2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI) | 978-1-6654-9704-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/SAMI54271.2022.9780768

SAMI 2022 « IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics « March 2-5, 2022 « Poprad, Slovakia

Advanced Analytics as a Service in Smart Factories

Mirco Soderi, Vignesh Kamath, Jeff Morgan, John G. Breslin
Data Science Institute, National University of Ireland Galway, Ireland {firstname.lastname} @nuigalway.ie

Abstract—A Kkey aspect of Intelligent Manufacturing is the
interface between the Edge and Fog layers on one side and the
Cloud on the other side. Once that some data extraction and
cleaning has been performed in the (logical and/or physical)
nearby of the production line, it is necessary to move to the
Cloud where distributed data and parallel computations make
it possible to train and use Machine Learning models. For a
wide range of applications, it is also necessary to restructure
and reconfigure the computation network over the time, reacting
to relevant events at real-time. This can be achieved (i) by making
the network and all of its components fully configurable through
API calls, (ii) by using containerization technologies, and (iii) by
relying on graphical user interfaces for development, data visual-
ization, monitoring, and interaction. In this work, an architecture
for a computation network is presented that (i) spreads across
the Edge, Fog and Cloud layers, (ii) is fully configurable through
API calls, and (iii) is based on Docker, Node-RED, MQTT, Scala,
Spark, and Cloud storage technologies such as Hadoop. Two
proofs of concept are presented: a clustering-based alerter, and
a demo environment plus a Postman collection including over 600
API calls to demonstrate how the proposed architecture enables
Big Data stream transformations and analytics as a Service.

Index Terms—Digital Factory, Smart Factory, Cloud Manu-
facturing, Cloud Computing, Internet of Things (IoT), Software
Containers, Graphical Programming Interfaces (GPI), Enterprise
Integration, Micro-services, Cyber Devices, Docker, Node-RED,
MQTT, Scala, Spark, Hadoop

I. INTRODUCTION

A key aspect of Intelligent Manufacturing is the interface
between the Edge and Fog layers on one side and the Cloud
on the other side. Once that some data extraction and cleaning
has been performed in the (logical and/or physical) nearby of
the production line, it is necessary to move to the Cloud where
distributed data and parallel computations make it possible to
train and use Machine Learning models.

For a wide range of applications, it is also necessary to
restructure and reconfigure the computation network over the
time, reacting to relevant events in real-time. This can be
achieved through the following: (i) let every component of the
computation network be accessible through APIs for remote
configuration; (ii) the use of containerization technologies; (iii)
graphical user interfaces for development, data visualization,
monitoring, and interaction. These three corners of what we
can call the Triangle of Smart Manufacturing (Fig. 1) emerge
from a wide review conducted as a part of this work, that (i)
provides state-of-the-art insights into the various IIoT tech-
nologies available in 2021; (ii) utilizes a bottom-up approach

This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant Number SFI/16/RC/3918
(Confirm). For the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript version arising
from this submission.

978-1-6654-9704-6/22/$31.00 ©2022 IEEE

to IIoT technology review, from Edge to Fog to Cloud; and
(iii) identifies technology trends.

Triangle of
Smart Manufacturing

docker

Node-RED

Fig. 1. The Triangle of Smart Manufacturing

A three-layer model is adopted for IIoT systems and de-
vices, including the Edge, the Fog, and the Cloud layer, as
shown in Table I.

TABLE I
IT MODEL: EDGE, FOG, AND CLOUD

Cloud, medium-to-large scale data centers
that provide services to devices and
systems located externally, typically off the
factory premises

Fog, small-to-medium scale data centers
or a group of computers (also known as
“cloud-lets”) that provide services to de-
vices and systems located in close proximity

Edge, all physical devices at the edge of the
network and their embedded software, and
all software components that directly read
from wireless devices

The surveyed devices have been identified by their popu-
larity, references in the scientific literature, and through the
authors’ experience. A contrast can be observed between
well-established and new industrial technology brands, that
allows to identify new feature/technology trends. These trends

000425

M. Soderi et al. « Advanced Analytics as a Service in Smart Factories

imply new skill requirements for digital workers/engineers.
Therefore, identifying these trends is paramount for aca-
demic/commercial institutions to be able to ensure that they
maintain their market competitiveness and technical relevance.
As for the Cloud technologies, a comprehensive review is also
found in [1].

