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Abstract: Huge advances in peer-to-peer systems and attempts to develop the semantic web have
revealed a critical issue in information systems across multiple domains: the absence of semantic
interoperability. Today, businesses operating in a digital environment require increased supply-
chain automation, interoperability, and data governance. While research on the semantic web and
interoperability has recently received much attention, a dearth of studies investigates the relationship
between these two concepts in depth. To address this knowledge gap, the objective of this study is to
conduct a review and bibliometric analysis of 3511 Scopus-registered papers on the semantic web and
interoperability published over the past two decades. In addition, the publications were analyzed
using a variety of bibliometric indicators, such as publication year, journal, authors, countries, and
institutions. Keyword co-occurrence and co-citation networks were utilized to identify the primary
research hotspots and group the relevant literature. The findings of the review and bibliometric
analysis indicate the dominance of conference papers as a means of disseminating knowledge and
the substantial contribution of developed nations to the semantic web field. In addition, the keyword
co-occurrence network analysis reveals a significant emphasis on semantic web languages, sensors
and computing, graphs and models, and linking and integration techniques. Based on the co-citation
clustering, the Internet of Things, semantic web services, ontology mapping, building information
modeling, bioinformatics, education and e-learning, and semantic web languages were identified as
the primary themes contributing to the flow of knowledge and the growth of the semantic web and
interoperability field. Overall, this review substantially contributes to the literature and increases
scholars’ and practitioners’ awareness of the current knowledge composition and future research
directions of the semantic web field.

Keywords: semantic web; interoperability; ontology; internet of things; semantic web services;
bioinformatics; building information modeling; bibliometric
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1. Introduction

Globalization, collaboration, and co-operation have significantly altered the software
industry and led to the sharing of knowledge in vast, open settings [1]. A single human
user cannot develop competencies and knowledge unless he or she collaborates with
other human users and businesses. Consequently, the difficulty of knowledge represen-
tation is elevated to a central position [2,3]. Any user, including software agents, robots,
smart devices, and humans, should use, generate, and exchange knowledge in expan-
sive and heterogeneous environments. A common language and structure for expressing
knowledge are utilized to address this issue. The semantic web as an infrastructure of
computer-interpretable structured information [4–6] is a new technological development
for describing and storing knowledge on the web [7,8].

The semantic web arose from the desire to provide query and comparison capabilities
for all World Wide Web data standardized by the World Wide Web Consortium (W3C),
allowing it to link URLs to resources and classify specific knowledge domains. Semantic
web technology derives meaning from a structured hierarchy of data classification, like an
encyclopedia’s collective volumes, and is used to develop knowledge domains. Classifi-
cation techniques for unstructured data are the initial step toward defining quantitative
and qualitative relationships between data so that they can be queried and analyzed using
semantic web technologies. According to [9], the semantic web is an extension of the
existing web, in which knowledge is assigned a well-defined and unambiguous meaning
through ontologies [10,11]. Ontologies are essential for achieving interoperability, as they
provide structured vocabularies with a formal specification of shared concepts [12–14].
By providing a shared understanding of a particular topic of interest, ontologies aid in
overcoming the problems caused by semantic heterogeneity. However, the most significant
barrier to data integration and interoperability continues to be matching ontologies. The
research on the semantic web demonstrates how ontologies can be utilized to resolve
interoperability issues at the application level. Consequently, ontologies have been used
during the discovery process to express the capabilities of the services. Similarly, ontologies
improve user communication by defining the semantics of the symbolic representations
used in the communication process.

Numerous scholars have examined the applications of semantic web technologies in
various fields. For instance, in education, ref. [15] argues that the semantic web’s reliance
on ontologies that provide machine-interpretable information can facilitate the realization
of “anybody, anytime, anywhere” learning. Similarly, ref. [15] proposes developing a
framework for personalized e-learning based on domain ontology and aggregate user
profiles. The entire procedure is divided into two stages: offline, which includes data
preparation, ontology development, and usage mining; and online, which includes the
production of recommendations. The authors of [16] describe 18 ontologies based on
different states of human behavior such as emotion, needs, and mood. According to the
authors, ontology is the actual representation of knowledge in a format that a computer
can easily interpret. The authors of [17] describe the evolution of linked data on the web
and its applications. The authors illustrate several web-based data publication methods.
Recognizing the interoperability issue between systems and applications, ref. [18] explains
how to effectively leverage semantic web technologies (SWTs) to address security and
interoperability issues. In addition, some academics have conducted research on semantic
web applications in knowledge discovery and data mining. These include [19,20], which
summarize research on semantic web mining and demonstrate the efficacy of semantic web
in enhancing web mining results. Similarly, ref. [21] examines research on the semantic-
based solution for web mining and argues that the semantic web can simplify the extraction
of pertinent documents.

Academics have also investigated semantic web technologies in the Internet of Things
(IoT) and artificial intelligence (AI) systems. To illustrate, ref. [22] examines recent devel-
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opments in the construction of knowledge bases and discusses knowledge-based fault
diagnosis for industrial IoT systems. The authors of [23] discuss semantic interoperability
in the web of things and recommend ontology learning and alignment techniques. Simi-
larly, ref. [24] proposes a use case diagram for the alignment of IoT entities and discusses
ontology’s role in these entities’ abstraction and semantic integration. The authors of [25]
address the issues of limited depth and expressiveness in current ontologies by developing
an enhanced reference generalized ontological model based on a reference architecture
model for Industry 4.0.

Using an AI-related artificial neural network (ANN) model, ref. [26] proposes a novel
algorithm for ontology matching. The authors of [27] explain the benefits of combining
ANNs and semantic web technologies. In addition, ref. [28] emphasizes the capacity of the
semantic web to accommodate computational intelligence, such as fuzzy logic, ANN, and
evolutionary computation. According to the authors, supervised and unsupervised ANNs
can be used for ontology alignment and learning. In the semantic web, fuzzy logic can
also improve query results. Semantic web technologies can also be used to address cloud
computing problems. In this regard, ref. [29] provides an overview of semantic information
processing at the web scale for cloud computing. The authors of [30] also analyze the areas
where semantic models can benefit cloud computing. Their findings indicate that semantic
models have three application areas in cloud computing: functional and nonfunctional
definitions, data modeling, and service prescription enhancement. Finally, ontologies
for cloud computing were reviewed by [31]. The authors summarized research into four
categories: cloud services discovery and selection, cloud interoperability, cloud resources
and service prescription, and cloud security.

As research fields become increasingly complex and mature, scholars should periodi-
cally evaluate the knowledge built and accumulated to identify new contributions, capture
trends and research traditions, comprehend which themes are discussed and the theories
applied, and propose future research directions [32]. Knowledge domain visualization [33]
aims to reveal hidden patterns in the formation and structure of scholarly knowledge
through graphical illustrations [34]. This is accomplished by mapping the entire domain
of scientific knowledge pertaining to the semantic web and interoperability. Even though
bibliometric techniques have been utilized in a variety of fields to examine the development
of knowledge [35–39], no prior research has examined the intellectual structure of research
at the intersection of the semantic web and interoperability. We believe the current study
makes significant contributions to the existing body of knowledge by bridging this gap.
First, we argue that this is the first study to use bibliometric techniques to review semantic
web and interoperability research by analyzing information about authors, studies, and
keywords. By analyzing bibliometric networks, dynamics, and eminent scholars in this
knowledge field, we contribute to the discussion on the semantic web’s future directions,
opportunities, and emerging challenges.

