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Abstract—Electric vehicles (EVs) need to be recharged at
intermediate locations, such as shopping malls, restaurants, and
parking lots, to meet the daily commute requirements of their
users. Currently, public electric vehicle supply equipment (EVSE)
serve EVs by conventional methods, which can result in long wait-
ing time for users. This issue reduces the travel efficiency of EVs
and thus affects user comfort. Most previous research has studied
energy consumption and charging cost optimization; however,
comparatively less work has focused on waiting time optimization
despite its great importance from the EV user’s perspective.
In this paper, we formulate the waiting time optimization as a
fuzzy integer linear programming problem and propose a novel
heuristic fuzzy inference system-based algorithm (FISA) that
resolves the objective function and minimizes the waiting time of
EVs at public EVSE installations. We developed the underlying
fuzzy inference system by defining the membership functions,
expert rules, and formulation for obtaining the optimal solution.
The novel FISA automates the correlations of the uncertain and
independent input parameters into weighted control variables
and resolves the objective function in each sampling period to
optimize the waiting time for EVs with the most urgent service
requirements. A java language-based simulator is developed for
a parking lot to evaluate the effectiveness of the proposed FISA.
The simulation results indicate higher efficiency of the proposed
FISA compared with state-of-art scheduling algorithms.

Index Terms— Charging and waiting times, electric vehicles,
electric vehicle supply equipment, fuzzy integer linear program-
ming, fuzzy inference system.

NOMENCLATURE
Variable Description
U, \, © Union, subtraction and composition operations
Y Laxity of EVs
w(x) Membership degree of x
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Di Fuzzy weight control variable for the i-th EV
% Ratio of RST to laxity

A,B,C Fuzzy sets

BC Battery capacity

CD Charge/discharge rate

F Vector for degree of membership

i Index for any ith EV

j Index for EVSE

Jind, gi Jain’s fairness index and service of i-th EV

[ Index for a new/last arrived EV

M, m Number of EVSEs

N Set of EVs

n Set of EVs at time ¢ such that n € N

Nger Number of served EVs

P Vector of fuzzy weight control variables

pP* Vector of optimal fuzzy weight control vari-
ables

Popa Parking end time

Ps:r Parking start time

0,q Queue size and counter variables

R,0Q,S Fuzzy relations

RST, Required service times

SoC State-of-Charge

Socder Departure time State-of-Charge

SoC™* Maximum SoC limit

SoC™in Minimum SoC limit

ST Stay time

T,t Time horizon and index for time step

ract Activation/charging start time of an EV

terr Arrival time of an EV

tdep | r* Departure time of an EV

Turr Vector for arrival time of EVs

Taep Vector for departure time of EVs

Tser Vector for service time of EVs

Ty Vector for waiting time of EVs

tmp,temp Temporary variables

wrT Waiting time

X’ Vector for service attended

X, Y, Z Universal sets

I. INTRODUCTION

HE transportation sector is a major contributor to green-
house gas emissions. For example, on the global scale,
the contribution to carbon dioxide (C O;) emission of fuels is
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about 23%, with the transportation sector being responsible for
about three-quarters of this amount. In the European Union,
passenger vehicles, such as cars and vans, are the largest
source of greenhouse emissions, which contribute about 15%
of the total C O, emission [1], [2]. Electric vehicles (EVs) can
play an important role in reducing dependency on fossil fuels
and the negative environmental impact of conventional vehi-
cles. They can also be used for distributed storage and have
the potential to support the electrical grid and microgrids via
vehicle-to-grid (V2G) technology, especially during peak-load
hours [3], [4]. Consequently, the automobile industry is rapidly
moving toward EVs [5]. To meet the daily commute require-
ments of the growing number of EVs [6], extensive EVSE
needs to be installed in public places, such as at the roadside
and in shopping malls, restaurants, and parking lots. However,
the installation of an EVSE is subject to several constraints,
including the additional power demand, capital expenditure
(CAPEX), and operating expenditure (OPEX). Additional
power demand could cause transformer overloading, feeder
congestion, circuit faults, power losses, and voltage reduction,
which would subsequently affect the overall operation of the
power grid [7], [8]. The CAPEX of many EVSE requires a
huge investment, as the cost of a public EVSE installation is
in the range of 30,000-80,000 USD [9]. Therefore, a limited
number of public EVSE installations at readily accessible
locations, such as large shopping malls and parking lots, must
serve all EVs. In general, charging an EV takes longer than
filling a conventional vehicle with gasoline. Currently, public
EVSE installations serve EVs according to the conventional
methods, which are unable to efficiently handle EV servicing
requirements, resulting in long charging queues (congestion)
with user’s inconvenience and higher social costs [10]. The
charging/service time of an EV depends on the EVSE and
the battery size, such as depending on the state-of-charge, the
charging time of a fast EVSE (level-3) can be about 30 minutes
long, specifically, it results in a more longer waiting and
become problematic for an EV in the situation when many
vehicles are waiting ahead [11]. Consequently, users must
endure long waiting time, which significantly affects daily
routines and are therefore undesirable. To achieve user satis-
faction, an efficient scheduling mechanism (i.e., charging and
discharging) [12] is needed that helps to reduce long waiting
time. However, due to the heterogeneous nature of input para-
meters and a high degree of uncertainty, for example in arrival,
service, and stay times, the desired amount of charge/discharge
energy, and the preferred departure time, EV scheduling is a
more complex problem and present challenges to the EVSEs
operators. The domain of input parameters may either be the
power grid, or the EVs themselves and their users’ behaviors,
or both depending on the problem requirements. The power
grid domain includes the baseload and electricity prices, the
EV domain consists of battery capacity and state-of-charge
(SoC), and the user parameters reflect daily behaviors, such
as arrival, departure, and parking times, as well as the desired
amount of charge/discharge energy. For the waiting time
optimization problem, the SoC and stay time in parking are
believed to be adequately accurate input parameters. In prac-
tice, the driver’s perception of the SoC and stay time are highly
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imprecise. For example, a driver can describe the SoC as a low,
medium, or high, while the parking stays time is described as
short, medium or long [13]. The independent and imprecise
nature of these parameters presents challenges in obtaining
an aggregated decision that restricts modeling the waiting
time problem as convex or non-convex optimization [14].
The fuzzy logic approach comprehensively deals with the
complexity of any real-time nonlinear system by breaking it
down into a simple weighted sum of linear subsystems [15],
[16]. The growing number of charging EVs at known public
locations (i.e., public EVSE installations), and the fuzzy
logic-based approach toward such a complex task motivated
us to formulate the research problem as fuzzy integer linear
programming and develop the fuzzy inference system-based
algorithm (FISA) for heuristically optimizing [14] the waiting
time. The main contributions of this research are threefold:

o« We introduced a novel objective function with fuzzy
control variable and formulated the waiting time opti-
mization of EVs as a fuzzy integer linear programming
problem. We developed the underlying inference mecha-
nism by defining the input & output memberships and the
expert’s rules to resolve the objective function. Moreover,
we provided a mathematical framework for computing
the fuzzy control variable and employed Bellman and
Zadeh'’s principles [17] for obtaining the optimal solution
set for EVs in each sampling period.

o We developed a novel heuristic fuzzy inference system-
based algorithm (FISA) with a detailed model repre-
senting and automating the correlation of uncertain &
independent SoC and user behaviors inputs to derive
weighted control variables for the requesting EVs. The
FISA takes several constraints (i.e., arrival, departure, stay
times, SoC, battery capacity, and the number of EVSE
installations) into account and heuristically resolves the
objective function through the degree of memberships for
the requesting EVs.

o The performance of the proposed FISA is evaluated by
applying it to a parking lot and simulated for EVs with
different state-of-charge (SoC) and stay times. The sim-
ulation results were validated against state-of-art FCES,
BA-EVPSS, R-EVPSS, LLR, EDF, LLF, and SEVS tech-
niques by considering the charging, waiting, and service
times, and fairness.