This paper is structured as follows. A review of emerging
IToT technologies is proposed in Section II. The proposed
architecture for a computation network is presented in Section
III. The interface between the Edge/Fog layers and the Cloud
is described in Section IV, along with a description of the
actors involved in the communication. Two proofs of concept
are presented in Section VI. Future directions are outlined in
Section VII. Conclusions are drawn in Section VIIL

II. REVIEW

A wide range of technologies is surveyed, including IoT
devices, ASIC devices, IIoT devices, and other (Fig. 2). In
the authors’ experience, the selection of the right solution
for any specific application should consider a number of
criteria, among which: functional capability, performance [33],
scaling cost, strategic technology partnerships, and other. Upon
reviewing the IIoT devices, a number of trends were identified
(columns in Fig. 2).

Sense/Compute Program Comm os Envir
g

E I 8 -

Brang Device JES B335 586 HEER
Brainbox 88400 Va2 v VTV 7 - 1
Revolution PI Connect NV MV 7|V 7= A
ModBerry 500 Ci4 7|V |V 7 7 711
| CloudRal Box 7 v NV N
~ _ ClusBerry 9500-CM4. N4 v - MR Vi Is
Nvidea (GPU) Jetson XAVIER NX 7 M 711 ls
Intel (VPU) Movidius Myriad v J N 7
Z Amazon (VPU) AWS DeepLens 7 7 7 B s
; Google (VPU) Coral v v v . g |e
Digilent (FPGA) Atix-7 v v v : A I N)
EWON FLEXI VIVIVIY VIVIVIVIY VIV -V
Wago PFC200 VI VIVIVV v VIV v A I A
Opto22 Opto 22 VI VIVIVIV VIVIVIY VIV VIV
DELL EEE oV VIV I e
DELL VMEEE v VIVIVIV]I -] IV s
N i A v V] V|V V]| e
N v VvV v v VY V|V 17
2w P 7 MMEMEN 7 /] e
SIEMENS SIMATIC I0T2040 v V- VIVIVIV] -V VIV e
SIEMENS SIMATIC I0T2050 MENME BAME VIV VIV V|0
SIEMENS SIMATIC IPC127E o AN E |V 4 N A A YA
SIEMENS SIMATIC S7-1500 VI VIV vIviv v VIV V|2
Re 6200 VersaView v 4 v MANARNA
- 63008 Box PC v v v VIV [V |2
§ CompactLogix 5480 o I A A A v S|V v VIV Vs
T cPaL v V|V v MR
E NyB2s MBI v MBI MM
H o MEBErMY MM MEY V] s
Kepware v v VIV V|V VIVIVI[V |20
L, el Deviceltise A A AR YIVI |VIVIVIV |0
S inductive Auto Igniton A A YIVIVIVIVIVIV st
S Merosor saurs 1T Edge v VI VIVIVIVIVIV |
= Amazon AWS 10T Greengrass % MY MMNNMNNNA S

1.2 3 4 4 5 6 7 8 9 10 11 12 13 14 1

16 17

®
°
N
8

V direct mention of the feature
evidence that it is possible to connect/integrate the feature

Fig. 2. Industrial Internet of Things (IloT) Technology Survey

As mentioned, what clearly emerges from the survey is that
there are three pillars that underpin Smart Manufacturing at
present: (i) Standard Communication, (ii) Graphical Program-
ming Interfaces, and (iii) Virtual Containers.

A. Standard Communication

A diverse range of protocols exist for connecting industrial
technologies, all of which may be considered to be quite
complex with respect to the enterprise integration requirements
[3].

In the past, the OPC standard, now known as OPC classic or
OPC DA (Data Access) [5]; sought to unify data under a single
open communication protocol. Presently, the OPC classic stan-
dard has evolved into the OPC Unified Architecture (OPC UA)
Standard [6] [7] [8] [9], that also supports multiple services
in a Service Oriented Architecture (SOA). As such, OPC
UA enables interoperability among internal/external manufac-
turing systems, complex data modelling, secure encryption,
executable methods, data discovery and events.

