
Toward an API-Driven Infinite Cyber-Screen for
Custom Real-Time Display of Big Data Streams

Mirco Soderi, Vignesh Kamath, John G. Breslin
Data Science Institute, National University of Ireland Galway, Ireland {firstname.lastname}@nuigalway.ie

Abstract—Graphical User Interfaces (GUI) and real-time in-
teractive Big Data charts play a key role in a wide variety of
Big Data applications. The software libraries that are available
at today are not suitable for displaying huge volumes of data in a
single chart, because they require all the data to be collected at a
single node. In this work, an innovative approach to the problem
is presented, that consists in using a network of cyber-devices
that is created and configured via API calls and that interfaces
with a Scala Spark server application through a multiplicity of
communication technologies, to produce and display a variety of
time-space-infinite Big Data stream visualizations, including line
plots, pie charts, histograms, that are updated at real-time as new
data come, without ever collecting the data or the charts markup
at a single node. The proposed approach characterizes for being
(i) Web-based, (ii) API-based, (iii) Cloud-based, (iv) portable, (v)
customizable/extendable, (vi) plug and play, and for relying on (i)
Node-RED, (ii) MQTT, (iii) Scala, (iv) Akka HTTP, (v) Spark, (vi)
Kafka, (vii) Docker. Remarkably, the same network used for Big
Data visualization can be reconfigured in a matter of milliseconds
and used for Big Data (streams) filtering, transformation, merge,
analytics, and for training Machine Learning models, storing
trained models on a Cloud storage, using stored models for one-
shot or stream predictions, and much more. Although being at an
advanced stage, we consider this research as a work in progress,
since an extensive benchmarking and application to variegated
real-world scenarios are still to be carried out.

Index Terms—Web, Graphical User Interface, Dashboard, Plug
and play, Big Data chart, Event stream, API, Micro-service,
Portability, Docker, Scala, Spark, Kafka, MQTT, Node-RED

I. INTRODUCTION

While opening to great opportunities, the increasing degree

of automation in new generation industries, also said the Smart

Factories [1], poses a number of compelling challenges. One

of these is the need to rethink human-computer interfaces

[2] to allow operators to timely and effectively supervise

the production plant and take action in such a fast-changing

environment. Graphical User Interfaces (GUI) and real-time

interactive Big Data charts play a key role in this, but they need

to be wisely integrated with the Cloud-based data storage and

streaming technologies and tools [3] [4], for not to constitute

a bottleneck.

In this work, a software architecture is presented that

is aimed at displaying in a single chart, updated at real-

time, arbitrary volumes of data flowing from event streaming

servers. This is made possible by an innovative usage of Spark

This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant Number SFI/16/RC/3918
(Confirm). For the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript version arising
from this submission.

Structured Streaming [5] that allows to retain on the Cloud

all the data that flow from the streaming server, and produce

all the necessary HTML/SVG/JS markup still on the Cloud

by means of tail recursive functions. The markup is then

distributed to Web clients via socket. This way, charts are

displayed without ever collecting or storing the dataset or the

markup at any (high-resource) single node.

The proposed architecture characterizes for being (i) Web-

based, that allows access from a variety of devices without

any specific software; (ii) API-based, so that data sources,

chart sizes, possible time windows, and much more, can be

configured from remote in a matter of milliseconds by human

operators and/or automated software; (iii) Cloud-based, that

enables displaying potentially infinite volumes of data in every

single data chart; (iv) portable, since all the components run

in dedicated Docker containers; (v) customizable, since the

Scala modules that produce the different types of chart are

open-source, and potentially unlimited custom modules can be

added to the Artificial Intelligence Server; (vi) plug and play,

since it is not necessary to restart the Artificial Intelligence

Server to load new modules or customize the existing ones.

An extensive review of the approaches and tools available

at today for drawing Big Data charts has been conducted,

and it was found that the (i) Swiftvis2 [6] and Vegas-viz

libraries integrate with Spark through implicit conversions

that encompass the collection of the whole dataset at the

driver node, and (ii) Plotly, Breeze-viz, NSPL, scala-chart and

WISP do not integrate with Spark, so data collection and

transformation are once again needed. As a result, none of

them is an option.

Remarkably, the architecture that is presented in this work

can be today [9] expanded, reduced, reconfigured, in a matter

of milliseconds, via API calls, to be converted to other usages.

The paper is structured as follows. The research question,

state of the art, and newly proposed approach, are introduced

in Section I. The architecture is described in Section II. The

tasks that are currently implemented and ready to use for

producing a variety of data charts are presented in Section III.

A proof of concept is presented in Section IV. Conclusions

are drawn in Section V.

II. ARCHITECTURE

The complete software architecture is represented in Fig. 1.

It includes both the core components that play a pivotal role in

the chart production and distribution (represented on the right

of the figure), and some auxiliary components (on the left) that

153

2022 IEEE International Conference on Smart Computing (SMARTCOMP)

2693-8340/22/$31.00 ©2022 IEEE
DOI 10.1109/SMARTCOMP55677.2022.00036

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t C
om

pu
tin

g
(S

M
AR

TC
O

M
P)

 |
 9

78
-1

-6
65

4-
81

52
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SM
AR

TC
O

M
P5

56
77

.2
02

2.
00

03
6

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on August 03,2022 at 08:42:08 UTC from IEEE Xplore. Restrictions apply.

are very unlikely to be found in a production deployment, but

that allow to develop, test, and showcase existing and new

visualizations very conveniently.

The architecture essentially consists of a number of Service

Nodes [8] represented as red boxes, and of an Artificial

Intelligence Server (AIS) [9] represented as a cyan cloud.

A. Core components

In this paragraph, the architecture components are described

with reference to the line plot. Anyway, the same apply to

any stream visualization task, and most considerations even

apply to any AIS stream task. Looking at the right side of

Fig. 1, from top to bottom, we can see that API calls are

made to the Service Node to configure, start and stop the chart

production. The Service Node makes corresponding API calls

to the AIS. Once started, the StreamVizLine task subscribes to

the configured Kafka topic, and for each incoming message the

updated markup is sent to the Service Node via Web socket,

to be published to a configured MQTT broker and topic. The

html Service Node listens to that topic and relies on node-red-

contrib-dashboard for displaying the markup.

Designed to work in low-bandwidth situations, MQTT is

now the leading open source protocol for connecting IoT de-

vices. Kafka is the most popular and the only event streaming

server supported by Spark.

B. Auxiliary components

Looking at the left side of Fig. 1, from bottom to top,

the inject Service Node exposes a POST API and publishes

the received bodies to a configured MQTT broker and topic.

Through the broker, the data flow to a http Service Node,

which makes an authenticated API call to write them to the

file system of the AIS, in the portion reserved to the Service

Node Θ.

Now, from top to bottom, API calls are made to configure

and control the Service Node Θ. In particular, the configured

task is ”FileStream”. This task monitors the file system and

publishes the changes to a configured Kafka topic, that is

the same from where the StreamVizLine task is configured

to listens.

III. ARTIFICIAL INTELLIGENCE SERVER TASKS

The task that is currently available and ready-to-use in the

AIS for producing the markup for a line plot that displays

a Big Data stream coming from a Kafka topic is named

StreamVizLine. It generates a plot where the time is on the

X-axis, the values are on the Y-axis, and a line is drawn for

each key seen in the input stream. The example plot produced

in the proof of concept described in Section IV is represented

on the bottom right corner of Fig. 1.

A Spark Structured Streaming query with grouping, and

a set of tail recursive functions, stand at the basis of the

implementation, and allow to store all the data on the Cloud,

and produce the markup for the chart from the raw data still

on the Cloud. This is key to produce charts where data sets

of arbitrary size are represented without relying on any high

resource device. This same approach is adopted also for pie

charts, and histograms.

When the StreamVizPie AIS task is used, a separated pie

chart is displayed for each different key that is seen in the

messages that come from the event streaming server, and a

slice is depicted for each seen value. The size of the slice

depends of how many times the value has been seen, with

respect to the others bearing the same key. The pie chart

produced in the proof of concept described in Section IV is

represented in Fig. 2.

If the StreamVizHist AIS Task is used, a separated his-

togram is displayed for each different key that is seen in the

messages that come from the event streaming servers. The

number of the bins (columns) to be drawn in the histogram

is accepted as a configuration parameter. The height of each

column depends on how many values are seen that fall in the

bin/column boundaries. The histogram produced in the proof

of concept described in Section IV is represented in Fig. 3.

IV. PROOF OF CONCEPT

For setting up a proof of concept, refer to the GitHub

repository1 associated to this paper. Create a new user-defined

Docker bridge/network, and name it ExampleNetwork. Then,

create the following Service Nodes mapped to ports from

2130 onward: VizHtml, VizAI, VizStreamWriter, VizStream-

Input, VizAIInput, VizAI2, VizAI2Input. Then, use the ar-

tifacts available in the GitHub repository for creating and

running (i) a mozilla/sbt container named AISv2; (ii) Node-

RED containers named BrokerACL, ServiceNodeACL, and

TransformationLibrary, mapped to ports from 1990 to 1992;

(iii) an emqx 4.3.2 container named ExampleBroker. Then,

use the docker-compose.yml file to have a single node Kafka

server up and running in your local Docker engine for demo

and development purposes. All containers must be connected

to the same Docker network. Finally, go through the Postman

collection2. Connect to https://localhost:2130/ui to display the

generated visualizations.

V. CONCLUSIONS

In this work, a software architecture for Big Data stream

visualization as a Service has been presented. Motivations,

involved technologies and tools have been presented in Section

I. The architecture has been described in Section II. A variety

of ready-to-use modules for composing a range of different

data charts has been presented in Section III. A proof of

concept has been presented in Section IV, including directions

for creating the necessary Docker containers, configuring

them, and making appropriate API calls to see the architecture

in operation. In summary, it has been outlined a way to display

Big Data in customizable charts refreshed at real-time and

managed via API (so suitable for reconfigurable manufacturing

[10]), without relying on high-resource nodes.

1https://github.com/mircosoderi/Toward-an-API-driven-infinite-cyber-
screen-for-custom-real-time-visualizations-of-Big-Data-streams

2https://documenter.getpostman.com/view/16531967/UVeCQTfA

154

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on August 03,2022 at 08:42:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The complete software architecture

Fig. 2. Pie charts (proof of concept)

Fig. 3. Histograms (proof of concept)

REFERENCES

[1] Hozdić, Elvis. ”Smart factory for industry 4.0: A review.” International
Journal of Modern Manufacturing Technologies 7.1 (2015): 28-35.

[2] Jakobs, Eva-Maria, et al. ”Not ready for industry 4.0: Usability of
CAx systems.” international conference on applied human factors and
ergonomics. Springer, Cham, 2017.

[3] Kanagachidambaresan, G. R. ”Node-Red Programming and Page GUI
Builder for Industry 4.0 Dashboard Design.” Role of Single Board
Computers (SBCs) in rapid IoT Prototyping. Springer, Cham, 2021. 121-
140.

[4] Jwo, Jung-Sing, Ching-Sheng Lin, and Cheng-Hsiung Lee. ”An In-
teractive Dashboard Using a Virtual Assistant for Visualizing Smart
Manufacturing.” Mobile Information Systems 2021 (2021).

[5] Armbrust, Michael, et al. ”Structured streaming: A declarative api
for real-time applications in apache spark.” Proceedings of the 2018
International Conference on Management of Data. 2018.

[6] Lewis, Mark C., and Lisa L. Lacher. ”Swiftvis2: Plotting with spark
using scala.” International Conference on Data Science (ICDATA’18).
Vol. 1. No. 1. 2018.

[7] Leitner, Stefan-Helmut, and Wolfgang Mahnke. ”OPC UA–service-
oriented architecture for industrial applications.” ABB Corporate Re-
search Center 48.61-66 (2006): 22.

[8] Soderi, Mirco, et al. ”Ubiquitous System Integration as a Service in
Smart Factories.” 2021 IEEE International Conference on Internet of
Things and Intelligence Systems (IoTaIS). IEEE, 2021.

[9] Soderi, Mirco, et al. ”Advanced Analytics as a Service in Smart
Factories” IEEE 20th International Symposium on Applied Machine
Intelligence and Informatics (SAMI 2022). IEEE, 2022. (forthcoming)

[10] Bi, Zhuming M., et al. ”Reconfigurable manufacturing systems: the state
of the art.” International journal of production research 46.4 (2008): 967-
992.

155

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on August 03,2022 at 08:42:08 UTC from IEEE Xplore. Restrictions apply.