The remainder of this paper is organized as follows.
Section II discusses related work II. Section III presents the
proposed FISA by providing detailed mathematical modeling
and pseudocodes of the algorithms. Section IV provides the
simulation setup and discusses the results. Section V con-
cludes the paper with suggestions for future work.

II. RELATED WORK

The electric vehicle is a promising technology that solves
the environmental pollutions problems (i.e., massive emission
of carbon dioxide and noise) and huge dependencies on foreign
fossil fuels caused by conventional vehicles. But the high pen-
etration of EVs presents various challenges such as a massive
electric load on the distribution system, power fluctuation,
charging cost, data aggregation, and complexity in energy
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demand management. Consequently, the integration of EVs
into the power grid infrastructure has been extensively studied.
An optimization algorithm based on technical and economic
constraints was suggested in [18] for shifting the charging
load of EVs to the off-peak period. The authors in [19], [20]
proposed charging-cost optimization models based on different
tariff systems. A peak-load optimization algorithm for resi-
dential customers was studied by considering the discharging
of EVs through V2G technology [21]. The authors in [22]
studied a coordinated charging strategy of EVs based on a
genetic algorithm (GA) for optimizing the main transformer
load. In our previous work [23], [24], we developed fuzzy
logic weight-based schemes for charging and discharging EVs
by considering the EV owners, parking lot operators, and
power system requirements. The authors in [25] proposed a
scheduling algorithm for charging and discharging EVs using
a cloud-based framework for sharing information among the
EVs, smart grid, electric vehicle supply equipment (EVSE),
and cloud providers in real-time. A multi-queue system for
public charging stations was developed in [26] to schedule
EVs based on the queue size and grid constraints. The authors
in [27] introduced a weighting factor based on the arrival
time, SoC, and next trip to prioritize the charging of EVs.
The authors in [28] presented a linear programming-based
charging rate control method for utilizing the power system
with higher penetration of EVs. The other studies focused on
the environmental impact and presented different techniques
to minimize the C O, emission [29], [30]. All of these studies
were conducted from the power system, energy cost, and
environmental impact perspective while lacking to present the
waiting time requirements for the EV users. The waiting time
depends upon the number of waiting and currently serving
EVs [31] and is a crucial factor for the users as the vehicles
intending to charge must join a waiting queue in the parking
area before being plugged in for charging [32].

To fill-up, the gap, the authors in [33] compared
the best-available electric vehicle public supply station
(BA-EVPSS) algorithm with the queue length-based EVPSS
(R-EVPSS) algorithm, to minimize the charging and wait
times of EVs. Their work was further extended in [34] with
the incorporation of higher and lower priority classes for
accommodating EVs according to the time of use energy
prices and the required amount of energy. The authors in [35]
introduced an intelligent scheduling method to minimize
the travel and waiting time for EVs on the highway. The
authors in [36] discussed threshold-based policies, including
earliest-deadline-first (EDF), least-laxity-first (LLF), and the
least-laxity-ratio (LLR) to ensure fairness of EV scheduling.
In EDF, the service of an EV is postponed until the end
of the deadline defined by (z*). The EV is then served
until completion or deadline expiration. The LLF considers
laxity (I), which is the amount of time that the service of
an EV can be delayed while still meeting the deadline. The
authors in [37] distinguished between the virtual and physical
queue and presented a Smart-EV-Slot (SEVS) algorithm to
optimize the waiting time of EVs in the physical queue at the
EVSEs. The existing research focusing on the optimization of
the virtual queue considered minimum distance [11], queue

Departure
of EVs

Parking lot control center

Assign EVSEs according to
the sorted list of EVs Lp

Managed queue based on fuzzy inference system

Fig. 1. System model of the proposed FISA.

status [38], and optimal route [39]. These methods studied the
EV user’s requirements but assumed perfect knowledge of EV
parameters while scheduling their services, which degrades the
performance.

To the best of our knowledge, no previous work has focused
on minimizing waiting time while considering independent
inputs, their uncertainties, and the fuzzy inference solution.

III. THE PROPOSED FISA ALGORITHM

Depending upon the status (idle/occupied) of an EVSE, the
EVs that intend to charge may either start charging imme-
diately or wait until the charging station becomes available,
as shown in the system model of the proposed FISA in
Figure 1 [32]. It consists of a parking lot with M number
of EVSE installations serving n number of charging and
discharging EVs. The control center is the central entity that
collects input data from the incoming EVs and uses the FISA
to manage their charging and discharging services. The FISA
accommodates the new EVs according to the status of the
parking lot and utilizes the FIS to schedule their services.
The FIS evaluates the inputs by employing the set of fuzzy
rules and computes the weighted control variable to obtain the
optimal solution according to the degree of their MFs.

A. Problem Formulation

The FISA algorithm automates the charging and discharging
services for the parked and newly arriving EVs. Let N
represent the set of parked EVs such that at time 7, N(t) =
{EVi(t), EVa(t), ..., EV;_1(t)}. The arrival of a new [-th
EV and the departure of a parked i-th EV updates N using
the union (U) and subtraction (\) operations as given by
Eq. (1). Three important time parameters, required service
time (RST), the stay time (ST), and the wait time (WT),
influence the charging and discharging behavior of EVs. The
RST depends on the EV battery capacity, SoC, departure time
SoC (SoCldep ) and charging/discharging rate of the EVSE.
Given the charging/discharge rate (CD) of the j-th EVSE,
the RST for a newly arrived [-th EV with battery capacity
(BC)), SoCy, SoCldep is computed using Eq. (2). The ST and
WT are the functions of the arrival, departure, and service
activation times. For the newly arrived /-th EV with arrival
time (#'"") and departure time (tldep ), and service activation
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time (1", the ST and WT are computed according to Eq. (3)
and Eq. (4).