The MQTT standard protocol for message brokering was
created out of a need for simplicity and scale, and is univer-
sally applied across various IoT domains of application [13]
[14] [15] [11]. It provides message transport that is agnostic
to the payload content. Messages are organized in topics.
Presently, Sparkplug [10] [12] has emerged for industrial data
modelling and for real-time control, that is based on MQTT.

Both OPC UA and MQTT have overlapping and distinguish-
ing aspects. In the literature, several studies [16] [17] [18] have
highlighted how MQTT could be considered the standard of
choice for IIoT applications, while OPC UA can be considered
the standard of choice for distributed machine control. Both of
them are open and supported by well-established institutions
[5] [11] [12]. As such, both have a pivotal role in Cloud
and Fog systems [19], and are often found together in the
middleware servers: OPC UA is used on the factory floor,
and MQTT is used to interface to the Cloud. Monolithic and
distributed versions are available for both of them.

B. Graphical Programming Interfaces

Graphical User Interfaces (GUI) are a cornerstone of au-
tomation engineering, from Programmable Logic Controllers
(PLCs), to Human Machine Interfaces (HMIs), and Supervi-
sory Control And Data Acquisition (SCADA) systems [20].

Traditionally, PLCs/HMIs/SCADA systems have been de-
veloped through commercial software that translates graphic
items into low level commands and functions optimized for
deterministic real-time control [21].

Presently, the IIoT technology survey has highlighted the
emergence of new GUIs with programming capabilities (GPI),
such as Node-RED [22]. Node-RED is today used extensively,
since it is open, it has a wide community of developers, it is
easily deployed across Edge-Fog-Cloud environments, and it
is operated through a Web interface. Used by the IoT hobbyists
in the origin, it is now widely used in professional production-
ready solutions [23], and in the academy for remote drone
control [4], sensor integration for intelligent manufacturing
containers [24], smart meter monitoring and security [25],
IoT sensor and Augmented Reality (AR) integration [26], and
remote energy monitoring [27].

Thanks to Node-RED, a common Web browser can be used
to connect to physical devices, collect and process data, and

000426

SAMI 2022 « IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics « March 2-5, 2022 « Poprad, Slovakia

integrate services. Atomic functionalities are represented as
nodes, and are organized in flows. Furthermore, Node-RED
supports modules for the building of user interfaces and data
visualizations. In summary, while it does not provide complex
programming capabilities, it enables system integration across
the Edge, Fog, and Cloud layers.

C. Virtual Containers

Cloud and Fog environments consist of a collection of
interconnected hosts that grant scalability and redundancy
through the load balancing [28]. A multiplicity of operating
systems can be found, also thanks to Virtual Machines (VMs).

More recently, the Containers have appeared on the scene.
They enable portability, efficient deployment, scalability, and
reduced overhead [29]. Containers are executable packages
that are isolated from other systems running on host com-
puters. Applications, commonly referred to as images, run in
the Containers, and often offer their services via APIs.

As such, a service created to run in a Container can
be hosted seamlessly and reliably on any technology layer
which provides a Container Engine such as Docker. Therefore,
software becomes ubiquitously transportable in Containers
across Edge, Fog, and Cloud environments.

The IIoT technology survey has allowed to identify var-
ious uses of containerization, from IIoT devices to indus-
trial computers. Containers enable micro-services in smart
manufacturing architectures [2], and are prevalent in IoT
architectures [30] and Fog/Cloud computing [31]. They grant a
new level of interoperability for systems and services, that are
enhanced as for the deployment, scalability, and redundancy.
So, centralized systems can be broken down into reusable col-
laborative components in Edge devices, Fog nodes, and Cloud
environments. Remarkably, there are 100,000s of ready-to-
use containerized applications at today [32], including MQTT
servers and Node-RED, and many others are being moved.

III. ARCHITECTURE

In Fig. 3 an example of a Smart Manufacturing Network is

R

represented.

maQrt
Broker

Text File
Gamma

Transformation
Library

OPC-UA-enabled
Vibration Sensor Text File

Delta
OPC-UA

Server X

OPC-UA-enabled
Temperature Sensor

Fig. 3. An example of a Smart Manufacturing Network

A. Devices

The physical devices and the other data sources are repre-
sented as blue boxes.