Second, we argue that the enormous amounts of data collected instantaneously in
global business activities have the potential to be transformative in improving the human
condition and provide solutions to many global and local issues concerned with a fair and
equitable distribution of resources, wealth generation, and opportunity. However, the data
need to be standardized through standards such as the W3C [40]. This is because data
utilization requires sources to be linked or interoperable to be accessible by end-users. This
standardization and interoperability can be addressed by developing the knowledge graphs
used by organizations such as Google, Uber, Amazon, Facebook, and Netflix. A novel
approach is to create a Decentralized Knowledge Graph (DKG), which has been made
possible by combining graph technology and blockchain technology. Blockchain provides
a consensus layer that verifies the authenticity of the data entering the DKG. It is gated
by an identifier of source (i.e., data provenance) and conforms to W3C standards. Smaller
digital technology firms such as Slovenia-based OriginTrail have developed an open-
source ecosystem comprising tools and protocols that connect blockchain to blockchain
and blockchain to legacy. While OriginTrail has numerous case studies [41,42] they have
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migrated towards implementing a DKG with full compliance to W3C and GS1 standards
in supply chains. A significant development is the transition from stove-piped data held
in organizational siloes to interoperable Web3-based ecosystems where multiple datasets
can be discovered, queried, and integrated. Thus, this paper developed from the need
to understand how the World Wide Web is currently using data and to define how the
semantic web can use it. The research presented here will help define how the future
development of a DKG can evolve using semantic web technology, and we posit that
DKGs will be transformative for industrial and social systems. Finally, newcomers to this
intriguing and relevant discipline will benefit from the study’s self-contained nature.

More specifically, in this study, we aim to answer the following research questions:

1. How has semantic web and interoperability research evolved since its inception?
2. What countries are at the intersection and forefront of semantic web and interoper-

ability research?
3. Which scholars are the most contributive to the field?
4. What kinds of collaborative relationships exist between countries and institutions in

this field?
5. What is the present status of research, and what are the future directions in the

semantic web and interoperability field?

The paper continues as follows. Section 2 presents the methodology used in the
review. In Section 3, the descriptive results are analyzed, followed by the results from the
network analysis in Section 4. In Section 5, we perform a content analysis based on co-
citation clustering, and next, we discuss the review’s findings, its limitations, and potential
suggestions for future research. Finally, we briefly conclude the work.

2. Methodology
2.1. Research Methods

Arguably, the primary objective of a literature review is to identify, specify, map, and
evaluate the current body of relevant literature in a systematic, objective, and replicable
manner [43–46]. According to [47], conducting a structured literature review can ensure
that a diverse range of publications and methodologies are covered and that they are
analyzed thoroughly and in detail. The bibliometric approach was selected in this study
for several reasons. First, the bibliometric approach is more reliable and scalable than other
techniques for text analysis (e.g., content analysis) [48–50]. Second, bibliometric analysis
enables researchers to better understand the subject by examining the relationships between
selected papers, references, keywords, and co-citations, thereby providing a comprehensive
picture of a particular research field [51–53]. Thirdly, bibliometric tools enable researchers
to generate meaningful results and intuitively visualize the most significant cluster of
research topics within a knowledge domain [54].

2.2. Data Collection

A preliminary search was conducted in the Scopus database on 1 June 2021, using the
following search terms: interoperab* and “semantic web”. In comparison to other academic
databases (e.g., Web of Science), Scopus is well-known for its extensive coverage [55] and
intuitive tools that enable researchers to efficiently obtain and compile references from a
sample of documents [56]. Additionally, Scopus was chosen for its dependability and the
volume of scholarly publications it indexes, including journals published by prestigious
publishers such as Elsevier, Springer, Emerald Insight, IEEE; and, Taylor and Francis. To
begin, the title, abstract, and keywords fields were filled with the search query. Three
thousand six hundred and forty-one (3641) publications were returned as the initial result.
The returned dataset was filtered to exclude publications from the incomplete year 2021
and include only English-language documents to ensure a consistent set of publications.
Additionally, duplicated publications or publications that lacked bibliographic data (e.g.,
abstracts, keywords, or authors’ names) were omitted. This search yielded 3511 publications
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extracted from Scopus for additional analysis. These publications’ references and citations
were saved in CSV and txt formats suitable for direct text mining.

2.3. Initial Statistics for the Analysis

Regarding the initial statistics, we began by analyzing the evolution of research at
the intersection of interoperability and the semantic web by plotting the selected set of
publications according to their annual distribution. Following [36], we used several quanti-
tative indicators to determine the impact and quality of research, including publications per
author, citations per publication, and geographic origin of publication. To make data entry
and processing more manageable, we analyzed the bibliometric data using the software
package BibExcel. The strength of BibExcel comes from its compatibility with a wide vari-
ety of academic databases, including Scopus, and visualization tools, such as VOSviewer
and Gephi.

Authors who receive many citations are considered influential in their respective
research fields. To ascertain the authors’ contribution to interoperability and the semantic
web, we extracted information about the authors, their affiliations, and their frequency of
appearance. The authors’ affiliations were imported into BibExcel to identify the leading
academic institutions and the countries in which they are located. To better understand
the emphasis of the research on interoperability and the semantic web, we conducted a
keyword analysis to determine the most frequently used term in the sample. It is critical to
track citations and understand their trends to assess the impact and influence of research.
The number of citations a publication receives indicates its degree of importance within
the scholarly community, which is one possible indicator of the impact and influence of
research [57]. We calculated the number of citations received by each publication from other
publications in our sample, considering the frequency of local citations. The global citation
count was also used to estimate the number of citations received by a single publication
in Google Scholar. The latter is the most comprehensive academic database available,
including Scopus, Web of Science, Springer, and many others. The difference between a
publication’s local and global citations reflects the level of interest generated within and
across research fields.

2.4. Network Analysis

Following an analysis of descriptive statistics, the intellectual landscape of research at
the intersection of interoperability and the semantic web was represented by networks of
various entities, including countries, academic institutions, and authors. VOSviewer was
used to create these networks from the extracted bibliographic sources. Additionally, we
conducted an in-depth analysis of the trends and relationships between the publications
in our sample. We performed network analysis on bibliometric data and visualized the
network structure of interoperability and the semantic web using the visual tool Gephi.
The strength and significance of a network connection between two publications can be
explained by the co-occurrence of keywords in the same publication or the co-citation of
the same publication [58].

The visualization of co-citation networks is an example of exploratory data analysis
(EDA) that utilizes graph theory to examine the data structure [59]. A co-citation network
comprises a set of nodes that represent publications and a set of edges that represent the
co-occurrence of publications in the network’s reference list [60]. Co-cited publications are
those that appear in the reference lists of other publications. As a result, publications A and
B are co-cited if publication C cites both publications A and B. It has been demonstrated
that publications that are frequently cited together by other publications are more likely
to be related and thus to contain similar content or subject matter [61]. This approach
was used to map and categorize the literature on interoperability and the semantic web.
Since a highly cited paper might not be highly prestigious, prestige is a critical impact
indicator [62]. In this regard, PageRank was introduced to measure both the citability and
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prestige of a paper [63]. In this study, we identified the leading ten papers from each cluster
by their PageRank measure to ensure the analysis of high-quality papers in each cluster.

Gephi is used to generate the co-citation network from the BibExcel data. We used
a procedure to generate the co-citation network cluster. For example, prior to using
Gephi, bibliometric data were pre-processed, and a citation frequency threshold of 50 was
established. Caution was exercised in this step, as a low threshold value may produce
an excessive number of clusters, while a high threshold value may result in over-filtering.
Additionally, to create a meaningful visualization, a simple and interpretable map was
generated using the force atlas layout in Gephi, which is used to reposition the nodes in the
network in a more simplistic and readable manner. Each node in the network represents a
publication, and each connection between two nodes represents a co-citation relationship.
We manually adjusted the hierarchies, node sizes, and other settings to generate the co-
citation network (e.g., node color).

