
Ensemble Methods for Collective Intelligence:
Combining Ubiquitous ML Models in IoT

Bharath Sudharsan§∗, Piyush Yadav∗, Duc-Duy Nguyen∗, Jefkine Kafunah∗, and John G. Breslin∗
§ARM Machine Learning Infrastructure, Galway, Ireland

∗Data Science Institute, NUI Galway, Ireland
{bharath.sudharsan, piyush.yadav, ducduy.nguyen, jefkine.kafunah, john.breslin}@insight-centre.org

Abstract—The concept of ML model aggregation rather than
data aggregation has gained much attention as it boosts pre-
diction performance while maintaining stability and preserving
privacy. In a non-ideal scenario, there are chances for a base
model trained on a single device to make independent but
complementary errors. To handle such cases, in this paper, we
implement and release the code of 8 robust ML model combining
methods that achieves reliable prediction results by combining
numerous base models (trained on many devices) to form a
central model that effectively limits errors, built-in randomness
and uncertainties. We extensively test the model combining
performance by performing 15 heterogeneous devices and 3
datasets based experiments that exemplifies how a complicated
collective intelligence can be derived from numerous elementary
intelligence learned by distributed, ubiquitous IoT devices.

Index Terms—IoT Devices, Data Mining, Privacy Preservation,
Distributed Training, Ensemble Learning.

I. INTRODUCTION

In many IoT scenarios, the training dataset sources are
decentralized over different devices such as sensors and mobile
phones. This poses challenges to train robust ML models due
to data accessibility and privacy concerns (such as GDPR). In
such cases, learning algorithms are deployed across distributed
IoT devices that have access to the same type of rich training
data. Then, without voiding the privacy protection regulations,
problem-solving base machine learning (ML) models are cre-
ated at the IoT device level and trained without storing the live
data. Later these multiple base ML models are transmitted to a
central high-end device (such as cloud) for model combining.
This concept of collecting intelligence (trained base models)
from billions of deployed ubiquitous IoT devices, rather than
raw data, is the future of ML and IoT [1].

ML Model combining, often regarded as a key sub-field of
ensemble learning, started as early as 1977, has been widely
used in both academic research and industry applications.
Also, in many ML competitions, ensemble learning is the
key to winning solutions because it trains multiple base ML
models then combines them to solve a problem [2]. Since
this approach is in contrast to the conventional method of
constructing one model to solve the problem, it is committee
based learning system [3]. The term ensemble means a group
of base models generated by a dataset using any base model
training algorithms such as k-NN, Decision Tree, SVM. When
an ensemble contains the same type of base models, it is a
homogeneous ensemble. When multiple types of base models
are grouped, it is a heterogeneous ensemble [4]. This concept

of base models combining is appealingly termed as distributed
ensemble learning when base models are trained remotely
across various systems (IoT devices in our scenario), then
combined in a central location. The paper contributions can
be summarized as follows:

• The studies from centralized learning, split learning, dis-
tributed ensemble learning have extensively investigated
combining models trained on devices like smartphones,
Raspberry Pis, Jetson Nanos, etc. Such devices have
sufficient resources to train base models (or ensembles)
using standard training algorithms from Python Scikit-
learn or light version ML frameworks like TensorFlow
Lite. In contrast, we aim to achieve collective intelligence
using MCUs, since billions of deployed IoT devices like
HVAC controllers, smart meters, video doorbells have
resource-constrained MCU-based hardware with only a
few MB of memory.

• From the available multitudinous number of studies, we
choose, implement, and provide 8 robust ML model
combining methods that are compatible with a wide
range of datasets (varying feature dimensions and classes)
and IoT devices (heterogeneous hardware specifications).
We open-source the implementation1, utilizing which
researchers and engineers can start practicing distributed
ensemble learning by combining ML base models trained
on ubiquitous IoT devices.

II. IMPLEMENTING ML MODEL COMBINING METHODS

Usecase- Providing sensitive medical data for research. The
data required for most research are sensitive in nature, as
it revolves around a private individual. So, GDPR restricts
sending such sensitive yet valuable medical data (from hos-
pitals, imaging centers) to research institutes. As shown in
Fig. 1, when the resource-constrained medical devices like
insulin-delivery devices, BP apparatus are equipped with IoT
hardware-friendly training algorithms [5, 6], they can perform
onboard training of base models, even without depending on
the hospital’s local servers. After training, the base models
from similar devices can be extracted, combined, and sent
to research labs with improved data privacy preservation. For
example, the 2 base models M71, M72 (see Fig. 1) trained on
ECG monitors using the vital data of patients can be combined
centrally, then shared for research.