The cyber devices and the other computation nodes lying in
the Edge/Fog layers (Service Nodes), are depicted as orange
boxes. They are dockerized Node-RED applications, inter-
connected through MQTT broker(s). Each of them exposes
a number of configuration APIs through which they can be
fully customized as for their tasks, inputs, main outputs,
and secondary outputs (statuses). Task implementations are
loaded into the Service Nodes from a specialized Node-
RED application, still dockerized, called the Transformation
Library, that consists of a mere collection of reusable Node-
RED subflows (similar to functions in traditional programming
languages).

It is possible to distinguish five types of Service Nodes:
(i) those that read from an external data source and write to a
MQTT broker (orange boxes with blue writings); (ii) those that
read from an MQTT broker and write to an external storage
(represented the same); (iii) those that read from an MQTT
broker/topic, perform a transformation, and write to a different
MQTT broker/topic (orange boxes with black writings); (iv)
those that perform some sort of flow control (filtering, routing,
and other), represented in orange boxes with violet writings;
(v) those that interact with an Artificial Intelligence Server
(AIS), represented as orange boxes with a large and bold “ai”
writing.

The backup of a Docker Volume to be restored to the /data
folder of a virgin Node-RED Docker Container to make of
it an empty Service Node ready to be configured is available
open-source on GitHub', named as servicenode.tar (being too
large for GitHub, tar files require Git LFS, please find them
also in the Google Drive? in case you would experience any
issue). Some environment variables must be set, see env.txt for
an example. Self-signed SSL certificates must be loaded in the
/data folder of each Service Node. See ExampleCerts.zip for
ready-to-use certificates for development and test purposes.

The Service Node ACL API, still implemented as a dock-
erized Node-RED application, is called by all Service Node
Configuration APIs to verify if the requester has the necessary
privileges for configuring that specific aspect of that specific
Service Node. The backup of a Docker Volume with an
example implementation is available open-source on GitHub,
named as servicenodeacl.tar.

B. Broker

As for the MQTT broker, the backup of a Docker Vol-
ume to be restored to the /opt/emqgx folder of a virgin
emqgx/emqx:4.3.2 Docker Container to run the examples de-
scribed in Section VI is available open-source on GitHub,
named as broker.tar. The backup of a Docker Volume to be
restored to the /data folder of a virgin Node-RED Container

Ihttps://github.com/mircosoderi/Advanced- Analytics-as-a-Service-in-
Smart-Factories
Zhttps://drive.google.com/file/d/15jDdmnRsfp9o6QwOfkGIGmBeck VN9gzn

000427

M. Soderi et al. « Advanced Analytics as a Service in Smart Factories

to have an example of ACL API compatible with the broker
up and running is available open-source on GitHub, named as
brokeracl.tar.

C. Transformation Library

The Transformation Library is a dockerized Node-RED
application that is not meant to run any code, being instead
just a collection of reusable Node-RED subflows meant to
be loaded (via API call) to the Service Nodes where they
actually execute. The backup of a Docker Volume meant to
be restored to the /data folder of a virgin Node-RED Container
to make of it a Transformation Library is available open-source
on GitHub, named as transformationlibrary.tar.

D. Artificial Intelligence Server

The Artificial Intelligence Server (AIS), is a dockerized
Scala application that relies on Akka HTTP and on a number
of Cloud-related dependencies such as Spark, and Hadoop.
The “ai” Service Nodes can be seen as clients of the AIS.
A detailed description of both, and of how they interact, is
provided in Section IV. The backup of a Docker Volume
ready to be restored to the /home folder of a virgin mozilla/sbt
Docker Container to make of it an Artificial Intelligence Server
is available open-source on GitHub, named as dockerized-
aiserver.tar.

E. Interaction

The interaction among the building blocks presented above
is represented in Fig. 4. The community version of the EMQ
broker has been used so far. Anyway, it can be replaced by
any other implementation.

User-defined
Docker Bridge

Service Node (Docker Container) MQTT Broker (Docker Container)

T Node-RED app

Access Control

(Docker Container)

ACLAPI Docker Container

S.N. ACL API
(Dockerized)

Node-RED app (subflows only)

Example
Node-RED
Implementation

EMQ-compliant Example
Node-RED Implementation

Fig. 4.
Network

Interactions among the key components of a Smart Manufacturing

IV. FROM EDGE TO CLOUD AND BACK AGAIN

The interaction between each of the ai Service Nodes and
the AIS is depicted in Fig. 5.