We conducted a keyword co-occurrence network analysis to better understand the
interoperability and semantic web research. Like a co-citation network, a keyword co-
occurrence network illustrates the co-occurrence of keywords and their relationships [64].
According to [65], analyzing this network enables researchers to identify research top-
ics and document the transition of research frontiers within a particular field of study.
If two keywords appear more frequently in the same publications, they have a stronger
relationship. By creating the keyword co-occurrence network, we hoped to analyze the
core content of the keywords used and better understand the research structure at the
intersection of interoperability and the semantic web. VOSviewer was used to visualize
the co-word network because it is highly recommended and compatible with the BiBExcel
software package. The node’s size corresponds to the frequency of each keyword, while the
thickness of the edges indicates the frequency with which each pair of keywords appears
in publications. This approach was used in the current study to describe and analyze the
keyword co-occurrence network. Visualizing the associations between keywords made it
possible to deduce the topics related to interoperability and the semantic web.

3. Analysis of Descriptive Results

Figure 1 demonstrates the publication trend since the year 2000. Between 2003 and
2006, the number of studies increased dramatically, and approximately 83% of publications
were published after 2006. The year with the most publications was 2010, with 243. The
first four papers published in 2000 concentrated on the roles of XML and RFD in the
development of semantic webs [66,67]. A significant finding was that the first decade
(2000–2010) of interoperability and semantic web research can be considered the infancy
stage. The second decade (2011–2020) saw a steady level of interest in this subject, as
indicated by the slight ups and downs in the number of publications. This period may be
referred to as the stabilization and consolidation stage, as growth appears to have reached
maturity and saturation during the second decade.

The distribution of publications by type is shown in Table 1. As can be seen, conference
papers dominate the list, accounting for more than 60% of all publications selected. This
is unsurprising, given that conference papers represent researchers’ most recent accom-
plishments and indicate emerging research trends and the immediacy of personalized peer
feedback [68]. As represented by journal articles, peer-reviewed literature is second on the
list. Additionally, the sample includes 113 book chapters and 108 conference reviews.

Table 2 lists the top fifteen journals that have published articles on interoperability
and the semantic web. These fifteen journals published 207 articles, accounting for nearly
21% of the 997 journal articles identified. The remaining 79% of the articles were dispersed
across multiple outlets. The International Journal of Semantic Web and Information Systems
and the International Journal of Semantic Web published 18 articles. The International Journal
of Metadata Semantics and Ontologies and the Journal of Biomedical Informatics published
16 articles. By and large, these journals appear to be devoted to semantics and ontologies.
Additionally, IEEE Intelligent Systems, Biomedical Informatics, Automation in Construction,
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and Expert Systems with Applications have all published extensively on the subject. This
group of journals appears to be devoted to computer science and the development of
interoperable systems. As seen in the table, the core journals that play a critical role
in knowledge dissemination are primarily concerned with semantics and information
technology. Despite growing interest in these fields, it may take time for related fields
such as social science, business, and management to pay attention. As a result, additional
interdisciplinary research is required.
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Table 1. Distribution of publications according to type.

Document Type Number

Conference Paper 2273
Article 920

Book Chapter 113
Conference Review 108

Review 77
Book 12

Editorial 3
Short Survey 2

Letter 1
Note 1

Undefined 1

Table 2. Top 15 most relevant journals.

Journal Number of Publications

International Journal on Semantic Web and Information Systems 18
Semantic Web 18

International Journal of Metadata Semantics and Ontologies 16
Journal of Biomedical Informatics 16

IEEE Intelligent Systems 15
Journal of Biomedical Semantics 15

Sensors (Switzerland) 13
Automation in Construction 12

Expert Systems with Applications 12
Journal of Universal Computer Science 12
Cataloging and Classification Quarterly 9

IEEE Internet Computing 9
Journal of Information Science 9

Journal of Web Semantics 9
IEEE Access 8

Journal of Theoretical and Applied Information Technology 8
Knowledge Based Systems 8
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The top twenty academic institutions that contribute to interoperability and the se-
mantic web are listed in Table 3. Authors from the United States and Germany contributed
the most publications to the list, with 545 and 331 publications, respectively. The United
Kingdom is third with 322 publications, while Italy is fourth with 303. China, India, and
Brazil have all contributed significantly to the literature, publishing 250, 109, and 91 papers,
respectively. The remaining papers in our dataset were contributed by scholars from
Australia and several European and Asian countries.

Table 3. Top 20 most productive countries.

Country Number of Publications

United States 545
Germany 331

United Kingdom 322
Italy 303
Spain 295
France 259
China 250

Netherlands 162
Greece 142
Austria 130
Ireland 121
Canada 115

India 109
Australia 107

Brazil 91
Finland 90
Belgium 84

South Korea 79
Portugal 77

Switzerland 63

4. Results from Network Analysis

The international collaboration network for interoperability and semantic web research
is depicted in Figure 2. The radius of each node in this network represents the number of
publications in that country, while the edge represents the level of collaboration between
countries. We can see from the network that the most productive country, the United States,
has a strong research collaboration with the United Kingdom, Italy, and Switzerland. The
USA also collaborates with countries such as Slovenia, Bulgaria, Denmark, and Austria on
a smaller scale. In short, while researchers in the fields of interoperability and the semantic
web are distributed globally, Africa and Asia continue to be underrepresented. This could
be due to several factors, including the isolation of the scholars in these continents from the
international scientific community (e.g., conferences), the possibility that their publications
are in non-indexed journals, or that their research activities are being conducted in their
mother tongue. International collaboration and joint research efforts with scholars from the
most productive countries are therefore required to improve the quality of research output
and advance the field of interoperability and the semantic web.

The top twenty academic institutions that contribute to the literature are listed in
Table 4. Scholars published the highest number of articles at the National University of
Ireland Galway. Compared to the top contributors in Table 5, the Open University, the CNRS
Centre National de la Recherche Scientifique, and Stanford University are all represented
by the most prolific authors: Domingue J., Gyrard A., and Dumontier M., respectively.
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The network of institutional collaboration in the field of interoperability and the
semantic web is depicted in Figure 3. The node size is proportional to the number of
publications produced by each institution, whereas the thickness of the edges indicates the
level of research collaboration. The network demonstrates that institutions are assigned to
several research partitions based on the color scheme used. The largest cluster is red, with
32 institutions spread across North America, Europe, and Asia. Universidad Politécnica
de Madrid is the most productive institution in this group, followed by Vrije Universiteit
Amsterdam and Universiteit Gent. The green cluster is the second largest. The most
productive institution is the National University of Ireland Galway, followed by the Digital
Enterprise Research Institute and the University of Southampton. (The Digital Enterprise
Research Institute was a research institute at the National University of Ireland Galway,
from 2003 to 2013. Between 2003 and November 2007, the Digital Enterprise Research
Institute brand was also shared by the University of Innsbruck.) The blue cluster is the
third largest, consisting of the most productive institution, the Consiglio Nazionale delle
Ricerche, and the Alma Mater Studiorum Universita di Bologna. While the network demon-
strates strong collaboration among UK universities, we observe only sporadic research
collaboration with other countries. To summarize, this type of research collaboration among
institutions working in the field of interoperability and the semantic web is indicative of
the knowledge domain’s fragmented nature and a dearth of research collaboration among
individual scholars.
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Table 4. Top 20 most productive institutions.