1Code: https://github.com/bharathsudharsan/ML-Model-Combining



Fig. 1. Collective learning among medical IoT devices: A use case of privacy-
preserving sensitive medical data collection.

A. Combine by Simple Averaging

Simple Averaging is the most fundamental method, where
the combined output is obtained by directly averaging the
outputs of individual base classifiers. When given a set of
T individual base classifiers {h1, ..., hT } and the output of hi

for the input x is hi(x) ∈ R, the task becomes to combine all
the hi to attain the final prediction on the real-valued variable.

Due to its effectiveness and simplicity, this method is rep-
resented as the first choice for many real-world applications.
However, the error reduction method of simple averaging
is derived based on the assumption that the errors of the
individual base classifiers are uncorrelated. While in our case
of strategically combining classifiers, the errors are typically
highly correlated since all the base classifiers are trained to
solve the same problem. Therefore, the error reduction method
of simple averaging is generally hard to achieve - because
it suggests that ensemble error is smaller by a factor of T
(value of total base classifiers) than the averaged error of the
individual classifiers.

B. Combine by Weighted Averaging

Here, we obtain the combined output by averaging the
outputs of individual learners with different weights implying
different importance [3]. The above simple averaging, which
can be regarded as taking equal weights for all individual
learners, can be viewed as a special case of weighted aver-
aging. Similarly, other combining methods such as voting are
also special cases or variants of weighted averaging.

The data of real tasks are usually noisy and insufficient,
resulting in producing estimated weights that are often unre-
liable. Particularly when combining a large number of classi-
fiers, more weights need to be learned, which can easily lead
to overfitting. Simple averaging does not have to learn any
weights, so it suffers little from overfitting. In general, we
recommend using the above simple averaging for combining
classifiers with similar performances, whereas if the individual
classifiers exhibit nonidentical strength, weighted averaging
with unequal weights can show better performance.

C. Combine by Voting

The concept of voting is the fundamental and most popular
combining method for nominal outputs. Since we are dealing
with combining classifiers, we use a classification example to
explain this concept. When we have T number of individual
classifiers {h1, ..., hT }, here, our task is to combine all hi to
predict the class label from a set of l possible class labels.
When classifiers are trained to solve binary problems, the
class labels are {c0, c1}. Here, for an input x, the outputs
of the classifier hi are given an l dimensional label vector
(h1

i (x), . . . , h
l
i(x))

⊤, where hj
i (x) is the output of hi, for the

class label cj . The hj
i (x) takes different types of values accord-

ing to the information provided by the individual classifiers,
e.g., for a Crisp label (our case): hj

i (x) ∈ {0, 1}, which takes
value 1 if hi predicts cj as the class label and 0 otherwise.
Or can take Class probability: hj

i (x) ∈ [0, 1], which can be
regarded as an estimate of the posterior probability P (cj |x).

1) Majority Voting: This is the most popular voting method.
Here, each base classifiers votes for one class label, the final
output class label is the one that receives more than half of the
votes. If none of the class labels receives more than half of
the votes, a rejection option will be given, and the combined
classifier makes no prediction. Hence the output class label of
the combined central classifier becomes,

H(x) =

{
cj if

∑T
i=1 h

j
i (x) >

1
2

∑l
k=1

∑T
i=1 h

k
i (x),

reject otherwise
(1)

This suits well when the individual classifiers are statistically
independent, but since all the base classifiers are trained to
solve the same problem (i.e., the same dataset is used), they
are highly correlated. Therefore, it is impractical to expect the
majority voting accuracy to converge to one when the base
classifier count is high.

2) Weighted Majority Voting: In reality, each base classifier
is reliable in different areas of the problem/dataset, and most
times, the individual classifiers are with unequal performance.
Hence, it is highly inefficient to treat the labels from different
classifiers with the same weight. So in the Weighted Majority
Voting (WMV) method, which is the natural extension of
above majority voting, we give more power to the stronger
classifiers in voting. Hence, as shown in the Eqn (2), the
weighted majority voting rule is an extension of Eqn (1) with
a weight wi ≥ 0 assigning to the classifier hi.

H(x) = cargmax

T∑
i=1

wih
j
i (x) (2)

Here, the accuracy of the final aggregated label depends
much on the accuracy of the estimated weights. During the
distributed model training, some of the involved IoT devices
might be from a vendor who might not have added proper
hardware filters (cost-cutting). So there exist noises that impair
the local training data quality. On such devices/data, the train-
ing algorithm produces base learners that show fluctuations
in prediction results. In such cases, WMV is more suitable
than other voting methods, as it can make the models from



devices with a higher competence level count more for the
final decision/prediction.