The AIS exposes a set of APIs to the ai Service Nodes,
meant to be used for configuration purposes, and for the
delivery of input values and control signals.

Also, it includes an extendable tasks library, that is made
of: (i) Scala classes, that are efficient but require a server

[l scala Artificial Intelligence Server

Service Node (Node-RED Docker container)

“ai” Subflow loaded from the
Transformation Library through the
PUT /transformation API

PUT Configuration API AiSN:1880 ConfigFile
Subflow Input “
y \ . 1 |
POST /nodes/AiSN:1880
POST Status AP ‘
Implementation of the Al Task

1 Type configured for AiSN:1880
1

Fig. 5. Interaction between the ai Service Nodes, and the AIS

restart to be refreshed; (ii) text files containing appropriate
Scala expressions compiled on-the-fly when needed, that are
less efficient but can be added while the server is running and
are immediately available to the ai Service Nodes.

For each ai Service Node that interfaces with it, the AIS
keeps a configuration file, where it is indicated the task to be
executed when a new input arrives from the Service Node, and
the configuration parameters that are specific to the task to be
executed.

For each ai Service Node that interfaces with it, the AIS
also reserves some local disk space to accommodate one file
in any format plus possible stream folders (see Section V).

As for the ai Service Nodes, they are Service Nodes
where the ai Node-RED subflow has been loaded from the
Transformation Library. Thanks to that, each of them exposes
APIs for setting: (i) the credentials to be used to make calls
to the AIS; (ii) the security level of HTTPS communications
with the AIS; (iii) the task configurations, that are forwarded
to the AIS.

Also, ai Service Nodes are capable to deliver to the AIS
those values that they get from their configured input MQTT
broker instance and topic. They do that by means of appro-
priate API calls made to the AIS.

Also, each ai Service Node exposes the APIs that are called
by the AIS to provide back (asynchronously) the results of the
processing of the input values that come from the ai Service
Node over the time, and/or the possible ongoing status(es) of
the execution, including possible errors.

V. BIG DATA STREAM PROCESSING AND ANALYTICS

At the date of today, a number of tasks have been im-
plemented and are natively available in the AIS for (i) the
processing of (Kafka) Big Data streams, including datatype
casting, computation of statistics and expressions, filtering,
comparison and join of multiple streams into one; (ii) the
training of clustering, classification, and regression models
with libsvm datasets stored on Hadoop and the storage of
the trained models still on Hadoop; (iii) the execution of
predictions, by getting the trained model from Hadoop and the
input data from Kafka streams or API calls; (iv) the feeding
of Kafka streams via API calls.

The read/write operations from/to Big Data (Kafka) streams,
and the parallel data transformations on Big Data streams, are

000428

SAMI 2022 « IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics « March 2-5, 2022 « Poprad, Slovakia

performed by peculiar tasks implemented in the AIS library.
They rely on the Spark Structured Streaming. They accept
control signals (start, stop) and configuration parameters (in-
cluding those related to the input and output streams) from
the ai Service Nodes. They process the data that come from
the configured input stream, and they write to the configured
output stream.

In Subsection VI-B, it is described how to setup a demo
environment, and how to configure and use it, through a
Postman collection of over 600 API calls that are meant to
demonstrate the Big Data stream processing and analytics
functionalities exposed by the AIS.

V1. PROOFS OF CONCEPT

Two proofs of concept are described in this section: (i) a
clustering-based alerter; (ii) a comprehensive demonstration of
the Big Data stream processing and analytic capabilities of the
Artificial Intelligence Server at today.

A. Clustering-based alerter

The computation network built for this proof of concept
(Fig. 6) monitors a relational database table, and when a
new row is added, it extracts the numeric value from a
configured column, and it runs a K-Means clustering with K=3
to determine if it is higher than normal, in which case it writes
the value to a configured alert RDB table.

