2,3 2 6.5 M
DS03 15 1,2,3 1 9.8 M
DS04 10 2,3 1 10.0 M
DS05 10 1,2,3 1 6.9 M
DS06 10 1,2,3 1 6.8 M
DS07 10 1,2,3 1 7.2 M
DS08 54 1,2,3 1 35.6 M

4.1.1. Implementation details
The proposed approach is implemented using PyTorch 1.3.2. The model is trained for 800 epochs. The RUL labels

for run-to failure dataset are normalized between [0, 1]. We used 6 attention blocks and 16 heads of self-attentions
with a dropout ratio of 0.1 according to [25]. The performance of the proposed model for RUL estimation is evaluated
using root mean square error (RMSE) and mean absolute error [2]. The following two metrics are given as follows:
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i=1

|x̂i − yi| (9)

RMSE =
1
N

N∑
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(x̂i − yi)2 (10)

5. Results and discussion

The results of the N-CMPASS dataset are shown in Figure ??. The anticipated remaining useful life results are
shown by the blue curves, while the ground truth labels are represented by the black dashed lines. Except for a few
specific flight cycles, the predicted spots are slightly fluctuant within a limited range, demonstrating the effectiveness
of the proposed model. We used two metrics to evaluate the performance quantitatively. At different epochs, MAE,
RMSE, [2] provide slightly different best models. As seen in Table 2, the RMSE values of all the units are quite
close to 1, indicating that the forecasts and ground truth are highly comparable. When it comes to MAE, and RMSE,
the lower these measures are, the better the regression performance. The MAE, and RMSE values are all close to 0,
indicating a high degree of similarity between the predictions and the labels. Units with short length cycles, in contrast
to those with longer flight lengths, have bigger prediction errors. Empirical results from real-world flying scenarios
show that the length of each cycle has a direct impact on models performance. As a result, units with shorter cycles
lack the necessary information for prediction, resulting in extreme sparsity.

Table 2. Comparison of MAE and RMSE for N-CMAPSS dataset..

Unit 2 5 10 16 18 20

Loss 5.10e-3 5.60e-3 6.73 e-3 3.10e-3 2.02e-3 6.10e-3
MAE 4.16e-2 3.90e-2 4.01e-2 3.11e-2 3.97e-2 4.02e-2
RMSE 6.19e-2 6.81e-2 7.51e-2 4.5e-2 8.46e-2 8.97e-2

6. Conclusion

This paper proposes a transformer based architecture for RUL estimation, capable of capturing both short-term and
long-term dependencies a in given time sequence. In contrast to methods based on CNN, our model is built on the
a dot-product self-attention mechanism over all time steps. To capture the properties of degradation data throughout
flight cycles under real-world flight conditions, our proposed model employs a multi-head self-attention mechanism.
The abstract features provide access to more significant degradation features that aid in RUL estimation. Under real-
world flight conditions, the model can estimate the RUL of turbofan engine degradation. The suggested model with
variable-length input is effective and robust, as evidenced by experimental results and analysis. Furthermore, because
of the sufficiency of the presented information, the length of flight cycles has a direct impact on accuracy.
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Fig. 2. RUL estimation results for the N-CMAPSS dataset. The results represent engines 2, 5, 10, 16, 18, and 20. The predicted estimation is
represented in blue and true estimations are represented in black.
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