N()UEV(t), if 7" <t
N(@) = ) b biep @)

NO\EVi (1), ift;" =t

1—SoC BC
( 0C) x l, If charge
RST; = “D; 2
L7 (SoC? — S0Cy) x BC , 2)
, If discharge
CD;

STy = 1P —f 3)
W]WZ — tlact_tlarr (4)

Given the time ¢ there exists n requesting EVs with heteroge-
neous service requirements and m available charging stations,
such that n > m, an open question is how to maximize their
service provision with minimal waiting time? To answer this
question, we discuss the different scheduling policies for the
set n € N such that n = {EV|,EV,,--- ,EV;,---, EV,}
with the state variable f(n > m) as shown in Figure 2.
The FCFS prioritizes the EVs with the earliest arrival time,
regardless of their service time or deadline (i.e., departure
time), and can be defined by the function f(n,t, %) [40],
such that the function returns 1 if (#'"" < ti‘ﬁ:{), otherwise it
returns 0. The EDF and LLF evaluate the EVs according to
their deadline (¢*) and laxity (I’) while scheduling them [41].
The EDF prefers the EVs with the earliest deadline and returns
Lif (z; < ;) otherwise, it returns O as defined by the function
f(n,t,7). Likewise, the LLF prioritizes the EVs with the
least laxity, such that the function value is 1 for the case
(li < li11), otherwise, it is O, the function can be expressed
as f(n,t,1). The LLR defines the deadline to the laxity ratio
(@) (e, @ = 7), and the functionf (n,t,6) prioritizes the
EVs using € such that §; > 6;11 has a higher priority for
the i-th EV [36]. However, the conventional methods assign
extreme values of O or 1 by assuming perfect knowledge of the
input and thereby lacking to exploit the intermediate situations
between 0 and 1; therefore, degrades the performance [36],
[42]. Consequently, we formulate the problem as fuzzy integer
linear programming (FILP) by defining the objective function
of minimizing the WT;, that optimize the difference between
the ¢/’ and /""" by automating the i-th EV according to the
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urgency of its servicing needs as given by Eq. (5).

min WT;(ni, 1, pi) )
n;eN, teT, 1;,'eP

subject to: Py > 1" 6)

Pena < t,'dep (7N

Py < STy < Pepa )

t97 < RST; < tl.dep 9)

1
SoC"" < SoC; < SoC™M™  (10)
CDM™ < CD; <CDM™  (11)

where the element 51’ € P is the fuzzy weight control variable
for the i-th EV. The objective function is subject to several
nonlinear constraints, such as the arrival, departure, and stay
times of an i-th EV should follow the parking start and
end times as defined by Eq. (6), Eq. (7) and Eq. (8). The
required service time should be within the arrival and departure
times, while the SoC should be in the defined minimum
and maximum limits as defined by Eq. (9) and Eq. (10),
respectively. Likewise, the charge/discharge (C D;) for an i-
th EV should not exceed their minimum and maximum limits
as defined by Eq. (11). The optimal solution relay on p; and
is computed in the subsequent section.

B. Fuzzy Inference System

The FIS consists of three main parts: fuzzification, the
knowledge base, and defuzzification (Figure 3).

1) Fuzzification of Input and Output Parameters: The fuzzi-
fication process converts crisp input and output variables into
a set of fuzzy variables using linguistic terms and standard
membership functions (MFs). In this work, the input and
output fuzzy variables are ST & SoC, and P. In practice
the stay time is measured in minutes/hours, the SoC and P is
usually calculated as a percentage. The authors in [43] studied
various aspects of typical activities, such as the duration of
dinner in restaurants in North America, Europe, and Asia.
They derived five different duration categories, i.e., “too short,”
“short,” “expected,” “long,” and “too long” over the range
of 0-100 minutes. The too-short duration is up to about
25 minutes while the too-long duration is about 100 minutes.
Besides, the selection of MFs depends upon the influence of
the linguistic term concerning the output values, such as if a
range of values results in a minimum change, a trapezoidal MF
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is preferred; however, a gradual change reflects a maximum,
a triangular MF is an appropriate choice [44]. Consequently,
based on the realistic approach [43] and the MFs selection
criteria [44], we define the ST using five MFs, i.e., very
short duration (VSD), short duration (SD), normal duration
(ND), long duration (LD), and very long duration (VLD) over
the range of 0—100 minutes. The terms VSD and VLD are
modeled as trapezoidal MFs, while the SD, ND, and LD are
modeled using triangular MFs as illustrated in Figure 4(a).
The SoC is measured in the range of [0—1] with reference to
the battery capacity. This input is fuzzified by defining it with
five MFs represented by the linguistic terms very low (VL),
low (L), medium (M), high (H), and very high (VH). The VL
and VH terms are modeled as left and right open-shouldered
trapezoids, respectively. The terms L, M, and H are modeled as
triangular MFs. Implementation of SoC with different types
of MFs is illustrated in Figure 4(b). The output of the FIS
is the set of fuzzy variables, which indicates the scale of
change imposed by the fuzzy MFs, and the set of expert rules
governing the fuzzy input variables. The output P variable is
defined with three MFs represented by the terms low priority
(LP), medium priority (MP), and high priority (HP) for the
requesting EVs in each time step. The linguistic terms are
modeled with left and right open-shouldered trapezoidal and
trapezoidal MFs. The implementation of P with different types
of MFs is shown in Figure 4(c).

2) Fuzzy Inference and the Knowledge Base Systems: The
FIS maps the input variables to the output variables based on
the knowledge of the expert system, which is defined through
a set of fuzzy rules comprising a sequence of IF-THEN
logical statements [45], [46]. The observed information is
captured through the IF condition (antecedents) part and the
THEN part provides the decision (consequent). In most cases,
the condition part combines multiple inputs using AND/OR
logical operators, while the consequent part approximates the
output using intersections, union, and composition operations
of the fuzzy set theory.

Definition 1: The relationship R = A — B relates the
two fuzzy sets A € X and B C Y and is defined as the
cartesian product x x y such that x € X and y € Y.
The mathematical representations of single pair R(x,y) and
multiple pairs R(x,,, y,) fuzzy relationships are given by
Eq. (12) and Eq. (13), as follows [47], [48].

R(x,y) = {((x, ), pr(x,y)): (x,y) e X x Y} (12)
UR(X1, y1) HUR(X1, Yn)

R(xm, yn) = : : (13)
MR (Xm, Y1) UR(Xms Yn)

Definition 2: If R=A — B and Q = B — C such that
ACX,BCY,and C C Z then S is a relationship that maps
the elements (x € X) in A that R contains to the elements
(z € Z) in C that Q contains, and is computed through the
fuzzy composition operation (®) according to Eq. (14) [23].
The inferred fuzzy set S is obtained through the min-max
operation according to Eq. (15) and Eq. (16), [13] as follows:

S=R0OQ (14)

TABLE I
DETAILS OF THE FUzzY IMPLICATION RULES

ST
VSD | SD | ND | LD | VLD
VL HP HP | HP | MP LP
L HP HP | HP | MP LP
SoC M HP HP | MP | MP LP
H LP MP | MP | LP LP
VH LP MP | MP | LP LP

us(x,z)
(x,2)

us(x,z) = max (min (uR(x,y), ﬂQ(x,z))) (16)

15)

S(x,2) = { ](x,z)eXxZ}

The design of fuzzy rules follows the fuzzy set prin-
ciples and can be defined as a fuzzy set of relation-
ship Rules = {Ruley, Rules, - - -, Rule,/}. The fuzzy rules
with their antecedents and consequences using the logical
IF-THEN statements, are described using Eq. (17) whose
generalized form is defined by Eq. (18), as follows:

Ruley =  IF xy is A' THEN y; is B!
Rule; =  IF x5 is A2 THEN y» is B2
(17)
Rule,, =  IF x,y is A" THEN y,, is B™
Rules =1IF x; is A®* THEN y; is B® (18)

where the sets x; = {x1,x2,...,xy} and y;, =
{¥1, y2,..., ym} represent the n’ and m’ input variables, and
the sets A* = {Al, A2, ..., A”/} and B® = {B', B2, ..., B’"/}
are the linguistic representations of their corresponding
antecedents and consequences [49]. The design of fuzzy rules
depends on the number of MFs of the input variables [50].
There are two input variables, where each variable is fuzzified
with five MFs; this results in the formation of 25 rules
(Table. I). The p; € P for an i-th EV can be defined
through the instances of fuzzy sets ST and SoC as given by
Eq. (19). The FIS applies fuzzy rules through the approxi-
mate reasoning feature, which correlates the most appropriate
knowledge with the desired output. The approximate reasoning
feature evaluates the degrees of input data against the set of
applicable fuzzy rules to select the optimal number of rules.
The fuzzified output knowledge can thus be captured using any
of aggregation method, such as min-max. At the current time
step ¢, the inputs s¢; € ST and soc; € SoC are aggregated into
pi for the i-th EV based on the knowledge of » multiple rules,
suchthati = 1,2, -- -, r. The min-max aggregation expression
discussed in Eq. (16) is used by Eq. (20), as follows:

pi = {(sti, soci), up(sti, soci)} (19)

u(pi); = max [miﬂ (ﬂ (st;); ,UB(SOCi);l),
-, min (,u (st)7, ,uB(soc,-);)] (20)

3) Defuzzification of Weight Control Variable: The results
of the fuzzification and composition of the fuzzy rules gener-
ated by the FIS should be converted into quantifiable values



using crisp logic through the defuzzification process. The
center of gravity (COG) method is the most popular and
widely used in actual applications. It effectively calculates
the best compromise among the multiple output linguistic
terms, depending on the input data type (e.g., discrete or
continuous) [51]. Considering discrete and continuous input
data, Eq. (21) and Eq. (22) compute the output weighted
priority value for the i-th EV [52].

i = Dot M () < (k)
’ St )
i = S % % pap; (xi) dx
l S #ps (i) dx

Given the requesting EVs (n) at the time step ¢, we compute
the P vector using Equations (19)-(22) as given by Eq. (23).

Vk=1,2,---,m (21)

(22)

P={p1, p2...\ Dis s Dn) (23)

where E,- represents the crisp value p; and the membership
1(pi)) for the i-th EV, such that p; = (pi, u(pi)).

4) Optimal Solution: In each time step f, the optimal
solution P7 C P, is obtained by resolving the objective
function (Eq. (5)) as a function of u(p;) for p; € P (Eq. (23))
using the criteria discussed below.

Definition 3: The support Supp(A) of a fuzzy set A in the
universe of discourse X represents the crisp subset of X,
whose all elements have nonzero membership grades as given
by Eq. (24) [53].

Supp(A) = {(x, ua())l uax) > 0}

Definition 4: Let R(x, y) be a fuzzy relation on the X x Y,
such that x € X and y € Y. The projection (denoted by x') of
R on X returns x € X with the maximum 1 (x) as defined by
Eq. (25) [48].

(24)

x" = Supp{R(x, y)| y € Y} (25)

The Bellman and Zadeh principles [17] defines the feasible
solutions set through the intersection of all u(p;) provided
that it satisfies Eq. (24), i.e., u(p;) £ 0, as given by Eq. (26).
Likewise, following definition 4 (Eq. (25), we define the
projection P’ of P as given by Eq. (27). Let P* be the set
of weighted control variables such that p € P with the
highest degrees of their membership, then P* is the optimal
solution set, provided that P* # ¢ and p* € P*, as given by
Eq. (28) [54].

u(P) = min{u(p1), u(p2),....u(py) } Vg <n (26)
P" = Supp{u(p)| p € P} (27)
P* = Supp{P* € P| u(P*) = P’} (28)

To rationalize the feasibility of the proposed FISA,
we present an illustrative example for computing the fuzzy
control variable. Let us consider a specific case of EV; such
that i € n with a corresponding pair of stay time and state-
of-charge (i.e., STgy;, = 57, SoCgy, = 0.35) input values.
A five steps process for computing the ;EV; is illustrated
in Figure 5. The fuzzified values for the given inputs lie
in the ranges of ND, LD, L, and M membership functions,
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Fig. 4. Input and output MFs. (a) MFs for SoC. (b) MFs for stay time.

(c) MFs for weighted priority variables.

(Figures 4 (a) & (b)) for the given STgy, and SoCgy;,,
respectively. A total of four fuzzy rules (i.e., Rules #: 8, 9,
12, & 13) discussed in Table I are applicable in this case.
Recall the min-max and aggregation operations discussed in
Equations (20)-(22) for approximating the aggregated fuzzy
control variable, which corresponds to the intersection and
union operations of fuzzy sets applied on the set of fuzzy rules.
Finally, the fuzzy control variable (i.e., ; ey, = (0.51,0.25) is
obtained in step 5. Considering the situation (n > m), the val-
ues pry, = 0.51 and u(pgv;) = 0.25 are utilized for obtaining
the optimal solution set discussed in Equations (24)-(28).
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Fig. 5. Tllustration of computing the decision control variable.

5) Starvation Problem and Fairness Index: The starvation
problem may arise due to the unfairness of scheduling EVs
according to their priorities. Starvation is a problem caused
by continuously sacrificing the services of lower-priority EVs
to those of higher-priority EVs. The proposed FISA avoids
the starvation problem using the aging technique by taking
advantage of the stay time input parameter and dynamically
updating the priorities in each time step. We adopt Jain’s
fairness index (Ji,q) to analyze the fairness of the proposed
algorithm. This index was originally developed for bandwidth
sharing in congested networks and can be applied to the EV
scheduling problem [36], [55]. Jain’s fairness index for an EV
with g service is computed using Eq. (29).

1, ifn=20
(> 8!’)2

n Z?:](gi)zj

Jina (1) = (29)

Otherwise

C. Pseudocode of the Proposed FISA

Considering all of the situations for n € N, ie., n = 0,
n = 1orn > 0, the proposed FISA algorithm uses subroutines

4.;Aggre gat:'icm operariorj;

5. COG and MFs
extraction operations

Pev,~ (0.51,0.25)

Output: Decision control
variable

to serve the requesting EVs and collect the corresponding
statistics. The pseudocodes of the main and subalgorithms
are given in algorithms 1-4. The main steps are presented
as follows.

Step 1. Initialize the system local and global parameters such
as the parking capacity, maximum time, and all the
other arrays.

Step 2. Check new arrival of EVs by iterating through n € N
in lines number 2 to 15, and adjusts them according to
the parking status (i.e., Q and ¢ are the parking spots
and counter variables). If the parking spot is available,
add the EV to the array and update the corresponding
statistics.

Step 3. Call the Fuzzy_Inference algorithm to find the optimal
solution, as it is obvious from Eq. (23) and Eq. (28)
that the optimal solution rely on the E,- and u(pi).
It loads the set of fuzzy rules and evaluates the
input parameters through the FIS to compute priority
control variables p; and the degree of membership
function u(p;) for each i-th EV and store them in
(F) and (P) vectors in lines number 13-15. Once the
weighted priorities and their membership degrees for
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Fig. 6. Arrival time SoC distribution of EVs.

all the requested EVS are known, they are heuristi-
cally managed according to membership degree levels
in lines number 19-26. It returns the optimal set of
EVs (i.e., N arranged according to the degree of MFs),
the vector (F), and updated stay time (S7) for each
of the EVs to the main algorithm.