ExampleRDB ExampleDbtail ExampleExpr

1 select

RDB server Service Node Service Node

3 example/row,
4 example/value
Example

ExampleBroker
5 example/valug Alerter

10 insert 2 example/row

AP
BrokerACL i

3 example/alertrow

Sl ExampleDbwrt

i Context Broker
Service Node 6 example/alert Service Node

8 rt

_— pQ,
xampleTpl [P* s Y
A -)

- UliEEemp

Service Node

< i

TransformationLibrary & ServiceNodeACL in separated containers

Fig. 6. Proof of concept: anomaly detection through Service Nodes, AIS,
Spark, and Hadoop

Each box is a separated Docker Container. All contain-
ers are connected to the same user-defined Docker net-
work/bridge, named as ExampleNetwork. The (host)names
of Containers are in bold in each box. Docker Volumes
are used. Their backups are available for download open-
source on GitHub, singularly, or wrapped in the (very large)
example_volumes_backup.tar. Once that the AIS container is
started, the server must be started getting a shell from the
container, moving to /home, running sbt, and then issuing
the reStart sbt command. The AlTask specifically developed
for this proof of concept is available open-source on GitHub,
named as MyAlerterV2. It must be added to the AIS library

via docker cp. The zipped docker-compose project for the
single-node Hadoop, based on the Big Data Europe one, is
available open-source on GitHub. When starting the Service
Nodes, some environment variables must be set. See env.txt,
and ExampleAlerter.txt, both available open-source on GitHub.
In the proof of concept, all communications are over HTTPS,
and authenticated. To achieve the same, the backup of the
Docker Volume for Service Nodes must be uncompressed, the
settings.js edited, the needed artifacts added, and compressed
again. The RDBMS used for the proof of concept is a
dockerized MariaDB. The RDB schema is available open-
source on GitHub, named as ExampleRDB.sql.

After being created and started, the empty Service Nodes
must be configured via API calls**. To use the API calls as
they are, map the port 1880 to the ports from 1993 onward,
clockwise from ExampleDbtail. Map the ExampleAlerter to
the port 2001 anyway.

B. Big Data stream processing and analytics

The demo environment is depicted in Fig. 7. Non-trivial
port mappings are indicated. They are mandatory to use the
Postman API collection® as is. Ensure that you have created all
needed containers and have all of them up and running before
that you move to the Postman API collection. You might want
to use the docker-compose.yml that is available open-source in
the GitHub repository to have a single-node dockerized Kafka
instance up and running, to be used for local development,
and for the purposes of this proof of concept. You also might
want to download the NewServiceNodeQuickly.zip archive
and go through the quickstart.txt file inside it, to create empty
Service Nodes quickly. Remarkably, you might want to restore
TestMQTTMonitor.tar to a virgin Node-RED container and
use such dockerized Node-RED application to monitor the
relevant MQTT topics and have evidence that everything is
working as expected while you go through the API calls.

VII. FUTURE DIRECTIONS

This research will proceed along three main directions: (i)
extension of the functionalities natively available in the AIS;
(i) Data Visualization as a Service, both in the Edge/Fog
layers via the node-red-dashboard module, and Cloud-based
by adding dedicated functionalities in the AIS; (iii) the devel-
opment of a new Node-RED palette to hide as far as possible
the complexity of Big Data processing and analytics, so that
one day, for the developer, working with small data available
locally, or with Big Data (streams) flowing on the Cloud, could
be the same, or nearly the same.

VIII. CONCLUSIONS

In this work, a review of cutting-edge IloT technologies
has been conducted, and three key trends have been identified:
standardization of communication, graphical development en-
vironments, and containerization. Based on that, a proposal

3https://documenter.getpostman.com/view/16531967/Tzm5Gbqy
“https://documenter.getpostman.com/view/16531967/Tzz4SL7z
Shttps://documenter.getpostman.com/view/16531967/UV 5agGc6

000429

M. Soderi et al. « Advanced Analytics as a Service in Smart Factories

API calls

ExampleBroker
TestinjectStream P

inject Service Node
Port: 2120

TestHttp
http Service Node

test/inhttp Port: 2121

test/outhttp Spark Streaming

test/sthttp
TestAl
ai Service Node POST nodes
Ports: 1) 21152) 2123 POST nodes/host