Institution Number of Publications

National University of Ireland Galway 69
Universidad Politécnica de Madrid 63
Digital Enterprise Research Institute 46

CNRS Centre National de la Recherche Scientifique 41
Consiglio Nazionale delle Ricerche 38

Alma Mater Studiorum Università di Bologna 36
The Open University 35

Vrije Universiteit Amsterdam 34
University of Southampton 34

Universiteit Gent 33
Insight Centre for Data Analytics 31

The University of Manchester 30
Stanford University 28
Wuhan University 27

Karlsruhe Institute of Technology 27
Technische Universitat Wien 26

Technische Universiteit Eindhoven 26
University of Innsbruck 25

Aalto University 24
Universidad de Murcia 23

Universidad Carlos III de Madrid 23
Aristotle University of Thessaloniki 23
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The authors listed in Table 5 are the most prolific contributors to the pertinent literature.
As can be seen, Domingue J. and Gyrard A. co-authored 19 papers, placing them among the
top authors with the most publications. It is worth noting that Domingue J. and Dietze S.
and Gyrard A. and Serrano M. co-authored many of these articles. Almost all of these
researchers have experience with semantic web technologies. For instance, Domingue J.
frequently publishes his work in books and at conferences, focusing on the semantic web’s
suite of technologies, including semantic web services. The proliferation of his papers may
be attributed to the potential benefits of semantic web services and the critical nature of
interoperability in automating the use of information and ensuring its reliable exchange
between service providers and customers. Other authors, on the other hand, tend to
construct an ontology for the Internet of Things (IoT). Gyrard A., for example, conducts
a thorough analysis of current IoT-related ontologies, proposes solutions for semantic
interoperability across multiple testbeds, and designs interoperable ontology-based IoT
applications. The diverse methodologies and interests of the most productive authors,
in general, reflect the interdisciplinary and rich nature of interoperability and semantic
web research.

Table 5. Top 20 most productive authors.

Author Number of Publications

Domingue, J. 19
Gyrard, A. 19

Dumontier, M. 17
Sheth, A. 17
Dietze, S. 16

Bassiliades, N. 15
Decker, S. 15

Serrano, M. 15
Fernández-Breis, J.T. 14

Mannens, E. 14
Verborgh, R. 14

Christodoulakis, S. 13
Gómez-Pérez, A. 13

Piedra, N. 13
Thuraisingham, B. 13

Breslin, J.G. 12
Loia, V. 12

Terziyan, V. 12
Wilkinson, M.D. 12

Finin, T. 11
García-Castro, R. 11

O’Sullivan, D. 11

The author collaboration network in the field of interoperability and the semantic
web is depicted in Figure 4. The size of each node in this network corresponds to the
total number of publications by each author. In contrast, the thickness of the edges is
proportional to the number of co-authored publications. A highly dispersed network is
indicative of the authors’ lack of close collaboration in the field under study. The authors
are clustered into 60 research communities via the network. These authors are either
part of a few scattered co-authorship teams or are entirely disconnected from the other
authors, implying that co-authorship is uncommon in this research field. As a result, the
most productive authors are more likely to be associated with dense communities with
weak co-authorship associations outside their scientific neighborhoods. By and large, the
structure of the co-authorship network in the field of interoperability and the semantic web
is comparable to that of other networks in other domains of knowledge [69,70].
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The following table (Table 6) summarizes the top twenty most frequently used key-
words. As can be seen, “SW” (semantic web) is the most frequently occurring keyword,
owing to its inclusion in the search query. The keyword “ontology” appears as the second
most frequently used. As a result of this finding, designers, users, and domain experts
must agree on shared and reusable conceptualizations and knowledge to comprehend the
actual discourse in a particular domain. Additionally, the terms “interoperability” and
“SI” (semantics interoperability) appear on the list, indicating that interoperability is a
critical component of increasing the usability of distributed information systems, enabling
structured search and data sharing and laying the groundwork for higher-level (web3)
services and processing [71]. Similarly, semantic interoperability can be used to ensure the
interoperability of IoT devices from various suppliers to reduce costs associated with data
analysis and facilitate rapid decision making [72].
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Table 6. Top 20 most frequent keywords.

Keyword Frequency

SW (semantic web) 1004
Ontology 784

Interoperability 443
SI (semantics interoperability) 239

RDF (resource description framework) 200
Linked data 195

IoT (Internet of Things) 184
WS (web services) 144

OWL (ontology web language) 142
SWS (semantic web services) 136

Semantics 100
Metadata 98

SOA (service-oriented architecture) 73
LOD (linked open data) 66

Data integration 64
SPARQL (simple protocol and RDF query language) 60

Semantic web technology 59
XML (extensive markup language) 57

MAS (multi-agent systems) 54
KM (knowledge management) 53

According to Gephi’s citation analysis, the selected publications cited one another.
According to both local and global citations, the top ten most cited publications are listed
in Table 7. Among all publications, ref. [73] received the most citations. Two researchers,
Sheth and Decker, listed in Table 5 as top contributors, also have publications in the Table 7
list. This finding is surprising, because the most prolific authors’ influence is still limited
compared to the authors listed in Table 7. As a result, no significant relationship exists
between the number of publications and the total number of citations received. Surprisingly,
two publications have extremely high global citation counts: [66] has 1189 citations and [74]
has 703 citations, even though their local citation counts are relatively low. These two
publications discuss the role of ontologies in the semantic web’s architecture and their use in
organizing registries and classifying all web services. These results demonstrate that these
studies laid the groundwork for subsequent publications in the fields of interoperability
and semantics. A closer examination of Table 7 reveals that Roman, Grosof, and Decker all
have ontology, semantic technologies, knowledge management, and artificial intelligence
backgrounds. This may account for their high global citation count.

Table 7. Top ten most cited articles with local and global citations.

Publication Local Citations Global Citations

[73] 670 1493
[75] 603 1344
[76] 414 772
[66] 385 1189
[77] 376 695
[78] 367 690
[79] 350 722
[80] 334 615
[81] 321 513
[74] 302 703

Keyword co-occurrences constitute a relational bibliometric indicator that depicts aca-
demic knowledge. By analyzing keyword co-occurrence networks, scholars can determine
the clusters that reflect a comprehensive view of diverse research foci in a specific research
domain. We started by retrieving all keywords from the selected publications to obtain the
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network. Then, we preprocessed and refined the keywords to ensure homogeneity, consis-
tency, and accuracy. For example, full-length keywords such as semantic web, semantic
interoperability, and the Internet of Things were abbreviated. In the visualization map, two
keywords in close proximity are assumed to share a similar research topic or direction.

To generate the keyword co-occurrence network, the data were loaded into VOSviewer,
and the density-based spatial clustering using the full-counting method was employed [82,83].
Additionally, the threshold of keyword occurrences was set at four. As a result, six clusters
with different colors were obtained, as depicted in Figure 5. Each node in the figure
corresponds to a keyword, and the node size reflects the co-occurrence frequency of the
keyword. The density determines the distance between two nodes, and the higher this
density, the shorter the distance between two keywords. The details regarding each cluster
are presented in Table 8.
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From Figure 5, it is evident that the largest cluster is the red one. This cluster focuses on
the fundamental building blocks of the semantic web, including ontologies and languages.
The languages and technologies used for the construction of the semantic web provide
valuable instruments for representing the semantics of profile data [84]. Ontologies and
metadata languages play a significant role in integrating statical data on the web and
annotating services [85]. In the semantic web context, several approaches are devoted
to providing processable semantics expressed in meta-models, such as RDF, OWL, and
OIL. The second cluster concerns sensors and computing. In this cluster, studies highlight
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that sensor networks in the Internet of Things will be used by distinct entities and result
in great heterogeneity [86]. The third cluster focuses on graphs and models. Frequent
terms in this cluster include “Linked Data”, “Metadata”, “LOD” (Linked Open Data),
“Big Data Knowledge”, “Vocabulary”, and “Thesauri”. The application of linked data
can be a pertinent solution to solve interoperability issues and ensure data consistency
across the data sources [87]. The fourth cluster is labeled “Linking/Integration Methods”,
which indicates that researchers devoted importance to the tools used to facilitate data
integration and information transformation [88–90]. These include ontology mapping,
alignment, and matching. The next cluster focuses on semantic web services, representing
a research field that attempts to apply semantic technologies to the description and use
of web services. This will increase the machine understanding of web services and more
effective communication. The high frequency of “E-Government” in this cluster indicates
that specialized applications of the semantic web, such as XML schema and web service
interfaces, can be leveraged to improve the interoperability of e-government information
systems and simplify cross-organizational communication in a cross-border step. Finally,
the last cluster deals with the potential of the semantic web to make social websites more
interoperable. According to [91], the implementation of semantic web frameworks such as
SIOC (Semantically Interlinked Online Communities) and FOAF (Friend-of-a-Friend) to the
social web can lead to a social semantic web and the creation of a network of interlinked
and semantically rich knowledge.

Table 8. The top 10 most frequent keywords in each cluster.

Language
Sensors and
Computing
(Hardware)

Graphs and Models Linking/Integration
Methods (Web) Services Social Web

SW IoT Linked Data SI WS RS
Ontology Semantics Metadata Data Integration SWS Privacy

Interoperability Semantic Web
Technology LOD Ontology Mapping SOA Social Web

RDF Semantic Technology Cultural Heritage Knowledge
Representation MAS FOAF

OWL WoT Digital Library Ontology Alignment Semantic Annotation Social Network
SPARQL Cloud Computing Big Data EHR E-Government Social Networking

XML SWOT Knowledge Graph Ontology Matching OWL-S SIOC
KM Smart City Vocabulary IR Integration WEB APPS

E-Learning Context Awareness Thesauri Data Modeling Agents Social Media

Reasoning Knowledge
Engineering REST API DL Intelligent Agent Trust

SWRL SSN SKOS P2P
Web of Data Web Service Composition

Workflow

5. Co-Citation Clustering Analysis

Following previous recommendations [92], we chose a co-citation frequency threshold
of two and a citation count threshold of two. The visualization was cleared of all isolated
nodes. This approach resulted in a co-citation network of 142 publications, a reduction
of 3369 from the original 3511 publications. The network’s nodes can be clustered into
distinct communities, with a greater density of edges between nodes belonging to the same
community than between nodes belonging to different communities [93]. Each community
in the network represents a collection of closely related publications pertaining to inter-
operability and semantic web research, with only a tenuous connection to publications
clustered in other communities (see Figure 6). Clustering publications enable an analysis of
the network’s structure, revealing topics, interrelationships, and collaboration patterns.

We used Gephi’s default modularity tool based on the Louvain algorithm to create
the co-citation network. This model is iterative, and the algorithm can determine the
optimal number of communities that maximizes the modularity index [94]. A community’s
modularity index is a numeric value between −1 and 1 that indicates the density of
connections within the community compared to connections between communities [95].
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When this algorithm is used, eight clusters are generated. Each cluster has a different
number of publications, ranging from four in cluster eight to thirty-one in cluster one, the
latter being the largest. The modularity index in Figure 6 is equal to 639, indicating the
existence of significant interrelationships between the eight clusters. Since closely related
publications share similar characteristics, a cluster with a strong co-citation association
reflects similar subject areas [96]. A closer examination of each publication in the same
cluster reveals the cluster’s primary research focus. Due to the large number of publications
in each cluster, we decided to conduct a content analysis of the top ten publications in each
cluster. We could identify and label clusters’ research hotspots based on these publications.
Table 8 summarizes the leading publications from each cluster. The research topics for each
of the eight clusters are listed in Table 9.
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Table 9. Research focuses and number of publications in co-citation clusters.

Cluster Number of Publications Research Focus

1 31 Internet of Things
2 26 Conceptualization of semantic web
3 24 Semantic web services
4 18 Ontology mapping
5 17 Building information modeling
6 16 Bioinformatics
7 6 Education and e-learning
8 4 Semantic web languages

5.1. Internet of Things (IoT)

According to the categorization of research topics summarized in Table 9, research on
interoperability and the semantic web places a premium on the importance of the Internet
of Things (IoT) in developing the future internet. The IoT requires collaborative efforts from
various stakeholders, including the telecommunications industry, device manufacturers,
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the semantic web, and the computer science and engineering sectors [80]. The authors
of [80] argue that the heterogeneous nature of the IoT presents several interoperability
challenges, as global IoT implementation is not feasible. With the recent advancement of
the IoT, the volume, velocity, variety, and volatility of data generated by IoT devices pose
several challenges to established information systems. As a result, it is critical to integrate
IoT technologies semantically and interoperably. Numerous studies have proposed various
solutions for ensuring the semantic interoperability of Internet of Things (IoT) services.
The authors of [97], for example, propose a first-of-its-kind open-source IoT platform that
includes various visual tools for developing and implementing IoT applications with little
or no programming. The authors of [86] propose a new semantic-level interoperability
architecture for the Internet of Things and ubiquitous computing. The architecture’s funda-
mental premise is to partition the global IoT into smaller, more manageable smart spaces.
Similarly, the authors of [98] develop a lightweight semantic model for the IoT, adhering to
ten rules for designing a good and scalable semantic model and optimizing the IoT in terms
of memory requirements, computational time, processing time, and latency. The authors
of [99] adopt partial differential fuzzy unsupervised models for semantic association deci-
sion analysis that links sensor data with associated web data. The authors of [100] present
an architecture that links the IoT and semantic modeling within an Industry 4.0 context. It
proposes an enhanced reference generalized ontological model for Industry 4.0 activities
such as improved asset monitoring, process optimizations, and production enhancement.
The authors of [101] present a solution for semantic interoperability among heterogeneous
testbeds. As a result, the cluster’s primary insight is the potential for future research into the
formal methodologies required to develop scalable and interoperable IoT architectures and
standard data formats. The proposed designs for the Internet of Things could be enhanced
to achieve syntactic interoperability and security [72]. The literature is strikingly silent
on how to account for the dynamic nature of physical environments and the difficulties
associated with IoT resources when developing semantic tools and techniques [80].

5.2. Conceptualization of the Semantic Web

From clusters two to six, research focuses on the conceptualization, foundations,
components, methodologies, and solutions necessary to improve semantics and interop-
erability. They are classified as semantic web conceptualization (cluster two), semantic
web services (cluster three), ontologies (cluster four), and building information modeling
(clusters five and six). The final two clusters, seven and eight, have fewer than ten publica-
tions, indicating that academia pays less attention to education, e-learning, and knowledge
representation languages. Related studies on these subjects are sparse, necessitating the
production of comprehensive works.

Cluster two contains publications on the semantic web’s conceptualization and thus is
titled “conceptualization of the semantic web”. The authors of [66] argue that establishing
higher levels of interoperability will make the semantic web feasible. The semantic web’s
vision is to create a global web in which data are defined by rich semantics and applications.
According to [102], the semantic web is based on the concept of a shared and minimal
language that enables the analysis and processing of massive amounts of existing data. The
semantic web enables the capture and utilization of term meanings. As a way to augment
the abilities of machines to communicate the meaning of information, the semantic web
ushers in a more generally applicable approach to encoding any assertion of interest
using the combination of RDF and extensible markup language (XML) to formulate the
main elements of ontologies on the semantic web. Although the conceptualization of the
semantic web has been reported numerous times in the existing literature, the ability of
the semantic web to conceptually organize information and be coupled with advanced
technology and smart spaces to create a digital service-oriented context for various fields
has not been reported.
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5.3. Semantic Web Services

The third cluster concentrates on bringing semantics to web services [77]. The fusion
of semantic web and web services technologies aims to facilitate the automation of service
usage by describing and annotating the different aspects of web services through explicit
and machine-understandable semantics, thereby allowing the automatic location, integra-
tion, and use of web services [103]. The need for more knowledge-based and agent-based
business communication and e-services has resulted in increased research on semantic web
services. For instance, ref. [73] notes that web services could be enriched with machine-
processable semantics to develop dynamic, scalable, and cost-effective marketplaces and
e-commerce solutions. Semantic web services are expected to offer sophisticated web
service development tools that enable automated simulation and verification of web service
attributes and consistency-checking and debugging features [104]. The semantic web is
helpful in overcoming the interoperability issues in diverse and complex web services.
For example, semantic web services are leveraged to establish a social networking web-
site for AEC projects and develop energy analysis applications [105]. The introduction
of semantic descriptions and specifications has revolutionized web service technologies,
providing extensive explanations of service contents, the automation of service selection,
the exchange and translation of message content, the self-description of service function-
alities, and recovery from failure. While semantic web services are crucial for bringing
automatic service discovery, there is still a need to examine the role of this paradigm in
ensuring more interoperable and semantically transparent architecture for some fields such
as bioinformatics [106]. Biological data are challenging to integrate due to their complexity
and inter-related nature; consequently, attempts to use semantics in bioinformatics web
services may reduce the incompatibility of data standards, ensure data integration, and
increase granularity for both data and services. There are few studies on the potential of
semantic enrichment and semantic web services to integrate heterogeneous information
from different data sources and address several issues in terms of interoperability, topology
relationships, and extensions to standard schemas [107]. Additional studies considering
the specificities of different application domains and user feedback during service composi-
tion are also required to ensure more automatic and user-friendly semantic web service
composition for expert domains [108].

5.4. Ontology Mapping

Ontology standards such as RDF and DAML are essential to offer semantic context-
based applications to users. In light of this, the fourth cluster represents the research
perspective focused on ontology mapping. For example, ref. [76,88] study and review on-
tology mapping and its importance in combining distributed and heterogeneous ontologies.
Developing ontology mapping facilitates semantic interoperability and improves align-
ments among the domain ontologies during their design and use. Due to the existence of
several ontologies over many domains, ontology mapping serves to achieve semantic corre-
spondence between common elements of different ontologies and interoperability between
agents of services [89]. Moreover, matching ontologies increases interoperability between
semantic web applications that use different but related ontologies. In this regard, ref. [89]
develops a structured-based partitioning algorithm that classifies each ontology’s entities
into a collection of small clusters and blocks by assigning RDF sentences to those clusters.
The authors of [90] aim to automate the discovery of ontology mapping and resolve the
instance heterogeneity issue by proposing an approach called risk-minimization-based
ontology mapping. Likewise, ref. [109] introduces MAFRA, an ontology mapping frame-
work for distributed ontologies in the semantic web. The suggested framework provides
the foundations for managing and executing mapping between distributed ontologies
and supporting all parts of the ontology mapping lifecycle. Overall, the body of research
aiming at mapping ontologies is extensive; nevertheless, reliance on interactive methods to
align ontologies sometimes requires significant human intervention [110]. As a result, it is
crucial to automate ontology mapping using novel methods based on artificial intelligence
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techniques such as deep learning and decision-tree learning to structurally and semantically
ensure valid mappings between similar concepts in two or more distinct ontologies [111].
Another future research direction is improving the existing ontology systems in terms of
efficiency and availability and developing systems for large-scale mapping tasks in a linked
open data environment [112]. Researchers may also examine the impact of ontological
changes, adjustments, and corrections on information systems. This is important because
no agency has a perfect ontology to comply with. Therefore, ontology mapping should
be an ongoing service and not a one-off process [113]. More practical and innovative
solutions for the readjustment of ontologies and data remarking are welcome to minimize
the negative impacts of ontology changes on information systems.

5.5. Building Information Modeling

The fifth cluster includes studies that focus on the interplay between the semantic web
and building modeling information (BIM). According to [114], semantic web technologies
are a fruitful addition to existing technologies such as BIM software environments and
the IFC (industry foundation classes) specification in EXPRESS, which is a language for
defining data structures. The authors of [115] argue that deploying the description language
IFC enables BIM systems to provide building information in a widely interoperable format.
Due to the complexity and diversity of domain knowledge across BIM and GIS (geographic
information systems), syntactic approaches cannot completely exchange semantic infor-
mation specific to each system. However, through a common language for sharing, as is
provided by IFC, it is possible to achieve semantic interoperability between diverse BIM
and GIS applications [115]. The authors of [116] note that the lack of interoperability across
the BIM and geospatial domains can be resolved by the ability of semantic web technology
to convey meaning that is interpretable by construction project participants. Investigating
these capabilities of the semantic web, ref. [116] translates a building’s elements and GIS
data into a semantic web data format and employs a collection of standardized ontologies
for construction operations to integrate and query the heterogeneous temporal and spatial
data. Similarly, ref. [117] aims to extend the semantic interoperability between BIM and
GIS by proposing an approach consisting of three main steps: ontology construction, se-
mantic integration through interoperable data formats and standards, and the query of
heterogeneous information sources. The suggested approach helps to enhance data sharing
and integration between BIM and GIS. It ensures the seamless integration of building-
and construction-related data via a new ontology based on the EXPRESS schema. More
recently, ref. [118] reviewed the integration of BIM and IoT devices and emphasized that
this combination can realize the maximum potential of using semantic web technologies for
the real-time monitoring and assessment of building performance. Even though the extant
literature has highlighted the potential of integrating BIM and semantic web technologies
to meet the needs for storing, exchanging, and utilizing heterogeneous datasets, a particular
focus on how to address information overload in IoT deployments and standardize con-
struction process data, prefabrication data from suppliers, and tracking data from the IoT
to comply with local codes and regulations in the construction industry is required [118].
Furthermore, more research is needed to understand the role of semantic web technologies
in serving as a critical foundation for building digital twins for the sustainability assessment
of constructions [119]. It is vital to look into more practical use cases for the research into
the integrated use of BIM and the semantic web in building lifecycles [39]. Information in-
tegration and management require standards to minimize the cost and time of sorting large
and heterogeneous datasets and ensure the effective development of IoT- and BIM-enabled
smart environments [118].

5.6. Bioinformatics

The theme in the sixth cluster was labeled “bioinformatics” and consists of 16 articles.
With the exponential increase in both the volume and diversity of so-called “omics” data
(i.e., proteomics, genomics, transcriptomics), there is a need to develop and adopt data
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standards to achieve the promise of systems biology [120]. The interrelated and complex
nature of biological data raises several data and tool integration barriers. For this reason,
several scholars within the bioinformatics community have studied several interoperability
standards, solutions, and projects over the past decades. For example, ref. [106] illustrates
the BioMoby project, which aims to standardize methodologies to synchronize information
exchange and access to analytical resources through a consensus-driven approach. Unlike
other semantic web service interoperability initiatives, this project is realized using a new
type of XML schema derived from an ontology, aiming to define the biological intent and
syntax of the data passed into and out of a service. The authors of [121] present Semantic
Automated Discovery and Integration (SADI), a lightweight approach to simplify the
discovery and consumption of semantic web services in bioinformatics and other scientific
domains based on foundational web standards. The suggested approach enables bioinfor-
matics software development with new interoperable and integrative behaviors. It helps
accurately model the services and the end-user needs for the automated discovery of key
services, the integration of the resulting data, and the automation of service pipelines.
Similarly, ref. [122] describes another project, Open PHACTS, which aims to deliver and
sustain an open pharmacological space based on existing and improved state-of-the-art
semantic web standards and technologies. The project also improves drug discovery in
academia and industry and drives open innovation and in-house non-public discovery
research. To ensure user-oriented semantic service discovery, [123] proposes a data model
and lightweight semantic discovery architecture that enables interoperability and composi-
tion across different autonomous third-party services, thereby providing a good fit for user
requirements in bioinformatics and other domains. Finally, ref. [124] discusses three projects
employing semantic web technologies to facilitate services’ automated discovery and compo-
sitions and enable seamless and transparent interoperability, including Grid, MOBY-Services,
and Semantic-MOBY. Overall, the literature highlights that the semantic web promises to
foster integration and interoperability among different bioinformatics resources on the web.
However, this promise is not broadly realizable in practice, as the reasons for failure may
be attributed to the basic difference between semantic web technologies and web services.
Therefore, researchers should develop more advanced and scalable solutions that address the
deficiencies in the reuse of Universal Resource Identifiers (URIs), the lack of accessibility of
bioinformatics data, and the need for large-scale data integration for biological phenomena.
Methods and tools that provide a semantics-rich representation of data and efficiently exploit
highly heterogenous data are required [125]. Moreover, it is necessary to adjust current com-
putational systems to assimilate and integrate the diversification in bioinformatics research
and solve existing knowledge-related and interoperability challenges [126].

5.7. Education and E-Learning

The seventh cluster revolves around the possibilities of the semantic web in education
and e-learning. As a dynamic field, e-learning is currently dominated by a plethora of
learning management systems that need to be enhanced in terms of interoperability and
data/resource use. For example, ref. [127] states that the application of linked data princi-
ples is a promising solution for the interoperability issues facing the field of technology-
enhanced learning. While the web-scale integration of educational resources is challenging
to maintain, linked data principles can be used to model and expose metadata of educa-
tional resources, services, and APIs, thereby achieving metadata interoperability, services
discovery, and data mediation [128]. To develop the educational semantic web, ref. [129]
suggests a modular semantic-driven and services-based interoperability framework to
open up, exchange, and reuse educational systems’ content and knowledge components.
In the same vein, ref. [130] describes a novel context-aware semantic learning approach to
combine content provision, learning process, and learner personality in an over-arching
semantic e-learning framework. This framework leverages XML/RDF technologies to solve
technical and pedagogical problems such as data integration, heterogeneity, and lack of
pedagogy support and framework. Therefore, the development of personalized adaptive
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learning needs semantic-based and context-aware systems to support the interoperability
of learning objects and learner models [84]. In sum, several research opportunities emerge
from this cluster. For instance, researchers could study the process of semantically improv-
ing learning resources by creating new ontologies and prototype systems that accommodate
them [131]. Collaboration among various educational entities prompts the development
of common semantic models that will be used to represent any type of resource or actor
involved in educational and learning processes [132]. Ultimately, studies suggesting novel
applications for ontology mapping issues are valuable to extend the existing tools for e-
learning, enhance semantic e-learning, and improve the educational and learning processes
of individuals involved in the knowledge society [133].

5.8. Semantic Web Languages

The last cluster is concerned with semantic web languages such as RDF. Only four
publications belong to this cluster. In the first study, ref. [134] presents RDF123. This highly
flexible open-source tool translates spreadsheet data to RDF and enables users to create their
mapping intuitively and obtain much richer spreadsheet semantics. The authors of [135]
propose a new approach to create ontologies based on table analysis. Later, ref. [136]
described how to automatically infer the intended meaning of tables and represent them
in an RDF-linked data format, thereby enhancing search, interoperability, and integration.
The techniques implemented on tables are supported by a new Semantic Message-Passing
Algorithm, which utilizes linked open data knowledge to enhance available message-
passing schemes. Opportunities for future research on semantic web languages exist, and
scholars should propose affordable mechanisms for assessing the interoperability of the
semantic web and increasing the filtering of extraneous RDF data [137]. In the future, it may
be interesting to develop systems that can boost RDF applications in different areas, such as
supply chain management [138]. Moreover, additional experiments with real datasets are
recommended to reduce the evaluation cost of the spatial component in RFD queries [139].

Based on the results of this section and the clusters from bibliographic coupling
(Table 10), important research gaps related to semantic interoperability need further discus-
sions and investigations (see Table 11).

Table 10. Top 10 publications in co-citation clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

[98]
[97]
[140]
[86]
[141]
[98]
[142]
[101]
[143]
[144]

[75]
[145]
[71]

[146]
[66]

[147]
[148]
[102]
[149]
[150]

[73]
[79]
[77]
[78]
[74]

[151]
[152]
[153]
[104]
[103]

[88]
[76]
[106]
[90]
[109]
[89]
[154]
[110]
[155]
[156]

[114]
[105]
[115]
[116]
[81]

[157]
[117]
[158]
[159]
[118]

[106]
[160]
[121]
[122]
[123]
[120]
[161]
[162]
[124]
[163]

[127]
[128]
[129]
[84]

[130]
[164]

[134]
[136]
[135]
[165]

Table 11. Agenda for future research based on co-citation clustering.

Themes Future Research Directions Related Literature

Internet of Things

• Investigating the opportunities and challenges of vocabulary
recommendation tools in IoT-enabled ecosystems

• Examining potential solutions for facilitating the standardization efforts
for semantic interoperability in IoT environments

• Exploring the role of emerging technologies (e.g., Schema.org) to solve
the intrinsic complexity of the semantic web

• Investigating the collaboration between academics and practitioners for
the development of IoT ontologies that enable intelligent interoperability

[166–168]
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Table 11. Cont.

Themes Future Research Directions Related Literature

Conceptualization of
the semantic web

• Examining the role of the semantic web to support complex issues
associated with flexible, automated, and autonomous systems such as
Industry 4.0 systems

• Investigating the impact of semantic web technologies on software testing
• Studying the potentials and challenges of the geospatial semantic web

[169–171]

Semantic web services

• Investigating the applicability of new technologies such as blockchain for
the semantic web service composition process

• Proposing novel frameworks that integrate the use of AI techniques to
compose semantic services and provide efficient solutions to user queries

[21,172]

Ontology mapping

• Looking into the role of machine learning techniques to aid in the
ontology mapping process

• Investigating the challenges brought by the generation of ontology
mappings and the solutions to address them

• Identifying ways to overcome potential ambiguities in background
knowledge and relations among concepts

[71,112,113]

Building information
modeling

• Examining the integration of BIM with real-time data generated from IoT
devices to optimize construction and operational efficiencies

• Exploring the capabilities of rule-based reasoning in semantic BIMs
• Testing use cases with a high-level digital representation of a real building
• Evaluating the potential of new technologies to shape BIM and solve the

limitations of its application

[114–116,118,173,174]

Bioinformatics

• Developing robust methods for embedding ontologies containing richer
semantic information in bioinformatics

• Developing programs to acquire datasets of necessity, conduct analyses,
and design their summarizations and visualizations according to the
requirements of bioinformaticians

[106,121,160,175,176]

Education and
e-learning

• Designing the architecture of semantic-web-enabled recommender
systems in education and e-learning

• Proposing semantic-based frameworks that automate e-learning
processes based on semantic descriptions

• Investigating the challenges related to distance learning through the
semantic web, such as accuracy, time limitation, cost, information
overload, data security, personalization, and copyright issues

[127,129,177–179]

Semantic web
languages

• Investigating how semantic web languages can satisfy the knowledge
representation requirements and the structural coverage of ontologies [180]

6. Discussion, Limitations, and Future Research

Given the exponential growth of the literature on the semantic web and interoperability
and the dearth of comprehensive and systematic analyses of this subject, there is a pressing
need to map the current state of this knowledge. Thus, this study was motivated by a desire
to visualize and map the structure and scope of research at the intersection of the semantic
web and interoperability, thereby tracing the evolution of this field of knowledge and
revealing its intellectual structure. We analyzed 3511 publications selected from the Scopus
database over two decades using bibliometrics as a proven and objective methodological
approach. We obtained objective results by combining several bibliometric techniques.
This is in contrast to subjective techniques, as argued by [181]: “an arbitrary selection of
evidence is often not fully representative of the state of the existing knowledge, and the
selection of some studies over others ultimately leads to what is known in statistic analysis
as a sample selection bias”.

We present a broad picture of the research on the semantic web and interoperabil-
ity using concepts from systematic network analysis, thereby overcoming the inherent
problems with conventional methodological approaches, which frequently ignore the dy-
namics and relationships between authors, publications, and the outlets in which research
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works are published. Similarly, ref. [182] asserts that this type of relationship is critical
for comprehending the intellectual foundation and evolution of knowledge over time in a
scientific field.

There is still much to do in obtaining a functional semantic web that will operate
across all knowledge. The schematic of the ontology pyramid demonstrates the current
state of the art. By examining all studies on the semantic web and interoperability that have
been indexed in the Scopus database since 2000, this article conducted the domain’s first
comprehensive bibliometric analysis, as far as we are aware. The volume of publications
enabled the identification of the most prolific scholars, relevant journals, and major trends
and thematic hotspots of this interdisciplinary field of research. For example, a closer exam-
ination of the co-authorship network revealed that small scholarly networks characterize
the typology of current research.

As such, this structure reflects the dominance of a few scholars who are considered the
founders and pioneers of semantic web research. Additionally, such authors may play a
crucial role in disseminating knowledge and the advancement of the research field. Given
the nature of semantic web research, theoretical underpinnings are often supported by the
need to demonstrate the applications of theoretical models. It is conjectured that academics
are conducting and advancing their research through collaboration with industrial partners
and government organizations, rather than other academics at this stage, due to the need to
gather data and focus their research on a specific industry problem. As observed in Table 9,
the key application areas of focus include building information modeling, bioinformatics,
and the Internet of Things. It is possible that once semantic web and interoperability
research is mature in some of these key application areas, there could be a greater linkage
between different scholarly networks to explore whether their research is applicable in
different industry sectors.

The emergence of the semantic web accelerated the evolution of ontologies and ad-
vanced interoperability between entities involved in various complex web services. With
increased awareness of the semantic web and interoperability, research on these concepts
has been expanding to encompass a variety of domains. The journals that publish the
majority of semantic-web-related studies are the International Journal of Semantic Web and
Information Systems, Semantic Web, and the International Journal of Metadata Semantics and
Ontologies. In terms of country-wise distribution, we found that semantic web research
is dominated by countries such as the United States, Germany, and the United Kingdom.
In terms of institution-wise distribution, the most productive institution was the National
University of Ireland Galway (NUIG), followed by Universidad Politécnica de Madrid and
the Digital Enterprise Research Institute (DERI). The latter institute is in Galway, Ireland,
and is closely affiliated with NUIG.

For those seeking a better understanding of semantic web research, the influential
publications identified in this study may be a starting point for comprehending the field’s
conceptual foundation. Additionally, the use of a keyword co-occurrence network en-
ables the identification of the critical topics and themes discussed in the semantic web
and interoperability research communities. The research was primarily focused on three
main themes: (1) language, (2) sensors and computing, and (3) graphs and models. The
widespread use of ontologies enables semantically enhanced information processing, as
well as enhanced interoperability, expressiveness, and computability. The capabilities
of semantic web languages can be extended through the use of tools that optimize and
adapt them for a variety of applications. With a large number of seamless sensors and
data streams, semantic web technologies can be used to improve stream processing, data
integration, and reasoning and support the discovery and reusability of event-based ser-
vices. Our article makes several contributions to the literature on the semantic web and
interoperability. First, we identified the primary research focuses of researchers working at
the intersection of the semantic web and interoperability, which continues to generate addi-
tional discussions and analysis. We identified that the research focus areas revolve around
eight major thematic clusters: (1) the Internet of Things, (2) the conceptualization of the
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semantic web, (3) semantic web services, (4) ontology mapping, (5) building information
modeling, (6) bioinformatics, (7) education and e-learning, and (8) semantic web languages.
The co-citation analysis revealed that the most influential papers concentrate on the vision
of the Internet of Things achieving seamless interaction between physical objects and infor-
mation systems through interoperability. Additionally, studies focus on the semantic web’s
vision, ensuring that machines can discover, combine, and act on web-based information.

It is not surprising that our analysis showed a strong focus on semantic web and
interoperability research in the area of the Internet of Things. With a wide array of sensors,
and strong communications infrastructures, it is possible to gather numeric, text, and
video-based data in large volumes relatively cheaply. This offers businesses and other
organizations the possibility of greater insights into areas such as business performance
and customer experience. However, this vision is difficult to realize, often because of the
semantic and interoperability challenges between different sensors and systems discussed
in this paper, which is why researchers have strongly focused on this topic.

Despite the contribution of this study, several limitations exist. In contrast to [25],
which used several data sources, we used a single database. As a result, in comparison to
other databases such as Web of Science (WoS) and Google Scholar, citations and relatedness
between publications will be more conservative. As a result, future studies may include
additional databases to ascertain the validity of our findings. Nonetheless, it is worth
noting that the vast majority of publications indexed in databases such as WoS and Scopus
are dual-indexed in these two databases. Second, we limited our search to publications
written in English. As a result, the scope of coverage may be reduced; consequently, future
studies could consider publications in other languages, particularly the languages of the
most productive countries (Germany and Italy), in order to assess the generalizability of
this study’s findings across languages. Third, the study’s search query may have missed
potentially relevant studies. Researchers may wish to extend the search strings to include a
broader list of keywords related to the semantic web and interoperability to address this
shortcoming. Finally, the bibliographic coupling is somewhat static and retrospective, as
it is centered on the cited publications. As a result, additional bibliometric tools such as
document co-citation analysis are required to study the topic in a forward-looking manner.

7. Conclusions

The scope and depth of semantic web and interoperability research over the last two
decades are highlighted in this review paper. As illustrated in Figure 1, while the volume of
publications has largely stabilized over the last decade (2011–2020), there are still numerous
obstacles to overcome. While ‘semantic web’, ‘ontology’, ‘interoperability’, and ‘semantic
interoperability’ are the top four key terms (Table 6), the frequency of occurrences for
‘semantic web’ and ‘ontology’ is nearly three times greater than the number of occurrences
for ‘interoperability’ and ‘semantic interoperability’. This may imply that, while both are
critical, interoperability-based experiments and research are more challenging to implement
due to their inherent complexity and cost. Despite these obstacles, interoperability should
remain a primary research focus.

Additionally, while the top four clusters (Table 9) are centered on the underlying struc-
tures/technologies, the two key applications identified are BIM and bioinformatics, which
have significant natural drivers. Because most human activity occurs within buildings,
there are strong incentives to maximize comfort, minimize energy consumption, and reduce
maintenance requirements, all of which are facilitated by the IoT and interoperability. Given
that bioinformatics is a critical component of drug discovery/development and disease
identification, both critical for maintaining and improving human health, it is unsurprising
that BIM and bioinformatics have developed into key application areas within semantic
web and interoperability research.

Another critical area in which semantic web technologies and interoperability are
influential is facilitating data and information exchange within and across product supply
chains in food, pharmaceuticals, medical devices, consumer goods, and automotive indus-
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tries. The COVID-19 pandemic has posed significant challenges for stakeholders, and a
lack of interoperability makes it challenging to determine where products are located and
in what condition they are.

The authors present a series of recommendations based on the findings in this paper.
Recommendation 1—Interoperability should remain a primary research focus, and

more research should be undertaken to determine how to overcome the barriers to entry in
this area.

Recommendation 2—To prevent stagnation in this important area, academia should
forge closer links with industry, governments, and standards organizations to develop more
effective models through access to real-world data (web3). This is particularly important
for global supply ecosystems, given their length, complexity, and the growing need for
enhanced transparency and trust.

The Trace Alliance workgroup, founded by OriginTrail and comprising numerous
solution providers, developers, researchers, brands, retailers, and government agencies,
will consider applying these research findings and investigate the development of proof
of concepts and pilot projects in global supply ecosystems to address interoperability,
resilience, and transparency and trust concerns. The authors note that a draft working copy
of this paper was previous circulated for comments and was titled “The Big picture on
Semantic Web and Interoperability. What we know and what we don’t”.
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