Iterate through each of the parked EVs in lines number
16 to 27 and call either the Allocate_service algorithm
or Allocate_service algorithm by checking the stay
time.

The Allocate_service algorithm assigns EVs to the
EVSEs for charging and discharging services. It iden-
tifies the EVs with the highest membership, validate
constraints Eq. (10) and Eq. (11), and assigns them to
idle EVSEs by iterating through each EVSE. Once an
EV gets connected to EVSE, the algorithm records the
activation time and computes the waiting time. Fur-
thermore, it calculates Jain’s index (Jj,q) for each EV
according to its service provision. Finally, it returns
the updated lists of EVs (N), EVSE (M), activation
time (7y,;), waiting time (7T3,), and Jipq to the main
algorithm.

The release operation of EVs is performed through
the Release_service algorithm. This algorithm iterates
through each EVSE validates constraint Eq. (7) and
releases an EV either if servicing is completed or the
departure deadline is met. It obtains corresponding
statistics and returns updated lists of service time
(Tser), the status of EVSE (M), number of served EVs
(nger), and queue counter (¢) to the main algorithm.
Increments the time step by 1 and repeats the entire
process (lines 2-24) until the end of the simulation
and finally print the results.

Step 4.

Step 5.

Step 6.

Step 7.

IV. SIMULATION RESULTS AND DISCUSSION
A. Simulation Setup

The proposed FISA algorithm is applied to a parking
lot with 20 fast EVSE installations that provide identical
charging and discharging power of 50 kW. The EVSE requires
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Algorithm 1 Main Algorithm of the Proposed FISA

Input: Arrival and departure times, battery capacity, and SoC
Qutput: Waiting time, service time, and fairness index

1: Initialize the system local and global variables

2: fort < 1 to |T| do

3 while (i <|n|) do

4 if (q < Q/) then > Check parking availability
5: Update N > According to Eq. (1)
6: Compute RST > According to Eq. (2)
7 Compute ST > According to Eq. (3)
8 q<q-+1

9 Tuprli] < 10"

10: Taeplil < tidep

11: else

12: Block new admission

13: end if

14: i<—i+1

15:  end while
16:  Fuzzy_Inference(arguments)
17:  for i < 1to |N| do

> Call algorithm 2

18: if (ST[i] > 0) then

19: Allocate_Service (arguments)
20 else if (ST[i] < 0) then

21 Release_Service (arguments)
22: end if

23:  end for

24: t<—t+1
25: end for

26: Print the results

36 minutes to fully charge an EV with a 30-kWh battery
capacity [56], [57]. The simulation is carried out using java
language, where the open-source jFuzzyLogic library is used
to prioritize the EVs [58]. The simulation is performed with
1,000 random EVs and the corresponding average statistics
are collected over a period of 24 hours. The initial SoC of
each EV is uniformly distributed between 0.2-0.8 (i.e., 20%
to 80%) of its battery capacity. The charging and discharging
service requests of EVs are a function of their SoCs, such
that the EV; with 0.2 < SoCgy, < 0.5 requests charging
while the EV; with 0.5 < SoCgy, < 0.8 requests discharging.
A total of 49% of the EVs request charging, 43% EVs request
discharging, and the remaining 8% remain idle (Figure 6).

B. Results Discussion

The waiting time, service time, queue length, number of
EVs served by an EVSE installation, and fairness are con-
sidered in the performance evaluation. The results are eval-
uated against the FCFS, EDF, LLF, R-EVPSS, BA-EVPSS,
and Smart-EV-Slot (SEVS) algorithms [33], [36], [37]. The
number of serviced EVs by an EVSE installation concerning
the FCFS, EDF, LLF and FISA algorithms is illustrated
using the violin plot in Figure 7. The figure shows that,
on average, the performance of an EVSE installation is about
9.8%, 12.8%, 14.9%, and 18.6% with the FCFS, EDF, LLF,
and FISA algorithms, respectively. The serving EVs has an
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Algorithm 2 Fuzzy_Inference (Arguments)

Algorithm 4 Release_Service (Arguments)

1: Load the fuzzy inference rules from Table 1
2: while (i < |N|) do

3 if (Tyepli] > 1) then

4: STIi] < Tyepli] — ¢ > Update the stay time
5. else

6: ST[i] < 0

7 end if

§: if (ST[i] ==0) then

9: Pli] <0

10:  else

11: Fuzzify the inputs and output variables

12: Validate constraints (6)-(9)

13: tmp <« FIS.Evaluate(ST[i], SoCli])

14: F[i] < FIS.MF (tmp) > Get MF by Egq. (20)
15: P[i] < FIS.Defuzzify(tmp) > By Egs. (21)-(22)
16:  end if

17: i<« i+1

18: end while

19: for j <— 1 to |F| do © Adjust N based on MF’s degree
20 fork < j+1to|F| do

21: if (F[k —1] < F[k]) then
22: temp < N[k — 1]

23: N[k — 1] < N[k]

24: N[k] < temp

25: end if

26:  end for

27: end for

28: Return updated (N, ST)

Algorithm 3 Allocate_Service (Arguments)

1: Initialize the local variables (i, j, and arrays X, X')
2: while (j < |M]) do

3 if (M[j] == 0) then > Check for available EVSE
4: Validate constraints (10) and (11)

5: M[j] < NI[i]

6: Tuctli] <t

7 Tyli] <= Taer[i] — Tarrli]

8 X'[i] < (SoCl[i] x BC[i])+ C

9 end if

10 j<j+1
11: end while 5
[xia]

[ivix (xi)]

13: Return updated (N, M, Ty, Ty, and Jing)

12: Jinali] <

inverse proportional relationship with the waiting time and
greatly influencing the waiting queue. The higher number
of serving EVs by the EVSEs reduces the waiting queue
significantly, as shown in Figure 8. The waiting queue is
about 68.0%, 60.0%, 56.0%, and 40.0%, with the FCFS,
EDF, LLF, and FISA, respectively. This improves the system
performance with the FISA by reducing the waiting queue by

1: Initialize the local variables
2. fori < 1 to |N| do
3 while (j < [M]) do

4 if (M[j]==1 && M[j] == Nli]) then
5: Validate constraint (7)

6: if (1 — T,ci[i] == RST[i] ) then
7 Nger[i] <= nger[i] +1

8 M[jl1<0

9 qg<—q—1

10: else

11 Tserli] < 1 — Tyetli]

12: M[jl1<0

13: qg<q—1

14: end if

15: end if

16: j<—j+1

17:  end while

18: end for
19: Return updated (s, M, nger, q)

EVs

0 T T T T
FCFS EDF LLF FISA

Fig. 7. Violin plot of serving EVs by each EVSE concerning FCFS, EDF,
LLF, and FISA algorithms.
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about 28.0%, 20.0%, and 16.0% compared to the FCFS, EDF,
and LLF algorithms, respectively. A comparison of serving
EVs concerning to the FCFS, EDF, LLF, FISA is shown in
Figure 9. The serving EVs with FCFS, EDF, LLF, and FISA
is about 22% 26%, 31%, and 38%, respectively. The proposed
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FISA algorithm improves serving EVs by 16.0%, 12.0%, and
7.0% compared with the FCFS, EDF, and LLF schemes,
respectively. Considering the selection criteria for EV service,
the different schemes, i.e., the FCFS, EDF, LLF, and FISA
algorithms, lead to distinct service times. The EV service times
obtained using the FCFS, EDF, LLF, and FISA algorithms
are compared by the error bar graph shown in Figure 10.
With the FCFS, the service time increases with the arrival
of more EVs. This occurs because EVs with longer service
times are serviced before those with shorter service times.
The EDF and LLF prioritized the early departing and the EVs
with the least laxity and improve the performance by slightly
reducing the serving time. The performance degradation is due
to prioritizing the EVs using a single parameter (i.e., the time
only). However, the proposed FISA algorithm applies FIS that
couples the multiple inputs into priorities such that the optimal
solution set of EVs with urgent service requirements are
prioritized over those having longer stay times and a sufficient
SoC. The average service time of EVs is about 25.0, 22.0,
20.0, and 16.0 minutes, with the FCFS, EDF, LLF, and FISA.
respectively. Figure 11 illustrates the box plot of waiting time
for the EVs according to the FCFS, FISA, R-EVPSS, EDF,
LLF, BA-EVPSS, and SEVS algorithms. The waiting time is
clearly affected by the algorithm used. The average waiting
time is 18.2, 5.3, 11.4, 17.2, 16.1, 10.3, and 10.8 minutes with
FCFS, FISA, R-EVPSS, EDF, LLF, BA-EVPSS, and SEVS
algorithms, respectively. This implies that, on average, the
proposed FISA algorithm can reduce the waiting time by up to
12.9, 6.1, 11.9, 10.8, 5.0, and 5.5 minutes compared with the
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Fig. 11. Box plot of waiting time for EVs concerning FCFS, FISA,
R-EVPSS, EDF, LLF, BA-EVPSS, and SEVS algorithms.
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Fig. 13. Execution time of collecting and scheduling for two CPU
configurations.

FCFS, R-EVPSS, EDF, LLF, BA-EVPSS, SEVS algorithms,
respectively. The fairness of the proposed FISA algorithm is
evaluated against the LLR-, EDF-, LLF-, and FCFS-based
algorithms (Figure 12). We observed a trivial fluctuation with
the proposed FISA at the beginning of the simulation; however,
once the algorithm converged, it retains the highest fairness
index throughout the simulation. The execution time of the
FISA algorithm is also evaluated by running the algorithm
using two different machines (CPU configurations of five
cores/3.20 GHz and eight cores/4.1 GHz). The execution time
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for the time window with 200 EVs is captured as shown in
Figure 13. The maximum execution time with a sampling rate
of 1 hour is about 4 seconds with the five-core/3.20 GHz
machine. The lower execution time implies that the proposed
FISA is suitable for implementation in a public parking lot.

V. CONCLUSION

In this paper, we introduced a novel objective function with
a fuzzy control variable to minimize the waiting time of EVs at
public charging stations. We presented a detailed mathematical
model to obtain the optimal solution and developed a heuristic
fuzzy inference system-based algorithm (FISA). The FISA
was able to correlate the independent and uncertain inputs
(i.e., SoC and Stay time) into weighted control variables for
resolving the optimization problem. The performance was
analyzed against state-of-art FCFS, BA-EVPSS, R-EVPSS,
SEVS, LLR, EDF, and LLF algorithms. The results showed
that the proposed FISA algorithm reduced the average waiting
time by 12.9, 6.1, 11.0, 10.8, 5.3, and 5.5 minutes compared
with the FCFS, R-EVPSS, EDF, LLF, BA-EVPSS, and SEVS
algorithms, respectively. It enhanced the system efficiency by
serving 16.0%, 12.0%, and 7.0% more EVs compared with
the FCFS, EDF, and LLF algorithms. Moreover, the FISA
reduced the waiting queue by about 28.0%, 20.0%, and 16.0%
compared to the FCFS, EDF, and LLF algorithms, respectively.
Besides, the FISA algorithm had higher fairness compared to
the FCFS, EDF, LLF, and LLR algorithms. Furthermore, the
minimum execution time indicated the feasibility of applying
the algorithm to EVs in a parking lot. Future research will
incorporate constraints from both the power grid and EV users
to optimize energy consumption and service time.

REFERENCES

[1] M. Grote, I. Williams, J. Preston, and S. Kemp, “Including congestion
effects in urban road traffic CO; emissions modelling: Do local gov-
ernment authorities have the right options?” Transp. Res. D, Transp.
Environ., vol. 43, pp. 95-106, Mar. 2016.

[2] Z. Rezvani, J. Jansson, and J. Bodin, “Advances in consumer electric
vehicle adoption research: A review and research agenda,” Transp. Res.
D, Trans. Environ., vol. 34, pp. 122-136, Jan. 2015.

[3] S. Arora and J. Priolkar, “Simulation and analysis of hybrid energy
source for electric vehicle,” in Proc. IEEE Ist Int. Conf. Power Electron.,
Intell. Control Energy Syst. (ICPEICES), Jul. 2016, pp. 1-6.

[4] E. H. P. Lee and Z. Lukszo, “Scheduling fuel cell electric vehicles as
power plants in a community microgrid,” in Proc. IEEE PES Innov.
Smart Grid Technol. Conf. Eur. (ISGT-Eur.), Oct. 2016, pp. 1-6.

[5] P. Han, J. Wang, Y. Han, and Y. Li, “Resident plug-in electric vehicle
charging modeling and scheduling mechanism in the smart grid,” Math.
Problems Eng., vol. 2014, pp. 1-8, Jan. 2014.

[6] M. A. Hannan, F. A. Azidin, and A. Mohamed, “Hybrid electric vehicles
and their challenges: A review,” Renew. Sustain. Energy Rev., vol. 29,
pp. 135-150, Jan. 2014.

[7]1 S. Shao, M. Pipattanasomporn, and S. Rahman, “Grid integration of
electric vehicles and demand response with customer choice,” IEEE
Trans. Smart Grid, vol. 3, no. 1, pp. 543-550, Mar. 2012.

[8] J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and
J. M. Marquez-Barja, “A review on electric vehicles: Technologies and
challenges,” Smart Cities, vol. 4, no. 1, pp. 372-404, Mar. 2021.

[9] J. Cregger, “Charging infrastructure required to support U.S. electric
vehicle deployment: A cost estimate through 2025,” in Proc. IEEE
Vehicle Power Propuls. Conf. (VPPC), Oct. 2015, pp. 1-6.

[10] T. Oda, M. Aziz, T. Mitani, Y. Watanabe, and T. Kashiwagi, “Mitigation
of congestion related to quick charging of electric vehicles based on
waiting time and cost—benefit analyses: A Japanese case study,” Sustain.
Cities Soc., vol. 36, pp. 99-106, Jan. 2018.

[11] X. Sun and J. Qiu, “Hierarchical voltage control strategy in distribution
networks considering customized charging navigation of electric vehi-
cles,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 4752-4764, Nov. 2021.

[12] M. Alinejad, O. Rezaei, A. Kazemi, and S. Bagheri, “An optimal
management for charging and discharging of electric vehicles in an
intelligent parking lot considering vehicle Owner’s random behaviors,”
J. Energy Storage, vol. 35, Mar. 2021, Art. no. 102245.

[13] S. Hussain, M. A. Ahmed, and Y.-C. Kim, “Efficient power management
algorithm based on fuzzy logic inference for electric vehicles parking
lot,” IEEE Access, vol. 7, pp. 65467-65485, 2019.

