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ABSTRACT

In training distributed machine learning, communicating model
updates among workers has always been a bottleneck. The magni-
tude of impact on the quality of resultant models is higher when
distributed training on low hardware specification devices and in
uncertain real-world IoT networks where congestion, latency, band-
width issues are common. In this scenario, gradient quantization
plus encoding is an effective way to reduce cost when communi-
cating model updates. Other approaches can be to limit the client-
server communication frequency, adaptive compression by varying
the spacing between quantization levels, reusing outdated gradi-
ents, deep compression to reduce transmission packet size, and
adaptive tuning of the number of bits transmitted per round. The
optimization levels provided by such and other non-comprehensive
approaches do not suffice for high-dimensional NN models with
large size model updates.

This paper presents ElastiQuant, an elastic quantization strat-
egy that aims to reduce the impact caused by limitations in dis-
tributed IoT training scenarios. The distinguishable highlights of
this comprehensive work are: (i) theoretical assurances and bounds
on variance and number of communication bits are provided, (ii)
worst-case variance analysis is performed, and (iii) momentum is
considered in convergence assurance. ElastiQuant experimental
evaluation and comparison with top schemes by distributed train-
ing 5 ResNets on 18 edge GPUs over ImageNet and CIFAR datasets
show: improved solution quality in terms of ~ 2-11 % training loss
reduction, ~ 1-4 % accuracy boost, and ~ 4-22 % variance drop; posi-
tive scalability due to higher communication compression resulting
in saving bandwidth and ~ 4-30 min per epoch training speedups.
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1 INTRODUCTION

To train problem-solving Machine Learning (ML) models within a
reasonable time frame using large historical datasets, distributed
training schemes from the High Performance Computing (HPC) do-
main are employed on a data center grade e.g. CPU-GPU cluster that
contains numerous worker nodes. Whereas for privacy-sensitive
yet valuable data, the problem-solving ML models are trained di-
rectly on ubiquitous devices (workers) in decentralized IoT settings.

In both scenarios, distributed training of one ML model on nu-
merous devices/clients/processors using distributed versions of sto-
chastic gradient descent (SGD) has gained attention due to its higher
scalability characteristics. For example, data-parallel schemes such
as QSGD [1], Buckwild [5], TernGrad [32], SignSGD [2] in a setting
with K distributed devices that split a large dataset among them-
selves. Each client keeps a private copy of the model parameters
while having access to the global function’s stochastic gradients
that need to be minimized. Each device, at each training round, pri-
vately computes its stochastic gradient using the local data it sees.
This learned information is then broadcasted/synchronized to other
training-involved devices, using which aggregation is performed at
each device to obtain the updated model parameters.

Scalable distributed training on K devices, using parallel SGD
significantly reduces convergence time and computational costs,
but the communication costs to transmit and synchronize large
model updates swiftly increase as K grows - thwarting the expected
benefits of reducing computational costs. In reality, with data and
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Table 1: ElastiQuant comparison with related papers. Not Applicable (NA), Not Investigated (NI), No Guarantee/assurance (NG).

Paper Test Setup  Gradients; Momentum Variance Com bits Scalability =~ Worst-case Highlight
ATOMO [30] AWS EC2 cloud Atomic sparsification; NI NG Bounds Within cluster nodes NI Sparsification to minimize variance
Terngrad [32] 128-nod§ .each with Quantize to NI NI Within cluster nodes NI Need only three level.s tol agg?essively
4 Nvidia P100 ternary levels; Yes reduce communication time
Globe2Train [20] MCUs, CPUs NA NI NI Global IoT devices NI Latency, congestion tolerance
32-node each with s .
AD-PSGD [13] 4 Nvidia P100 NI Bounds NI  Within cluster nodes NI Robust to heterogeneity
QSGD [1] AWS EC2 cloud Lossy compression; NI Bounds Bounds Within cluster nodes NI Good practical performance
1A 2 if A high
NUQSGD [15] 8 NYID 080 Nor'luru‘ orm ssurance, o <o Within cluster nodes Yes Strongé?r' guarantees, higher
Ti GPUs quantization; Yes bounds empirical performance
A 3 s Much i te,
D2 [27] 16 workers NI SSUTANCE: NI Within cluster nodes NI HE Iprove convergence rate
bounds robust to data variance
EF-SignSGD [11] Multiple workers  Error-feedback; Yes NI NI Within cluster nodes NI Simply add EF to recover performance
DGC [14] 64-n9dfe eth with Dee.p NI NI Within clus-ter NI 270 x - 609 X gradle‘nt compression
4 Nvidia Titan XP compression; Yes nodes, mobiles ratio without losing accuracy
PowerSGD [29] S-nOQe‘each with Low-r.ank NI NI Within cluster nodes NI Consistent wall-clock spequps,
2 Nvidia Titan X compression; Yes test performance on par with SGD
ElastiQuant 18 IoT boards, I?lasFlc Assurance, Bounds IoT boards, mobiles, Yes Higher solution quz.ahty, scalability
edge GPUs quantization; Yes bounds edge GPUs - assurance with results

computation resources globally distributed, communication time
consumed to share stochastic gradients is the major performance
bottleneck [23] - to reduce which gradient quantization is used to
transmit fewer communication bits per training iteration.

Standard approaches [5, 17, 29, 30, 32, 33] achieve compression
levels by quantizing devices learned parameters to a uniform grid
(from 2-bit to 16-bit) using randomized, lossy, or other methods
that do not provide comprehensive assurances. For examples, in
Table 1, atomic sparsification [30] provides bounds on communi-
cation bits, but not on variance. Whereas AD-PSGD [13] provides
bounds on variance, but no analysis is performed on communica-
tion bits. Orthogonally, the communication-compression schemes
of interest to this study such as QSGD [1], EF-SignSGD [11], and
others [3, 6, 25, 31] have established several theoretical guarantees,
can adapt the number of quantization levels (variance determined
by this), enabling users to trade communication bandwidth with
convergence time. As an improvement, a QSGD variant (QSGD-V)
[1] was introduced. We created a real-world distributed training
setup using K wirelessly interconnected edge GPUs. Here, when
empirically evaluating QSGD, there was a substantial amount of
quantization-induced variance, making the practical performance
far from that of the original SGD and QSGD-V. Although QSGD-V
has a stronger empirical performance, it cannot establish theoretical
guarantees in the case when there is a need to vary the number of
bits transmitted - an essential feature when few of the K devices
are in bandwidth-constrained IoT networks. So, naturally, there is a
requirement of an approach with distributed training performance
close to SGD, and strong empirical performance as QSGD-V, along
with the capability to adaptively alter the number of quantization
levels. This paper presents Elastic Quantization (ElastiQuant), a
strategy with comprehensive analysis and extensive evaluation
whose contribution can be summarised as follows:

Analysis. ElastiQuant aims to achieve stronger theoretical assur-
ances to offer benefits such as: Communication compression by
reducing the number of bits communicated, enabling training even
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in low-bandwidth IoT networks; Reducing quantization induced
variance improving optimization performance of models in terms of
test accuracy and training loss; Reduced computational, encoding
and transmission cost to achieve positive scalability and training
speedup in every epoch.

Main Results. ElastiQuant is evaluated on distributed training for
large-scale image classification tasks using CIFAR and ImageNet
datasets. Results demonstrate that the real-world ElastiQuant per-
formance surpasses QSGD-V and EF-SignSGD in terms of commu-
nication compression and training time to produce a central model
without accuracy drops. Consuming the same number of bits per
training iteration, ElastiQuant has a smaller variance than QSGD,
translating to improved model optimization performance.

2 BACKGROUND AND RELATED WORK

This section covers essential concepts and prior work. Table 1
presents ElastiQuant closer comparison with related papers.

2.1 Gradient Compression

The gradient quantization in this work is not the same as model
weight optimization by quantization and sparsification. When the
gradients transferred during distributed training are reduced, the
communication bandwidth will also reduce. Approaches exist to
adapt compression such as varying the spacing between quanti-
zation levels [6], reusing outdated gradients [25], adaptive tuning
the number of local updates or the communication frequency [31].
ElastiCL [24] dynamically alters the number of quantization levels
used to represent a model update and achieves a low error floor as
well as communication/transmission efficiency. Buckwild [5] is a
lossy compressed SGD with convergence guarantees provided with
bounds on the error probability of SGD. TernGrad [32] uses a 3-level
gradients-based approach to significantly reduce communication
costs with a small performance degradation compared to FP-SGD.
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Table 2: Summary of notations used during ElastiQuant design.
Symbols Descriptions
s, L, L Number of internal quantization levels, sequence of quantization levels, £ for special case

Lri,b,C,n,W,p, j,7,e0,é0, W
Qs (v); 8(r), p(r), Is(ry, 7(r), F(w)
hi(v,s),E,R, 1

v, p,h;n, B

No, tr, g(w)

w, Wo, W, g, i, &, V, T, Wr; S
K, D, ¢t

Parameters and variables with values in range as defined

Elastic quantization of vector v; functions with variables defined for ElastiQuant design
Independent random variables, expected value operator, real numbers, indicator function
Coordinates, vector of signs of v;, quantizations of normalized coordinates; second moment bound
Bound on communication bits, last coordinates to transmit, stochastic gradient with n

Parameters and variables in the ElastiQuant with momentum design; coordinates of v

Number of training involved devices, local datasets, mini-batch, training iterations

Also, attempts have been made to quantize the entire model -
DoReFa-Net [33] uses 2-bit gradients and 1-bit weights. The cur-
rent state of literature presents schemes applicable to guarantee the
convergence of CNNs in TernGrad, DoReFa-Net; RNNs in QSGD;
distributed ML classifier training in Globe2Train [20]. The theoreti-
cal quantization limit cannot exceed 32, to overcome which gradient
sparsification techniques exist. The user predefined threshold-based
sparsification [18], the adaptive compression ratio [3] shows that,
with only negligible performance degradation, 99% gradients can be
pruned. In [16], quantization, compression are combined to achieve
next-level optimization ratio. The SignSGD (also known as 1-bit
gradient) [17] achieved a 10x speedup by reducing the data transfer
size. Here, each gradient component gets quantized to two values.
The latter variant of SignSGD [2] established convergence guaran-
tees. The number of quantization levels is fixed in SignSGD and
is not unbiased. SignSGD does not consider the trade-off between
convergence speed and communication costs. EF-SignSGD [11] is
another improved variant of SignSGD.

ElastiQuant is motivated by the recent NUQSGD [15], ElastiCL
[24], Globe2Train [20], and the standard pulse code modulation
concept [28] to use unbiased nonuniform logarithmic quantization
method [7]. This concept has been inherited for LSTM network
compression [8], Logarithmic encodings to represent model weights
and activations [12].

2.2 Distributed Machine Learning

Modern IoT devices generate and have access to a wealth of data
that can be used to produce powerful models. Often, such rich data
are large in quantity, privacy-sensitive, or most of the time both,
thus restricting transmitting them to data centers and training using
advanced ML frameworks on GPU clusters. As the awareness of data
privacy is growing rapidly and also since IoT apps are constantly
being monitored for GDPR compliance, companies are following
the collaborative learning approach where models are trained close
to the data source. A few popular examples of training without data
centralization are: data across numerous hospitals were used to
train models for medical treatments [9], patient survival situations
across 3 countries were analyzed [10]. However, the advancements
are not of much use as the scalability and bandwidth are poor in
IoT networks [4, 23].

Decentralized learning is an orthogonal exploration where meth-
ods like D2 [27], AD-PSGD [13] perform partial synchronization in
each update to escape latency issues. Such large-scale training takes
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advantage of data parallelism and by increasing the count of con-
tributing devices, but at the cost of communicating model updates,
which is expensive, especially when multiple devices are pooled.
This results in dwarfing the savings in computation time and pro-
ducing a low computation-to-communication ratio [32]. However,
again, such learning approaches do not scale under high network
latency [23]. Also, face other critical problems due to lower net-
work bandwidth, expensive mobile data plan, intermittent network
connection, which are common when distributed training.

ElastiQuant is compatible and contributes to decentralized tech-
niques such as federated learning, split learning, distributed en-
semble learning by providing applications the ability to balance
communication savings with variance. Also, this is a distinctive
study that evaluates top schemes on off-the-shelf IoT edge GPUs
boards rather than within HPC data center grade CPU-GPU clusters
(see Table 1).

3 ELASTIQUANT DESIGN

At each iteration of distributed training, to accelerate training while
reducing communication costs, each device broadcasts an encoding
of its privately calculated compressed gradient, decodes the gradi-
ents received from other devices, and produces a stochastic gradient
by summing all the quantized vectors. The existing schemes that
compress gradients before encoding does not take into considera-
tion the properties of gradient vectors. This leads to slowing overall
convergence as the gradient variance would have substantially
increased. Also, it is necessary for the quantization to be stochas-
tic, to not introduce bias. To optimize overall performance, the
communication savings should be balanced with variance.

ElastiQuant elastically distributes quantization levels in the unit
interval, making the quantized gradients remain unbiased and suit-
able for the original SGD during distributed training. ElastiQuant
uses a custom parameterized generalization of the unbiased quanti-
zation scheme to control communication cost and gradient variance.
Also, ElastiQuant reduces quantization error and variance as it can
match the properties of gradient vectors - it increases the number
of quantization levels near zero to obtain a stronger variance bound.
Table 2 shows all the notations used during ElastiQuant design in
the upcoming subsections.

3.1 ElastiQuant Quantization Strategy

Lets € 1,2,---,and L = (lp,l1, -+ ,ls+1) with ]y = 0 < |} <
Isy1 = 1. Forr € [0, 1], let $(r) satisty I5(,) < r < I5(;)41 and p(r)
satisfy r = (1 — p(r))l5(r) + p(r)l5(r)+1- Here 7(r) can be given as
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Is(r+1 = Is(r) with $(r) € 0,1,- - -, 5. In this setup, the ElastiQuant

quantization strategy of v € R is

Qs(v) £ [Qs (01)+++. Qs ()] W
where Qs (v;) = [[v]| - sign (0;) - hi(v, 5)

where, letting r; = 0| /||v||, the h;(v, s) s are independent random
variables such that h;(v, s) = lg(,,) with probability 1 — p (r;) and
hi(v,s) = ls(r;)+1 otherwise. We note that the distribution of h; (v, s)
satisfies E [h; (v, s)] = r; and achieves the minimum variance over
all distributions that satisty E [h;(v,s)] = r; with support £. We
first focus on a special case of ElastiQuant’s elastic quantization
with £ = (0,1/25,---,2571/25 1) as the quantization levels.

In reality, it is not common for ML models to have large r; in
their stochastic gradient vectors - instead they are dense vectors.
Hence, ElastiQuant uses fine intervals for small r; values to reduce
quantization error and control the variance. After quantizing the
stochastic gradient with a small number of discrete levels, each
training involved device must encode its local gradient into a binary
string for broadcasting using the method presented in the below
subsection.

3.2 ElastiQuant Efficient Encoding

The quantized gradient Qs (v) from Eqn (1) is determined by p, h, ||v/||.