TestinjectAl
inject Service Node

Ports: 1) 2111 2) 2122 test/inai

test/outai -
Spark Streaming

test/stai
TestKafkaProducer [INGAE-RED

Node |* kafka=
2)2116 | producer

TestinjectKafka
Service Node
21122) 2118

test/inkp

test/outkp

=
test/stkp

test/outke
ey

TestKafkaConsumer
kafkac Service Node
Ports: 1) 2114 2) 2117

test/stke

TestAlOutputStream
kafkac Service Node
Port: 2119

test/outaios

test/staios

Fig. 7. Proof of concept: Demo environment for Big Data stream processing
and analytics

has been presented of a network of dockerized Node-RED
applications fully configurable through APIs that interface to
Artificial Intelligence Servers to run parallel computations on
Big Data in the Cloud. Two proofs of concept have been
described: a clustering-based alerter, and a demo environment
plus a collection of about 700 API calls to showcase the AIS
Big Data stream processing and analytic capabilities. Future
directions for this research have been also identified.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
(11]

[12]

REFERENCES

S. Yangui, “A panorama of cloud platforms for iot applications across
industries,” Sensors (Switzerland), 2020, doi: 10.3390/s20092701.

M. Moghaddam, M. N. Cadavid, C. R. Kenley, and A. V. Deshmukh,
“Reference architectures for smart manufacturing: A critical review,” J.
Manuf. Syst., 2018, doi: 10.1016/j.jmsy.2018.10.006.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of indus-
trial communication: Automation networks in the era of the internet
of things and industry 4.0, IEEE Ind. Electron. Mag., 2017, doi:
10.1109/MIE.2017.2649104.

M. Salhaoui, A. Guerrero-Gonzilez, M. Arioua, F. J. Ortiz, A. El
Oualkadi, and C. L. Torregrosa, “Smart industrial iot monitoring and
control system based on UAV and cloud computing applied to a concrete
plant,” Sensors (Switzerland), 2019, doi: 10.3390/s19153316.
OPC Foundation, “OPC Technologies.” [Online].
https://opcfoundation.org/. [Accessed: 15-Feb-2021].

M. Schleipen, S. S. Gilani, T. Bischoff, and J. Pfrommer, “OPC
UA & Industrie 4.0 - Enabling Technology with High Diversity and
Variability,” in Procedia CIRP, 2016, doi: 10.1016/j.procir.2016.11.055.
F. Pauker, T. Frithwirth, B. Kittl, and W. Kastner, “A Systematic
Approach to OPC UA Information Model Design,” in Procedia CIRP,
2016, doi: 10.1016/j.procir.2016.11.056.

P. F. S. De Melo and E. P. Godoy, “Controller Interface for Industry
4.0 based on RAMI 4.0 and OPC UA,” in 2019 IEEE International
Workshop on Metrology for Industry 4.0 and IoT, Metrolnd 4.0 and
10T 2019 - Proceedings, 2019, doi: 10.1109/METROI4.2019.8792837.
OPC Foundation, “OPC Unified Architecture Part 1: Overview and
Concepts Version 1.02,” OPC Foundation. 2012.

Eclipse Foundation, “Sparkplug Specification Version 2.2,” 2019.
MQTT.org, “MQTT: The Standard for IoT Messaging.” [Online]. Avail-
able: https://mqtt.org. [Accessed: 15-Feb-2021].

Eclipse Foundation, “SparkPlug.” [Online].
https://sparkplug.eclipse.org/. [Accessed: 15-Feb-2021].

Available:

Available:

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

000430

E. G. Davis, A. Calveras, and 1. Demirkol, “Improving packet delivery
performance of publish/subscribe protocols in wireless sensor networks,”
Sensors (Switzerland), 2013, doi: 10.3390/s130100648.

R. Hassan, F. Qamar, M. K. Hasan, A. Hafizah, M. Aman, and A.
S. Ahmed, “Internet of Things and Its Applications: A Comprehensive
Survey,” pp. 1-29, 2020.

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Commun. Surv. Tutorials, 2015, doi:
10.1109/COMST.2015.2444095.

S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC
UA versus ROS, DDS, and MQTT: Performance evaluation of industry
4.0 protocols,” in Proceedings of the IEEE International Conference on
Industrial Technology, 2019, doi: 10.1109/ICIT.2019.8755050.