[14] D. Oliva, P. Copado, S. Hinojosa, J. Panadero, D. Riera, and A. A. Juan,
“Fuzzy simheuristics: Solving optimization problems under stochas-
tic and uncertainty scenarios,” Mathematics, vol. 8, no. 12, p. 2240,
Dec. 2020.

[15] J. An, G. Wen, and W. Xu, “Improved results on fuzzy filter design for
TS fuzzy systems,” Discrete Dyn. Nature Soc., vol. 2010, 2010.

[16] J. An, T. Li, G. Wen, and R. Li, “New stability conditions for uncertain
TS fuzzy systems with interval time-varying delay,” Int. J. Control,
Autom. Syst., vol. 10, no. 3, pp. 490497, 2012.

[17] R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy environ-
ment,” Manage. Sci., vol. 17, no. 4, p. 141, 1970.

[18] S. Detzler, C. Eichhorn, and S. Karnouskos, “Charging optimization
of enterprise electric vehicles for participation in demand response,” in
Proc. Int. Symp. Smart Electr. Distrib. Syst. Technol. (EDST), Sep. 2015,
pp. 284-289.

[19] P. Zhang, K. Qian, C. Zhou, B. Stewart, and D. Hepburn, “Demand
response for optimisation of power systems demand due to EV charging
load,” in Proc. Asia—Pacific Power Energy Eng. Conf., Mar. 2012,
pp. 1-4.

[20] J.-M. Clairand, J. R. Garcia, and C. A. Bel, “Smart charging for an
electric vehicle aggregator considering user tariff preference,” in Proc.
IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. (ISGT),
Apr. 2017, pp. 1-5.

[21] K. Mets, T. Verschueren, F. De Turck, and C. Develder, “Exploiting
V2G to optimize residential energy consumption with electrical vehicle
(dis)charging,” in Proc. IEEE st Int. Workshop Smart Grid Modeling
Simulation (SGMS), Oct. 2011, pp. 7-12.

[22] M. Alonso, H. Amaris, J. G. Germain, and J. M. Galan, “Optimal
charging scheduling of electric vehicles in smart grids by heuristic
algorithms,” Energies, vol. 7, no. 4, pp. 2449-2475, Apr. 2014.

[23] S. Hussain, M. A. Ahmed, K.-B. Lee, and Y.-C. Kim, “Fuzzy logic
weight based charging scheme for optimal distribution of charging power
among electric vehicles in a parking lot,” Energies, vol. 13, no. 12,
p. 3119, Jun. 2020.

[24] S. Hussain, K.-B. Lee, M. A. Ahmed, B. Hayes, and Y.-C. Kim, “Two-
stage fuzzy logic inference algorithm for maximizing the quality of
performance under the operational constraints of power grid in electric
vehicle parking lots,” Energies, vol. 13, no. 18, p. 4634, Sep. 2020.

[25] C. D. A. Eldjalil and K. Lyes, “Optimal priority-queuing for EV
charging-discharging service based on cloud computing,” in Proc. [EEE
Int. Conf. Commun. (ICC), May 2017, pp. 1-6.

[26] D. Ban, G. Michailidis, and M. Devetsikiotis, “Demand response
control for PHEV charging stations by dynamic price adjustments,”
in Proc. IEEE PES Innov. Smart Grid Technol. (ISGT), Jan. 2012,
pp. 1-8.

[27] R. Wu, G. Tsagarakis, A. J. Collin, and A. E. Kiprakis, “EV charging
scheduling for cost and greenhouse gases emissions minimization,”
in Proc. 12th Int. Conf. Ecolog. Vehicles Renew. Energies (EVER),
Apr. 2017, pp. 1-7.

[28] P. Richardson, D. Flynn, and A. Keane, “Optimal charging of electric
vehicles in low-voltage distribution systems,” IEEE Trans. Power Syst.,
vol. 27, no. 1, pp. 268-279, Feb. 2012.

[29] Y. Gu, M. Liu, J. Naoum-Sawaya, E. Crisostomi, G. Russo, and
R. Shorten, “Pedestrian-aware engine management strategies for plug-
in hybrid electric vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 19,
no. 1, pp. 92-101, Jan. 2018.

[30] M. Liu, R. H. Ordonez-Hurtado, F. Wirth, Y. Gu, E. Crisostomi,
and R. Shorten, “A distributed and privacy-aware speed advisory
system for optimizing conventional and electric vehicle networks,”
IEEE Trans. Intell. Transp. Syst., vol. 17, no. 5, pp. 1308-1318,
May 2016.

[31] M. Moschella, P. Ferraro, E. Crisostomi, and R. Shorten, “Decentralized
assignment of electric vehicles at charging stations based on personalized
cost functions and distributed ledger technologies,” IEEE Internet Things
J., vol. 8, no. 14, pp. 11112-11122, Jul. 2021.



(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

G. Graber, V. Calderaro, P. Mancarella, and V. Galdi, “Two-stage
stochastic sizing and packetized energy scheduling of BEV charging
stations with quality of service constraints,” Appl. Energy, vol. 260,
Feb. 2020, Art. no. 114262.

D. Said, S. Cherkaoui, and L. Khoukhi, “Queuing model for EVs
charging at public supply stations,” in Proc. 9th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Jul. 2013, pp. 65-70.

D. Said, S. Cherkaoui, and L. Khoukhi, “Multi-priority queuing for
electric vehicles charging at public supply stations with price variation,”
Wireless Commun. Mobile Comput., vol. 15, no. 6, pp. 1049-1065,
Apr. 2015.

V. D. Razo and H.-A. Jacobsen, “Smart charging schedules for highway
travel with electric vehicles,” IEEE Trans. Transport. Electrific., vol. 2,
no. 2, pp. 160-173, Jun. 2016.

M. Zeballos, A. Ferragut, and F. Paganini, “Proportional fairness for
EV charging in overload,” IEEE Trans. Smart Grid, vol. 10, no. 6,
pp. 6792-6801, Nov. 2019.

A. Bourass, S. Cherkaoui, and L. Khoukhi, “Secure optimal itinerary
planning for electric vehicles in the smart grid,” IEEE Trans. Ind.
Informat., vol. 13, no. 6, pp. 3236-3245, Dec. 2017.

A. Gusrialdi, Z. Qu, and M. A. Simaan, “Distributed scheduling
and cooperative control for charging of electric vehicles at highway
service stations,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 10,
pp. 2713-2727, Oct. 2017.

P. K. Saha, N. Chakraborty, A. Mondal, and S. Mondal, “Optimal
sizing and efficient routing of electric vehicles for a vehicle-on-demand
system,” IEEE Trans. Ind. Informat., vol. 18, no. 3, pp. 1489-1499,
Mar. 2022.

M. Wang, W. Chen, and A. Ephremides, “Real-time reconstruction of
a counting process through first-come-first-serve queue systems,” I[EEE
Trans. Inf. Theory, vol. 66, no. 7, pp. 4547-4562, Jul. 2020.

Q.-S. Jia and J. Wu, “A structural property of charging scheduling policy
for shared electric vehicles with wind power generation,” /IEEE Trans.
Control Syst. Technol., vol. 29, no. 6, pp. 2393-2405, Nov. 2021.

R. Sharma, N. Nitin, M. A. R. AlShehri, and D. Dahiya, “Priority-
based joint EDF-RM scheduling algorithm for individual real-time task
on distributed systems,” J. Supercomput., vol. 77, no. 1, pp. 890-908,
Jan. 2021.

S. E. Kimes, J. Wirtz, and B. M. Noone, “How long should dinner take?
Measuring expected meal duration for restaurant revenue management,”
J. Revenue Pricing Manage., vol. 1, no. 3, pp. 220-233, Oct. 2002.

L. Gerlach and T. Bocklisch, “Experts versus algorithms? Optimized
fuzzy logic energy management of autonomous PV hybrid systems with
battery and H2 storage,” Energies, vol. 14, no. 6, p. 1777, Mar. 2021.
N. Andrenacci, A. Genovese, and R. Ragona, “Determination of the level
of service and customer crowding for electric charging stations through
fuzzy models and simulation techniques,” Appl. Energy, vol. 208,
pp. 97-107, 2017.

Y. Bai, H. Zhuang, and D. Wang, Advanced Fuzzy Logic Technologies
in Industrial Applications. Cham, Switzerland: Springer, 2007.

J. An, M. Hu, L. Fu, and J. Zhan, “A novel fuzzy approach for combining
uncertain conflict evidences in the dempster-shafer theory,” IEEE Access,
vol. 7, pp. 7481-7501, 2019.

M. Hussain, “Fuzzy relations,” M.S. thesis, School Eng., Blekinge Inst.
Technol., Karlskrona, Sweden, 2010.

P-N. Vo and M. Detyniecki, “Towards smooth monotonicity in fuzzy
inference system based on gradual generalized modus ponens,” in Proc.
8th Conf. Eur. Soc. Fuzzy Log. Technol., Sep. 2013, pp. 788-795.

B. Shah, F. Igbal, A. Abbas, and K.-I. Kim, “Fuzzy logic-based
guaranteed lifetime protocol for real-time wireless sensor networks,”
Sensors, vol. 15, no. 8, pp. 20373-20391, Aug. 2015.

W. Van Leekwijck and E. E. Kerre, “Defuzzification: Criteria and
classification,” Fuzzy Sets Syst., vol. 108, no. 2, pp. 159-178, 1999.
N. Mogharreban and L. F. DiLalla, “Comparison of defuzzification
techniques for analysis of non-interval data,” in Proc. NAFIPS Annu.
Meeting North Amer. Fuzzy Inf. Process. Soc., Jun. 2006, pp. 257-260.
H.-J. Zimmermann, “Fuzzy set theory,” Wiley Interdiscipl. Rev., Comput.
Statist., vol. 2, no. 3, pp. 317-332, 2010.

R. Fullér et al., Fuzzy Reasoning and Fuzzy Optimization, no. 9. Turku,
Finland: Turku Centre for Computer Science Abo, 1998.

S. R. Pokhrel, M. Panda, H. L. Vu, and M. Mandjes, “TCP performance
over Wi-Fi: Joint impact of buffer and channel losses,” IEEE Trans.
Mobile Comput., vol. 15, no. 5, pp. 1279-1291, May 2016.

G. Miedema, “Revolutionizing fast charging for electric vehicles,” EV
Charg. Infrastruct., pp. 1-6, 2012. [Online]. Available: https://www.
intel.co.uk/content/dam/www/public/us/en/documents/solution-
briefs/transportation-abb-terra-smart-connect-brief. pdf

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[57] G. E. Blomgren, “The development and future of lithium ion batteries,”
J. Electrochem. Soc., vol. 164, no. 1, 2016, Art. no. A5019.

[58] P. Cingolani and J. Alcald-Fdez, “jFuzzyLogic: A Java library to design

fuzzy logic controllers according to the standard for fuzzy control

programming,” Int. J. Comput. Intell. Syst., vol. 6, pp. 61-75, Jun. 2013.

Shahid Hussain (Member, IEEE) received the B.S.
degree in mathematics and the M.Sc. degree in
computer science from the University of Peshawar,
Peshawar, Pakistan, in 2002 and 2005, respectively,
and the M.S. and Ph.D. degrees in computer
engineering from Jeonbuk National University,
South Korea, in 2016 and 2020, respectively.
He had worked as a Post-Doctoral Researcher with
the Gwangju Institute of Science and Technology
(GIST), Gwangju, South Korea. He is currently
working as a Post-Doctoral Research Fellow with the
National University of Ireland Galway (NUIG), Ireland. His research interests
include smart grid, energy management, electric vehicles, optimization algo-
rithms, micro-grid operations, distributed energy resources and peer-to-peer
energy trading using fuzzy logic, game theory, ontology, artificial intelligence,
and block-chain approaches and technologies. He was awarded with Jeonbuk
National University Presidential Award for academic excellence during his
Ph.D. studies.

Yun-Su Kim (Senior Member, IEEE) received the
B.S. and Ph.D. degrees in electrical engineering
from Seoul National University, Seoul, South Korea,
in 2010 and 2016, respectively. From 2015 to 2017,
he worked at the Korea Electrotechnology Research
Institute (KERI), as a Senior Researcher. He joined
the Faculty of the Gwangju Institute of Science and
Technology (GIST) in 2018, where he is currently
an Associate Professor with the Graduate School
of Energy Convergence. He was the Director of
the Korean Society for New and Renewable Energy
and the Korean Institute of Electrical Engineers. His research interests
include distribution network, distributed energy resources, microgrid, artificial
intelligence, and wireless power transfer.

Subhasis Thakur (Member, IEEE) received the
B.Eng. degree from the National Institute of Tech-
nology Durgapur, India, in 2004, the M.Phil
degree from the University of Queensland, Australia,
in 2009, in the research area of multi-agent sys-
tems, and the Ph.D. degree from Griffith University,
Australia, in 2013, in the research area of multi-
agent systems. He joined the National University
of Ireland Galway in August 2016. He had worked
as a Research Fellow at the University of L’ Aquila,
Italy, and the University of Liverpool, U.K. He is
leading several blockchain projects at the Insight Centre for Data Analytics.
His research interests include multi-agent systems, game theory, reasoning,
cloud computing, and blockchain mechanism.

John G. Breslin (Senior Member, IEEE) is a
Personal Professor (Personal Chair) in electronic
engineering with the College of Science and Engi-
neering, National University of Ireland Galway,
where he is also the Director of the Techlnno-
vate/Aglnnovate programmes. He has taught elec-
tronic engineering, computer science, innovation,
and entrepreneurship topics during the past two
decades. Associated with three SFI Research Cen-
ters, he is a Co-Principal Investigator at Confirm
(Smart Manufacturing) and Insight (Data Analytics),
and a Funded Investigator at VistaMilk (AgTech). He has written more than
200 peer-reviewed academic publications (H-index of 42, 7400 citations, best
paper awards from IoT, DL4KGS, SEMANTICS, ICEGOV, ESWC, PELS),
and coauthored the books “Old Ireland in Colour,” “Old Ireland in Colour
2 “The Social Semantic Web,” and “Social Semantic Web Mining.” He
co-created the SIOC framework (Wikipedia article), implemented in hundreds
of applications (by Yahoo, Boeing, and Vodafone) on at least 65,000 websites
with 35 million data instances.


https://www.researchgate.net/publication/357815553