Here, p £ [sign(vy),-- -, sign(od)]T is the vector of the coordinate
signs v;, h £ [A1(v,s), - hg(v, s)]T are quantization of normal-
ized coordinates, and ||v|| is norm of the gradient. The Encode
function that encodes the elastic quantized values use ||v||, p, h and
the encode-decode method ERC for encoding/decoding positive
integers such that ERC: 1,2,--- ,n — 0,1* and ERC!:0,1* -
1,2,---,n. When stochastic gradient is passed to ElastiQuant En-
code function: The norm ||v|| is encoded using b bits floating point
encoding (b set to 4 produces 4-bit-ElastiQuant). Then the pro-
cessing is performed in rounds r = 0, 1,--- ,n. On round r, after
transmitting all nonzero coordinates including ¢, the ERC(i,) is
transmitted where t,+; = t, + i, is either: (i) Index of the first
nonzero coordinate of h after ¢, (with ¢y = 0). Here, the one bit
encoding of sign p;,,, and ERC(log(25*1h, ,)) are transmitted be-
fore the next round. (ii) Index of the last nonzero coordinate. Here,
p1,,, and ERC are transmitted and encoding is complete. In rounds,

the Decode function reads b bits, uses ERC™! to reconstruct ||v]|.

3.3 Theoretical Assurance

Here, theoretical assurance for ElastiQuant is provided in terms of
bounds on the variance and communication bits.

3.3.1
or even ElastiQuant, if models show high variance, such models fail
to generalize for unseen data. This subsection presents the variance
bound of ElastiQuant.

Let v € R%. The elastic quantization of v satisfies E [Qs(v)] = v.
Then we have

E[1IQs(v) - vII*] < eolIVI[%. Here eg = (1/8 +27272d)
Ld < 25"} + (2N - 7/8)L1d 2 2)

ElastiQuant Variance Bound. When training using DGC, QSGD,
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and 1 denotes the indicator function Provided that s < log(d)/2,
then it also holds that E[[|Qs(v) — v||?] < éQ||v||2 where ég =
min 2725 /4(d — 225),275Vd — 225 + O(s)

This result implies that if g(w) is a stochastic gradient with a
second moment bound 7, then Qs(g(w)) is a stochastic gradient
with a variance upper bound egp7. Note that the variance upper
bound decreases with the number of quantization levels. In the
range of s = o(log(d)), ép decreases with s, which is because the
first term in the upper bound decreases exponentially fast in s. To
obtain ép, we establish upper bounds on the number of coordinates
of v falling into intervals defined by £.

ElastiQuant bound is tighter than related schemes - demonstrated
in Section 4.2, by training ResNets on CIFAR and ImageNet datasets.
Here, variance vs training iterations is recorded and compared.

3.3.2  ElastiQuant Bound on Number of Communication Bits. When
communicating (quantized gradients in our case) in low-bandwidth
10T networks, for compression, the source data is mapped to a
variable number of bits. This subsection presents the number of
communication bits bound of ElastiQuant.

Letv € RY. Provided d is large enough to ensure 2%5+Vd25 < d/e,
the expectation E[| ENCODE(v)|] of the number of communication
bits needed to transmit Qg (v) is bounded above by

No=C+3ngq+ (1+ o(l))ns’d log(d/ns’d)
+(1+0(1)ng 4 loglog(8(2% +d) /ng 4)

where C = b—(1+0(1)) and ns g4 = 225 +25vd.2 The results provide
a bound on the expected number of communication bits to encode
the quantized stochastic gradient. Note that 225 + Vd2’ < d/e is a
mild assumption in practice. As one would expect, the bound Eqn
(3) increases monotonically in d and s. In the sparse case, if we
choose s = o(log d) levels, then the upper bound on the expected
code-length is O(Zs\ﬂlog(\/g/?)).

The efficient encoding method of ElastiQuant helps provide
tighter bounds on the code-length of the gradients transmitted
during distributed training. Also, when the ElastiQuant variance
bound is combined with its code-length bound, a bound on the total
communication costs can be obtained, which shows suboptimal
communication savings compared to other schemes.

3.4 ElastiQuant with Momentum

Momentum helps accelerate gradients consistently in the right
directions and also dampens oscillations, thus leading to faster con-
vergence. This section presents the convergence assurance when
distributed training using ElastiQuant with momentum.

The update rule for FP-SGD (unquantized version) with momen-
tum is: yr41 = Wy — ag(wy); ylt+1 = w; — lag(w;); and wyyg =
Vi1 + y(yi - yi). Here, w; is the current parameter input and
i € [0,1) is the momentum parameter. When substituting [/ = 0, the
heavy-ball method is obtained, and Nesterov’s accelerated gradient
method when substituted with = 1. Momentum can be added to
training algorithms (like SGD, QSGD, ElastiQuant) by substituting
the above update rules as appropriate.

For convex optimization, there can be only one globally optimal
solution. For nonconvex optimization, there can exist multiple lo-
cally optimal points, requiring extra computation to identify the
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global solution (cannot be guaranteed). Given the importance of
momentum, in the following, the convergence assurance for mo-
mentum ElastiQuant is established for both optimizations.

3.4.1  ElastiQuant with Momentum for Convex Optimization. Let f :
R — R denote a convex function with [IVf(w)|| <V forallw. Let
wo denote an initial point, w* = arg min f(w), Wt = 1/T Ztho Wy,
and € be defined as in Eqn (2). Suppose that ElastiQuant with
momentum is executed for T iterations with a learning rate & >
0 on K processors, each with access to independent stochastic
gradients of f with a. second-moment bound B. Then ElastiQuant
with momentum satisfies

a(1+2lp) (V2 + (1+€g) B/K)

B [f ()] - min f(w) <

2(1-p)
S wo) - fW))  (-p llwo — w*||*
(1-p)(T+1) 2a(T +1)

On nonconvex problems, (weaker) convergence assurances can be
established for ElastiQuant with momentum. In particular, Elasti-
Quant with momentum is guaranteed to converge to a local minima
for smooth general loss functions.

3.4.2  ElastiQuant with Momentum for Smooth Nonconvex Optimiza-
tion. Let f : R? — R denote a possibly nonconvex and f-smooth
function with |Vf(w)|| < V for all w. Let wy denote an initial
point, w* = arg min f(w), and ep be defined as in Eqn (2).
Suppose that ElastiQuant with momentum is executed for T
iterations with ¢ = min{(1- y)/(2f), C/NT + 1} for some C >
0 on K processors, each with access to independent stochastic
gradients of f with a second-moment bound B. Then ElastiQuant
with momentum satisfies
2(f (wo) = f(W) (1 - p)
a(T+1)

tzror,l'i'r'lTEHWf(Wt)”Z] <

5

C
+(1 - )3NT +1

V.Here V = B(p2((1 - p)l — 1)?

+(1 = )®) (V2 + (1 + €0)B/K)

In next subsection, this analysis is extended to decentralized set-
tings.

3.5 ElastiQuant for Decentralized Training

In distributed training (setup in Section 4.1 can be an example), all
networked devices cannot guarantee low latency and high band-
width networks for gradient communication. Here we show Elas-
tiQuant integration with communication-efficient variants of de-
centralized parallel SGD for a promising solution to train deep
networks in constrained networked systems. In a decentralized
optimization scenario, the following problem can be considered

. R
ﬁ%ﬂw=§;ﬁW)

where fi(w) = Ez_p, [f(w; )], D; is the local datasets stored in
edge GPU i, and f(w; ) is the loss of a model described by w on
mini-batch &. At iteration t of decentralized algorithms (such as
D2 [27], AD-PSGD [13], D-PSGD [26]), each edge GPU i computes

its local stochastic gradient gi(wii)) with Ee(i>~1)- [gi(wgi))] =
t i
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a. Loss of ResNet-110 on CIFAR-10 b. Loss of ResNet-18 on ImageNet
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Figure 1: ElastiQuant evaluation and performance compari-
son by distributed training on edge GPUs: Training loss, test

accuracy, and mean normalized variance.

Vf (wgi)) where wti) local parameter vector and local dataset ft(i).
Then, edge GPU i fetches its neighbours’ parameter vectors and

() _ yvK ()
t-l+-1/2 = 2jn Wijw,’

where W € REXK is a symmetric doubly stochastic matrix (for all
iw=wT and 25{:1 W;,j = 1). Note that W; j > 0 in general and
Wj,j = 0 means that edge GPUs i and j are not connected. Finally,
edge GPU i updates its local parameter vector using the update rule

@ ),

t+1 t+1/2

updates its local parameter vector using w

W, — W - agi(w

3.6 Worst-case Variance Analysis

Generally, a worst-case analysis can be incorporated into any solu-
tion selection process for a robust system design. Here, an upper
bound for tight worst-case variance is established by optimization
over the distribution of normalized coordinates for an arbitrary
sequence of quantization levels. Worst-case analysis helps gain in-
sights on the behavior of the variance upper bound - by performing
which, this section shows that ElastiQuant is nearly optimal in
the worst-case. This section also extends the elastic quantization
strategy from Section 3.1 that focuses on a special case of elastic
quantization levels to the below arbitrary sequence of levels.

3.6.1 Generally Spaced Level. Space is a collection of elements
from a set (L here) endowed with some features/structure that can
be generally or exponentially spaced.

Let £ = (lp,I1,-- -, s, Is4+1) denote an arbitrary sequence of quan-
tization levels where [y = 0 < [; < - -+ < [g41 = 1. Recall that in Sec-
tion 3.1, for r € [0, 1], $(r) was defined to satisfy Is(,) <7 < Iz(r)41
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Table 3: Evaluating scalability performance of ElastiQuant by distributed training on 2 to 7 devices, and comparison with SGD:
Calculating speedup (Sp) and total time (T) per epoch in minutes - sum of computation (Cp), encoding (En), transmission (7Tx).

Network, Scheme 2 Edge GPUs 4 Edge GPUs 7 Edge GPUs
Dataset Cp En Tx T Cp En Tx T Sp Cp En Tx T Sp
SGD 16.06 NA 1793 3399 1047 NA 20.62 31.09 -2917 1534 NA 26.84 4218 11.09 |
ResNet-34, 8-bit-ElastiQuant 14.61 4.15 16.16 34.92 7.98 4.04 1192 23.94 -10987T 10.05 4.04 1026 2535 1.41]
ImageNet 4-bit-ElastiQuant 15.75 0.93 1555 32.23 11.19 125 932 21.76 -1047T 9.64 134 747 1845 -3.317
E-ElastiQuant 1472 134 1524 313 1057 155 829 2041 -10.89T 891 135 6.01 1627 -4.147
SGD 177.23 NA 22253 399.76 1679 NA 265.17 433.07 3331 ] 8528 NA 46506 550.34 117.27 |
ResNet-50, 8-bit-ElastiQuant 179.21 38.65 190.55 409.09 145.25 39.97 145.25 330.49 -78.62T 99.94 38.64 183.89 32247 -8.027
ImageNet 4-bit-ElastiQuant 179.89 9.33 183.89 373.11 142.58 8.12 118.59 269.17 -103.94T 110.6 6.66 126.59 243.85 -25.3217
E-ElastiQuant  169.23 21.32 1719 362.45 126.59 18.66 103.93 249.18 -113.27 T 119.93 19.99 78.62 218.54 -30.64 T

and p(r) to satisfy r = (1 — p(r))ls) + p(r)l5(;)4+1- Here, 7(r) is
defined as lg(r)ﬂ - lg(r), with §(r) € 0,1,---,s.So, hi(v,s) can be
defined in two cases depending on the quantization interval of r;:
0 probability: 1 — py (ri, £)
Iy otherwise

Here p1(r, L) =r/l

Ifr; € [0,11]; hi(v,s) = {

probability: 1 — ps (r;, £)

otherwise

Ifr; € [lj_l,lj] s hi(v,s) = {j]:—l
J
Herej=1,---,s+1.pa(r,L) = (r - lj_l) /Tj-1
When the elements from coordinates of vector v defined as S; fall
into the (j + 1) bin, then for j =0,---,s, S; Lii:ire [lj, lj+1]}.
Let d; = |S j|, Following the variance bound Eqn (2), it can be
shown that

E [10s(v) = vII?] < [Ivl|*(min t2do /4, 7o/do

S
+Zmin‘r]2-dj/4, Tj(\/d_j_ ljd;))
j=1

Above is the ElastiQuant variance upper bound for generally spaced
levels.

3.6.2 Exponentially Spaced Levels. In the case of exponentially
spaced collection of levels £, = (0,p%, -+, p% p, 1) for p € (0,1)
with s as number of quantization levels in integer. Here, 7y = p°
and 7j = (1-p)p*/ for j =1, - ,s. For any given s and d, roughly
similar to the above subsection, the worst-case variance bound can
be found. When the optimal value of p is searched, the worst-case
variance is reduced for any given s and d.

ElastiQuant is analyzed by obtaining variance bound values by
varying p in two setups. In the first setup, d is kept fixed at 10%,
s varying from 2 to 8. Here it was observed that variance upper
bound decreases as s increases - the optimal p value shifts to the
left as s increases. In the second setup, s is fixed at 6, varying d from
102 to 10°. Here, variance upper bound increases as d increases -
the optimal p value shifts to the right as d increases.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate ElastiQuant that aims to:

o Investigate the effect of elastic quantization on solution qual-
ity by examining distributed training performance. Perform
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this by measuring variance, loss, speedups, accuracy for net-
works from the ResNet family when distributed training
using ImageNet and CIFAR datasets.

o Justify the theoretical analysis by examination of the vari-
ance induced by ElastiQuant and relevant schemes in a decen-
tralized IoT setting. Also, study their convergence in terms
of loss and accuracy as the training progresses in iterations.

e Examine the distributed training in real-world scalability
and performance of ElastiQuant. Check for improvements
by comparing results with SGD variants, QSGD-V, Atomo,
DGC, TernGrad, and others.

4.1

For experiments, to replicate the real-world heterogeneous IoT [22],
18 development boards (K = 18) were set up: 7 Jetson Xaviers, 4
Jetson Nanos inserted on a Jetson Mate carrier board, 3 accelerated
Google Coral Dev boards, 4 Intel Movidius NCS accelerated Rasp-
berry Pi 4. ElastiQuant evaluation, performance, and characteristics
comparison with related schemes are performed by distributed
model training on these 18 IoT edge GPU development boards. Por-
tions of ImageNet, CIFAR-10, CIFAR-100 datasets are supplied to
these boards for distributed training of ResNet family networks
such as ResNet-18, ResNet-20, ResNet-34, ResNet-50, Resnet-110.
ElastiQuant implementation is in TensorFLow since the TFLite
version is well suited for edge GPUs and supports the used hard-
ware accelerators. More resource-constrained small CPUs and AloT
boards can also be involved in learning by employing IoT hardware-
friendly training algorithms like Train++ [19], ML-MCU [21]. The
setup in the original papers of the related schemes uses cluster
machines with slots containing few standard NVIDIA GPUs (see
Table 1). Their setups are orthogonal to the ElastiQuant evaluation
setup consisting of edge GPUs wirelessly interconnected using a
local access point. Hence, the results from the original paper are
not inherited. Instead, their proposed schemes are re-evaluated
alongside ElastiQuant in the distributed setup with wireless edge
GPUs. For improved readability, all graphs contain sampled and
smoothed data.

Setup

4.2 Solution Quality: Loss, Accuracy & Variance

All selected schemes, including ElastiQuant are trained by quan-
tizing and de-quantizing gradients shared by 18 edge GPUs. The
FP-SGD is used as a baseline as it performs plain training without
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Figure 2: ElastiQuant variants evaluation and comparison of
4-bit-ElastiQuant with DGC, momentum tuned DGC variants,
TernGrad, and other schemes.

quantization making it impractical in limited bandwidth IoT net-
works. SGD is shown to spotlight the significance of performance
gaps between schemes. E.g., the gap between QSGD and QSGD-V
that lack theoretical assurances.

Training Loss. Figure 1 a-b shows the training loss with 18 GPUs
for both datasets - the following can be observed: On ImageNet,
ElastiQuant, QSGD-V has lower loss compared to QSGD; On CIFAR-
10, there is a significant gap in training loss which grows as training
progresses.

Test Accuracy. Figure 1 c-d shows the test accuracy results for
training ResNet from random initialization up to convergence -
following can be observed: Similar to the training loss, performance
gaps in test accuracy exist. Here, unlike ElastiQuant, QSGD does
not achieve the accuracy of FP-SGD; For both datasets, ElastiQuant
and QSGD-V outperform QSGD; The gap between ElastiQuant and
QSGD is significant on ImageNet. This is because ElastiQuant and
QSGD-V show lower variance in comparison to QSGD, which in
fact can benefit both training loss and generalization error.

Quantization induced Variance. Variance of the gradient versus
the training iterations is given in Figure 1 e-f. For both datasets,
FP-SGD shows the lowest variance as it does not quantize gradi-
ents. For CIFAR-10, the variance of ElastiQuant and QSGD-V is
lesser than SGD throughout the training, and it decreases at higher
training iterations where the learning rate is dropped. For Ima-
geNet, at reduced learning rates, the variance of ElastiQuant grows
lesser in comparison to SGD. This observation shows that, in some
cases, ElastiQuant can improve solution quality by achieving lower
variance than the unrealistic baseline set by FP-SGD.

4.3 Scalability and Speedup Behavior

During practical distributed training, the advantage of ElastiQuant
is it provides code-length bounds on the gradients transmitted, plus
good accuracy. QSGD also provides such bounds, but it drops model
quality in terms of accuracy (above subsection). The QSGD-V has
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lower loss and variance than QSGD but does not provide bounds
on the expected code length. In addition to the 4-bit and 8-bit Elasti-
Quant variants, another variant named E-ElastiQuant is created for
a detailed comparison of scalability and Speedup behavior during
distributed training. E-ElastiQuant employs Huffman coding on
gradients to encode the integer levels transmitted.

Scalability - Cost for Computation (Cp), Encoding (En), and
Transmission (Tx). ResNet-34 and ResNet-50 are each trained
three times on Jetson Xaviers (edge GPU) using the ImageNet
dataset - the first time using 2 Xaviers, then 4 Xaviers, and fi-
nally using all 7 Xaviers. Scalability behavior can be quantified
by first calculating the total distributed training time per epoch (T),
which is the sum of Cp, En, Tx. Then, by subtracting T of schemes,
the speedup (Sp) achieved due to scaling by adding extra edge
GPUs can be obtained. Comparing scalability results of SGD, QSGD,
QSGD-V with ElastiQuant variants, QSGD-V showed roughly simi-
lar performance as 4-bit-ElastiQuant, and QSGD shows under par
convergence, so both omitted. The results are given in Table 3. In
the Sp column of the table, the down-arrow represents negative
scalability and positive for up-arrow. For SGD, negative scalabil-
ity can be observed as, when device count increases from 4 to 7,
instead of speedups, T increases from 31.09 min to 42.18 min for
ResNet-34, and from 433.07 min to 550.34 min for ResNet-50; The
4-bit-ElastiQuant attains positive scaling for both ResNets. E.g., for
ResNet-34, T is conserved by 10.47 min (1.48 times speedup) when
devices scaled from 2 to 4, and 3.31 min (1.17 times speedup) when
devices scaled from 4 to 7; The 8-bit-ElastiQuant faces a scalability
stall (no speedups) when devices scaled from 4 to 7. This behavior is
due to elevated encoding and communication costs; E-ElastiQuant
shows top-of-the-class scalability and communication compression
as T is conserved by 4.14 min for ResNet-34 and 30.64 min for
ResNet-50 when devices scaled from 4 to 7.

Training Speedup and Accuracy. There is a minimal performance
gap across all considered schemes in the 2 Xaviers setup and high-
est for 7 devices (see Table 3). So, the ideal training speedup and
accuracy comparison approach is to use the 2 Xaviers setup for
distributed training of ResNet-50 on ImageNet. The time versus ac-
curacy results is given in Figure 2 a - the following can be observed:
All ElastiQuant variants match the non-quantized ResNet-50 model
accuracy, with speedups over the SGD (baseline). The QSGD-V
result is not plotted as its performance overlaps 4-bit-ElastiQuant
in the majority of points on the curve. EF-SignSGD needed inten-
sive hyperparameter tuning to make it converge and bring up its
accuracy close to other schemes that use standard hyperparameter
settings. This tuning makes EF-SignSGD send additional scaling
data, reducing parallelism and efficiency. Still, the speedup of tuned
EF-SignSGD remains inferior to 8-bit ElastiQuant. In summary, E-
ElastiQuant offers competitive performance while simultaneously
providing convergence assurances, also additional communication
bandwidth savings from its gradients encoding feature.

4.4 Results Comparison

Here we perform additional ElastiQuant evaluations and compar-
isons by including three related schemes.
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Table 4: Accuracy comparison of ElastiQuant trained ResNets
with models trained using DGC, compression ratio (CR)
tuned DGC, Atomo, TernGrad, others. FP-SGD is baseline.

Network, Scheme Tune Edge Test
Dataset GPUs Accuracy (%)

Atomo 87.6

ResNet-20, TernGrad Default No convergence
CIFAR-10 FP-SGD . 9.5
4-bit-ElastiQuant 86.3
e T E
ResNet-18, DGC 0.12 CR 2 90.08
CIFAR-10 : 6 87.36
FP-SGD 6 92.72
4-bit-ElastiQuant DUt ¢ 91.96
2 74.41
ResNet-18, DGC 0.02 CR 6 72.69
CIFAR-100 FP-SGD 74.33
4-bit-ElastiQuant Default 6 73.63
SGD 89.76
QSGD 89.22
ResNet-110, QSGD-V 90.10
CIFAR-10 Fpsgp  Default 6 92.03
TernGrad 91.33
4-bit-ElastiQuant 90.80

ElastiQuant vs Deep Gradient Compression (DGC). DGC [14]
is a sparsification method that leverages gradient clipping and mo-
mentum correction to improve accuracy. DGC was selected as it can
show close to full-precision performance when carefully tuned. For
schemes to have the same communication cost during distributed
training, a closely similar compression ratio is set: 12 % for DGC,
4 bits for ElastiQuant. The result for ResNet-110 on CIFAR-10 is
shown in Figure 2 b-c, to compare convergence and generalization
of schemes. DGC needed careful hyperparameter tuning to not
show noisy curves and get close to the full-precision performance.
E.g., the learning rate is set to 0.06, and momentum tuned to 0.01
(to produce DGC-T1), 0.101 (to produce DGC-T2). For ElastiQuant,
the hyperparameters from full-precision schemes can be reused
with slight tuning. This easy implementation nature enables to
achieve on-the-fly communication efficiency. Also, ElastiQuant can
be viewed as a complementary strategy as it is compatible to be
used as the encoding function for DGC and other schemes resulting
in further reduction of communication costs.

The same schemes were also tested by varying the count of
training involved devices and varying compression ratios (CR).
ElastiQuant was set to use the same tuning of the FP-SGD baseline,
and the CR hyperparameters for DGC were tuned to 2% (0.02) and
12% (0.12). The distributed training result in terms of accuracy is
given in Table 4. Here, for ResNet-18 on both CIFAR-10 and CIFAR-
100, unlike ElastiQuant, DGC accuracy degrades when training
involved edge GPUs are scaled from 2 to 4. So, even if ElastiQuant
could save less communication bandwidth than DGC, ElastiQuant
is more practical due to its better scalability (see Table 3), enabling
pooling more devices to complete training faster.

ElastiQuant vs ATOMO and TernGrad. For further compari-
son, ATOMO [30] and TernGrad [32] were considered for training
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ResNet-20, ResNet-110 on CIFAR-10 using standard parameters.
This time the count of training involved devices was reduced from
18 to a maximum of 6 due to the inferior scalability characteristic
(in the current wireless IoT setup) of new schemes. From the results
in Table 4, for ResNet-20, although ATOMO shows slightly higher
accuracy than ElastiQuant, ATOMO consumed higher time for each
iteration as it computationally strains the edge GPUs set up for
training. TernGrad convergence performance for ResNet-20 was
under par for standard parameters, so additional tuning was per-
formed to bring it close to ATOMO and ElastiQuant performance.
For ResNet-110, TernGrad shows the closest performance to FP-
SGD and slightly outperforms 4-bit-ElastiQuant. But from Figure
2 d, 4-bit-ElastiQuant show lower mean normalized variance than
TernGrad and others.

5 CONCLUSION

This paper presented ElastiQuant to improve communication effi-
ciency during distributed learning in IoT. During extensive eval-
uation by using ElastiQuant for distributed training of 5 ResNet
variants on 18 wireless edge GPUs, ElastiQuant consistently demon-
strated the following: Improved solution quality as the resultant
ResNet models achieved lower loss and better accuracy; Higher
training scalability and speedup due to reduced communication
volume; Reduced quantization induced variance due to its elas-
tic quantization approach; On-the-fly communication efficiency
as ElastiQuant allows re-usage of parameters from full-precision
schemes with only slight tuning. Such improvements on hetero-
geneous IoT hardware show ElastiQuant’s robustness to system
variability, which is vital to scaling distributed learning on ubiqui-
tous resource-limited nodes in low bandwidth IoT networks. The
future extended version of this paper plans to include proofs of the
ElastiQuant’s assurance on its bounds on variance and communica-
tion bits.
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