D. Combine by Maximization and Median

Other combining methods, in addition to thus far explained
ones, are the algebraic methods termed maximization and
median, that we implement here.

The class probability output from individual base classifiers
trained on different IoT devices can be considered as an esti-
mate of the posterior probabilities. Hence, it is straightforward
to derive combining rules under the probabilistic framework.
The hj

i (x) is the class probability of cj output from hi as hj
i .

According to Bayesian decision theory, given T classifiers, the
input x from the dataset should be assigned to the class cj ,
which maximizes the posterior probability P (cj |hj

1, ..., h
j
T ).

Since hj
i is the probability output, we have P (cj |hj

i ) = hj
i .

Thus, if all classes are with equal priority, we get the product
rule for combining as

Hj(x) =

T∏
i=1

hj
i (x)

Similarly to above, maximum/median rules were derived using
which here, we choose the maximum and median of the
individual outputs as the combined output. For example,
the median rule generates the combined output according to
Hj(x) = med(hj

i (x)), where med(.) denotes the median
statistic. In short, maximization method is carried out by taking
the maximum scores, and in Combine by Median method, the
median value across all scores/prediction results are taken.

E. Combine by Dynamic Classifier Selection (DCS)

In contrast to classic learning methods, which select the
best individual learner and discard other, DCS keeps all
the individual learners (thus regarded as a soft combining
method) [4]. In contrast to typical ensemble methods, which
combine individual learners to make predictions, DCS makes
predictions by using one individual learner.

In this work, a DCS method called DCS-LA is implemented
and used on models trained by distributed IoT devices. Here,
each base classifier’s accuracy in local regions of feature space
is estimated, i.e., the best classifier for each partition of the
dataset is determined. For classification results (inference),
we use the output produced by the most locally accurate
classifier as the final decision. In DCS-LA, we estimate the
local accuracy w.rt. some output class. In other words, when
considering a classifier that assigns an input data sample to
class ci, we can determine the percentage of the local training
samples assigned to class ci by this classifier that has been
correctly labeled.

F. Combine by Dynamic Ensemble Selection (DES)

In most use cases like handwritten pattern recognition,
multiple classifiers are used to improve the recognition rates
[2]. To optimize such a multiple classifier system, a group
of classifiers, known as an Ensemble of Classifiers (EoC),
are selected from a pool of classifiers. To achieve high

TABLE I
CHOSEN DEVICES ON WHICH DISTRIBUTED TRAINING IS PERFORMED.

Board#: Name Specs: Processor flash,
SRAM, clock (MHz)

B1: nRF52840 Feather Cortex-M4, 1MB, 256KB, 64
B2: STM32f10 Blue Pill Cortex-M0, 128kB, 20KB, 72
B3: Adafruit HUZZAH32 Xtensa LX6, 4MB, 520KB, 240
B4: Raspberry Pi Pico Cortex-M0+, 16MB, 264KB, 133

MCUs B5: ATSAMD21 Metro Cortex-M0+, 256kB, 32KB, 48
B6: Arduino Nano 33 Cortex-M4, 1MB, 256KB, 64
B7: Teensy 4.0 Cortex-M7, 2MB, 1MB, 600
B8: STM32 Nucleo H7 Cortex-M7, 2MB, 1MB, 480
B9: Feather M4 Express Cortex-M4, 2MB, 192KB, 120
B10: Arduino Portenta Cortex-M7+M4, 2MB, 1MB, 480

CPU#: Name Basic specs
C1: W10 Laptop Intel Core i7 @1.9GHz
C2: NVIDIA Jetson Nano 128-core GPU @ 1.4GHz

CPUs C3: W10 Laptop Intel Core i5 @1.6GHz
C4: Ubuntu Laptop Intel Core i7 @2.4GHz
C5: Raspberry Pi 4 Cortex-A72 @1.5GHz

performance, dynamic selection methods (select different clas-
sifiers for different data patterns) need to be used over static
selection methods (select an EoC for all data patterns). To
combine models from various IoT devices, as introduced, we
implement a scheme that dynamically selects an ensemble or
every test data point - instead of dynamic classifier selection,
dynamic ensemble selection is performed here. This method
is implemented as it can perform better than static ensemble
selection methods, and also, using an ensemble of classifiers
provides more stability than a single classifier.

G. Combine by Meta Ensembling (Stacking)

The implementation of this method combines information
from multiple base classifier models to generate a new model.
Thus generated 2nd level model is known as a stacked
model that often outperforms base models - this is due to its
smoothing nature and its ability to identify each base classifier
where it performs best and discredit it in the areas where it
performs poorly [7]. The implementation performs stacking in
two phases. First, the base classifiers are trained across various
devices using a local dataset. Then in a central location,
the output of each model (i.e., meta-features) is collected to
build a new dataset. So, the stacked model can discern where
each model performs well and where each model performs
poorly. Second, this new dataset is used with any meta-learning
algorithm to provide the final classification result. Choosing
the right stacker and the features is more of an art than science.