M. S. Rocha, G. S. Sestito, A. L. Dias, A. C. Turcato, D. Brandio,
and P. Ferrari, “On the performance of OPC UA and MQTT for data
exchange between industrial plants and cloud servers,” Acta IMEKO,
2019, doi: 10.21014/acta_imeko.v8i2.648.

M. Silveira Rocha, G. Serpa Sestito, A. Luis Dias, A. Celso Turcato, and
D. Brandao, “Performance Comparison between OPC UA and MQTT
for Data Exchange,” in 2018 Workshop on Metrology for Industry
4.0 and IoT, Metrolnd 4.0 and IoT 2018 - Proceedings, 2018, doi:
10.1109/METROI4.2018.8428342.

J. Morgan and G. E. O’Donnell, “Enabling a ubiquitous and cloud
manufacturing foundation with field-level service-oriented architec-
ture,” Int. J. Comput. Integr. Manuf., vol. 30, no. 4-5, 2017, doi:
10.1080/0951192X.2015.1032355.

K. L. S. Sharma, Overview of Industrial Process Automation: Second
Edition. 2016.

J. Morgan and G. E. O’Donnell, “The cyber physical implementation of
cloud manufactuirng monitoring systems,” in Procedia CIRP, 2015, vol.
33, doi: 10.1016/j.procir.2015.06.007.
OpenlJS Foundation, “Node-Red.”
https://nodered.org/. [Accessed: 16-Feb-2021].
0. Foundation, “2019 Node-RED Community Survey.” [Online]. Avail-
able: https://nodered.org/about/community/survey/2019/. [Accessed: 16-
Feb-2021].

A. D. Neal, R. G. Sharpe, P. P. Conway, and A. A. West, “smaRTI—A
cyber-physical intelligent container for industry 4.0 manufacturing,” J.
Manuf. Syst., 2019, doi: 10.1016/j.jmsy.2019.04.011.

R. P. Diaz Redondo, A. Ferndndez-Vilas, and G. F. Dos Reis, “Security
aspects in smart meters: Analysis and prevention,” Sensors (Switzer-
land), 2020, doi: 10.3390/s20143977.

0. Blanco-Novoa, P. Fraga-Lamas, M. A. Vilar-Montesinos, and T. M.
Fernandez-Caramés, “Creating the internet of augmented things: An
open-source framework to make iot devices and augmented and mixed
reality systems talk to each other,” Sensors (Switzerland), 2020, doi:
10.3390/s20113328.

F. Lima, A. A. Massote, and R. F. Maia, “IoT Energy Retrofit and
the Connection of Legacy Machines Inside the Industry 4.0 Concept,”
in IECON Proceedings (Industrial Electronics Conference), 2019, doi:
10.1109/IECON.2019.8927799.

P. O’Donovan, C. Gallagher, K. Leahy, and D. T. J. O’Sullivan, “A
comparison of fog and cloud computing cyber-physical interfaces for
Industry 4.0 real-time embedded machine learning engineering applica-
tions,” Comput. Ind., 2019, doi: 10.1016/j.compind.2019.04.016.

A. M. Joy, “Performance comparison between Linux containers and vir-
tual machines,” in Conference Proceeding - 2015 International Confer-
ence on Advances in Computer Engineering and Applications, ICACEA
2015, 2015, doi: 10.1109/ICACEA.2015.7164727.

S. Trilles, A. Gonzélez-Pérez, and J. Huerta, “An IoT platform based
on microservices and serverless paradigms for smart farming purposes,”
Sensors (Switzerland), 2020, doi: 10.3390/s20082418.

R. K. Naha et al, “Fog computing: Survey of trends, architec-
tures, requirements, and research directions,” IEEE Access, 2018, doi:
10.1109/ACCESS.2018.2866491.

Docker, “Docker Hub is the world’s largest library and community
for container images.” [Online]. Available: https://hub.docker.com/. [Ac-
cessed: 17-Feb-2021].

V. Kamath, J. Morgan and M. 1. Ali, “Industrial IoT and Digital Twins
for a Smart Factory : An open source toolkit for application design and
benchmarking,” 2020 Global Internet of Things Summit (GIoTS), 2020,
pp. 1-6, doi: 10.1109/GIOTS49054.2020.9119497.

[Online]. Available:

