TMM-TinyML: Tensor Memory Mapping (TMM)
Method for Tiny Machine Learning (TinyML)

Sonu Prasad
GMCI, General Motors
Limerick, Ireland
sonu.k.prasad@gm.com

Bharath Sudharsan
GMCI, General Motors
Limerick, Ireland
bharath.sudharsan@gm.com

ABSTRACT

TinyML: Tiny in size, big in impact! In this paper, we present
a Tensor Memory Mapping (TMM) method, which can accu-
rately calculate the on-device execution memory consumed
by a range of ML and TinyML models during execution on
small central processing units (CPUs), microcontroller units
(MCUs), and single board computers (SBCs).

CCS CONCEPTS

« Computer systems organization — Embedded sys-
tems; - Computing methodologies — Machine learning;
Artificial intelligence.

KEYWORDS
Edge Computing, IoT Devices, Machine Learning, TinyML

ACM Reference Format:

Bharath Sudharsan, Sonu Prasad, Dan Jose, and John G. Breslin.
2022. TMM-TinyML: Tensor Memory Mapping (TMM) Method for
Tiny Machine Learning (TinyML). In The 28th Annual International
Conference on Mobile Computing and Networking (ACM MobiCom
’22), October 17-21, 2022, Sydney, NSW, Australia. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3495243.3558265

1 INTRODUCTION

Standalone execution of problem-solving ML and TinyML
models on IoT devices produces a higher level of autonomy
and also provides an opportunity to avoid transmitting data
collected by the devices to the cloud for inference [1]. How-
ever, the core of a problem-solving ML model can be a Neural
Network (NN) with complex and large architecture that de-
mands a higher order of computational power and memory
than what is available on most IoT edge devices [2]. To al-
leviate various critical issues caused by the poor memory
specifications of IoT devices, before deployment the NNs are
deeply optimized [3] using various methods such as pruning,
quantization, sparsification, model architecture tuning, etc.

NNs can be viewed as a graph with defined data flow
patterns having an arrangement of nodes and edges, where

ACM MobiCom °22, October 17-21, 2022, Sydney, NSW, Australia
2022. ACM ISBN 978-1-4503-9181-8/22/10...$15.00
https://doi.org/10.1145/3495243.3558265

John G. Breslin

Data Science Institute
NUI Galway, Ireland
john.breslin@nuigalway.ie

Dan Jose
GMCI, General Motors
Limerick, Ireland
dan.jose@gm.com

nodes represent operators of a model, and graph edges repre-
sent the flow of data between nodes [4]. The operator nodes
in the model graph can be 2D convolutions (Conv2D), depth-
wise separable 2D convolutions (DepthwiseConv2D), Maxi-
mum Pooling (MaxPool), etc. These operator nodes can take
more than one input to produce an output. In such model
computation graphs, buffers hold the input, intermediate,
and output tensors before feeding them to the operators dur-
ing the model execution. After execution, the items in the
output buffer will be fed as input to the next operator, and the
input buffers can be reclaimed by removing the stored data.
In IoT devices, random access memory (RAM) or static RAM
(SRAM) is the only available fast read-write space [5]. So
the tensors generated during ML model execution are stored
here, increasing the RAM/SRAM consumption, which should
be aimed to reduce via applying optimization methods.

Based on recent empirical studies, many IoT devices, al-
though running the deeply optimized version of NNs fail due
to overheating, fast battery wear, and run-time stalling. The
prime reason for such failure causing issues is the exhaustion
of device memory (especially RAM/SRAM) [5]. Before de-
ployment, the execution memory requirement of ML models
is often unknown or calculated with less accuracy. i.e., there
will exist a few MB deviations in the calculations. When the
model is targeted to run on better-resourced devices like
smartphones and SBCs (like Raspberry Pi, Google Coral Dev
Board, BeagleBone Al and Jetson Nano), these few MB devia-
tions do not cause any issues. But when developers target the
small CPU or MCU based IoT devices (with only a few MB of
memory), the low-accuracy calculation can cause run-time
memory overflows and/or restricts the flashing of models on
IoT devices due to RAM/SRAM peaks. In such cases where
the target hardware fails to accommodate the ML model,
developers either have to alter the model architecture and re-
train to produce a lower memory-consuming model (waste
of GPU days and electricity) or upgrade the IoT device hard-
ware (loss of money). Hence, there is a need for a method
that developers can use during the ML model design phase
to exactly know how much memory their model demands
when executing on a device.

In this paper, we thereby present a Tensor Memory Map-
ping (TMM) method for ML and TinyML models, which can

https://doi.org/10.1145/3495243.3558265
https://doi.org/10.1145/3495243.3558265
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3495243.3558265&domain=pdf&date_stamp=2022-10-14

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

B Input tensors

a. Inception V1: Memory consumed by operators 0 — 29.

I Output tensors

b. SqueezeNet: Memory consumed by operators 0 - 25.

Sudharsan et al.

I Other tensors Peak memory requirement

@)

c. MobileNet V1: Memory consumed by all operators.

6000

™

5000

4000

3000

2000

Y-axis: SRAM usage (KB)

1000

convl/Relu

X-axis:

Operators in the computation graph of a neural network.

160

maxpool4/MaxPool

4

Figure 1: Accurate calculation and visualization of tensor memory requirement for each operator in neural network
computation graphs - performed using the proposed TMM method.

be realized to accurately estimate the memory consumed by
models during execution on IoT devices. The contributions
of this paper can be summarised as follows:

e TMM is compatible with a broad range of pre-trained
models like MicroNet, Wav2letter, MobileNet, ResNet,
NASNet, Tiny-YOLO, etc., that are available for off-the-
shelf usage in repositories such as ARM Model Zoo,
TensorFlow Hub, etc.

TMM can accurately calculate and visualize the tensor
memory requirement of each operator in the compu-
tation graph of the given NN model.

The results produced by TMM can enable researchers
and engineers to analyze multiple memory aspects to
obtain valuable insights that can guide them to cus-
tomize their ML model for highly reduced memory.

2 TMM METHOD DESIGN

We treat the internal of NNs as mathematical functions and
formalize it as tensor-oriented computation graphs since the
inputs and outputs of graph nodes/operators are a multi-
dimensional array of numerical values (i.e., tensor variables).
The shape of such a tensor is the element number in each
dimension plus the element data type. In the below equation,
we formally represent a NN as a Directed Acyclic Graph
(DAG), and we treat its execution as iterative forward and
backward propagation via the graph branches.

NNpac = ({opi} iy > {(opiopj) b Ape}it) (@

Here op; are the graph operators, (0p;, 0p;) is the connec-
tion to transmit output tensor from op; as an input to op;,

866

and there are m hyperparameters pi. Let the topological
ordering of operators be Seq = <opl-1, 0pjy, - ,op,-"> that ex-
tends from the first graph edge such that op;, <s.q op;, —

(opik, op,-j) ¢ NNpag, where Seq is the operator execution

sequence (developers can aim to find a memory friendly se-
quence). In this graph, when visiting a node op, we need to
calculate the memory it consumes to store (i) newly assigned
tensors, (ii) previously assigned but still in-use tensors, and
(iii) reserved buffers. To calculate the memory consumption
MnNp. of a graph NNpag, we give the following formulae.
We call the first two types of tensors unreleased tensors.

MnNp e = max {MF,, .., MF, (op;) | op; € NNpag} (2)

Here, MF,,,,, = >, MT(t) is the function to compute initial
memory consumption, MF,(op) = MU,.s(op) + MR(op) is
the current memory consumption, MUres (0p) = 2teu, T, (0p)
MT,(t) is the function that computes memory requirement
of unreleased tensors, MR(op) function returns memory size
of reserved buffers. The set of unreleased tensors are com-
puted using U,sTs,, and for a given tensor ¢, the function
MT;, is used to find its allocated memory size.

When running a model, its graph nodes are topologically
executed one by one. For example, the VGG and AlexNet
iteratively apply a linear sequence of layers to transform the
input data. But, the newer networks like Inception, NasNet,
MobileNet are non-linear as they contain branches. For these
networks, the input data transformation is performed in di-
vergent paths because the same input tensors are accessible
for processing by several layers and operators. Hence when
executing such branched models, the execution method has

Tensor Memory Mapping Method for TinyML

Table 1: Peak memory requirement of popular off-the-
shelf models - computed using the TMM method.

Model Pre-trained Peak RAM/SRAM
Task/Category Model Name Usage (KB)
MobileNetV1 98.304
SqueezeNet 6195.200
Image InceptionV1 1003.520
Classification MnasNet 1605.632
NASNet Mobile 4511.660
DenseNet 8429.568
Semantic DeepLabv3 5639.592
Segmentation
Pose Estimation PoseNet 6575.904
Text Detection EAST 5324.800

access to multiple operators. The Eqn 2 applies to models
trained using any ML frameworks (like TensorFLow, Py-
Torch) to estimate the graph memory consumption. It can
also calculate the memory requirements for branched NNs
that have multiple operators execution sequences.

3 TMM METHOD TESTING

The TMM method implementation is suitable for pre-trained
models (both quantized and unquantized versions). For each
of the operators in any given model graph, TMM computes
the total required RAM/SRAM. i.e., the space required to
store the input tensors + output tensors + other tensors, then
exports the detailed report in CSV format.

We start the testing by downloading popular pre-trained
TensorFlow Lite models (.tflite format) from TensorFlow Hub.
For comprehensiveness, the models selected belong to vari-
ous problem domains ranging from image classification to
text detection. Since the chosen models contain hundreds of
operators, the complexity of the TMM method will be high.
Hence, the testing is conducted on a standard Ubuntu laptop
with Intel (R) Core (TM) i7-5500 CPU @ 2.40 GHz. After
downloading, we pass the models to TMM and tabulate the
corresponding peak memory usage in Table 1.

TMM can also produce high-resolution images to visual-
ize the tensor memory requirement of each operator. For
example, when we feed the InceptionV1 model that contains
84 graph nodes/operators to TMM, it produces Figure 1. a.
(for brevity, out of 84, we show only 0 - 29 operators) along
with the detailed CSV report. Similarly, we test TMM on
SqueezeNet, MobileNetV1 and show the results in Figure 1.
b-c. from which the following can be observed:

o The operators that consume the peak on-device mem-
ory during execution can be identified. Here, such oper-

ators are circled @, which are maxPool 2a_3x3 /Max-
Pool in InceptionV1 (consume 1003.520 KB), fire4/concat

867

ACM MobiCom 22, October 17-21, 2022, Sydney, NSW, Australia

in SqueezeNet (consume 6195.200 KB), and in Mo-
bileNetV1 it is the conv2d_1_pointwise/Relu6 operator
(consume 98.304 KB).

Most of the operators inside the InceptionV1 model
consume high memory (RAM/SRAM) to accommodate
other tensors, whereas MobileNetV1 operators do not
contain other tensors at all.

The three nodes inside SqueezeNet (conv1/Relu, max-
pooll/MaxPool, fire4/concat) consume significantly
high memory than others. Such nodes can be replaced
with cheaper ones that perform the same tasks.

4 CONCLUSION

This paper presented TMM method for accurate calculation
and visualization of the tensor memory requirement of each
operator in the computation graph of any given neural net-
work model. TMM was tested by using it to analyze the
memory consumption of 9 popular models from the domain
of image classification, semantic segmentation, pose estima-
tion, and text detection.

The high-accuracy calculations produced by the TMM
method can be used by researchers and engineers when de-
veloping novel approaches for (i) efficient execution of deeply
compressed NNs on IoT devices/products, (ii) memory con-
servation by loading fewer tensors and tensors re-usage, (iii)
finding the cheapest-memory NN graph operators execution
sequence for networks with divergent data flow paths.

ACKNOWLEDGEMENTS

Bharath is the corresponding author of this article. This
publication has emanated from research supported in part
by a grant from Science Foundation Ireland under Grant
Number SFI/16/RC/3918 (Confirm), and also by a grant from
SFI under Grant Number SFI 12/RC/2289_P2 (Insight). For
the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript
version arising from this submission.

REFERENCES

[1] R David,]. Duke, A. Jain, V. Janapa Reddj, et al. Tensorflow lite micro:
embedded machine learning for tinyml systems. In Proceedings of
Machine Learning and Systems, 2021.

B. Sudharsan, J. G. Breslin, and M. L. Ali. Ml-mcu: a framework to
train ml classifiers on mcu-based iot edge devices. IEEE Internet of
Things Journal, 2021.

T. Chen, T. Moreau, Z. Jiang, et al. Tvm: an automated end-to-end
optimizing compiler for deep learning. In 13th USENIX Symposium on
Operating Systems Design and Implementation, 2018.

C. I Kanatsoulis and A. Ribeiro. Graph neural networks are more
powerful than we think. arXiv preprint, 2022.

B. Sudharsan, P. Yadav, J. G. Breslin, and M. I. Ali. An sram optimized
approach for constant memory consumption and ultra-fast execution
of ml classifiers on tinyml hardware. In IEEE International Conference
on Services Computing (SCC), 2021.

(2]

(3]

(4]
(5]

	Abstract
	1 Introduction
	2 TMM Method Design
	3 TMM Method Testing
	4 Conclusion