III. EXPERIMENTS: DISTRIBUTED TRAIN THEN COMBINE

Distributed, ubiquitous IoT Devices in the real world have
heterogeneous hardware specifications. To replicate this sce-
nario, the devices chosen to carry out the distributed training,
given in Table I, contains 10 resource-constrained MCU boards
(B1-B10) and 5 CPU devices (C1-C5). The training process on
all the 15 devices are carried out using the resource-friendly
classifier training algorithm from ML-MCU [6], and 3 datasets
that are Banknote Authentication [8] (4 features), Haberman’s



Fig. 2. Performance: Combining ML models trained on 15 devices.

Survival [9] (3 features), and the popular Titanic shipwreck
[10] (6 features).

Initially, for the Banknote dataset, upon all devices com-
pleting the training, 15 base models are obtained (first set).
Then, each of the 8 ML model combining methods from
Section II are one by one applied on this first set of models,
producing 8 central models (one central model as an output of
each combining method). A similar procedure was followed
for the remaining datasets, producing the second and third
set of models, followed by model combining. At this stage,
there are 8 central models for each dataset, whose performance
was evaluated in terms of Accuracy, ROC, and F1 score (F1)
metrics and reported in Fig. 2., and analyzed below.

A. Performance Analysis of Combined Central Models

For the Banknote dataset (see Fig. 2. a), the highest perfor-
mance is shown by the Dynamic Classifier Selection (DCS-
LA) method. Followed by Maximization, then the Median
combination method, where both show the same accuracy
and slightly different ROC and F1. The Simple Averaging,
Weighted Averaging, and the Weighted Majority Vote (WMV)
methods achieve similar performance. The combine by Stack-
ing is the least performing, followed by Dynamic Ensemble
Selection (DES) method. For Haberman’s dataset (see Fig.
2. b) again, DCS-LA showed the top performance. The DES
and Stacking methods that produced a low performance for
the previous dataset are the second and third best-performing
methods. The other algebraic, averaging, and voting methods
perform almost the same, achieving good accuracy and F1 but
low ROC. For the Titanic dataset (see Fig. 2. c), Stacking

shows the highest accuracy, but DES achieved slightly higher
ROC and F1 so, DES is the overall top-performing method.
Unlike in previous datasets, here, the algebraic (combine by
Maximization and Median), Averaging, and Voting methods
show varying performance. From the algebraic methods, the
combine by Median performed better. From averaging meth-
ods, Simple Averaging performed better.

The following observation was made during experimenta-
tion: (i) The computational cost for creating an ensemble is not
much higher than training a single base model. It is because
multiple versions of the base model need to be generated
during parameter tuning. Also, the computational cost for
combining multiple IoT devices trained base models was small
due to the simplicity of the presented combination strategies.
(ii) To construct a good ensemble, it is recommended to
create base models as accurate and as diverse as possible.
(iii) Creating a learning algorithm that is consistently better
than others is a hopeless daydream. i.e., from Fig. 2, Stacking
shows top performance for the Titanic dataset and least in the
Banknote dataset.

IV. CONCLUSION

With strict privacy regulations, the historic datasets building
process is rapidly transforming into historic intelligence build-
ing - achieved by distributed learning on the IoT devices, then
central model combining. In this work, 8 robust ML model
combining methods were implemented and extensively tested,
whose open-sourced implementation, we believe to provide the
basis for a broader spectrum of decentralized and collective
learning applications.

ACKNOWLEDGEMENT

This publication has emanated from research supported in part by
a research grant from Science Foundation Ireland (SFI) under Grant
Number SFI/16/RC/3918 (Confirm) and also by a research grant from
SFI under Grant Number SFI/12/RC/2289 P2 (Insight), with both
grants co-funded by the European Regional Development Fund.

REFERENCES

[1] B. Sudharsan, P. Patel, J. Breslin, M. I. Ali, K. Mitra, S. Dustdar,
O. Rana, P. P. Jayaraman, and R. Ranjan, “Toward distributed, global,
deep learning using iot devices,” IEEE Internet Computing, 2021.

[2] A. H. Ko, R. Sabourin, and A. S. Britto Jr, “From dynamic classifier
selection to dynamic ensemble selection,” Pattern recognition, 2008.

[3] Z.-H. Zhou, “Ensemble methods: Foundations and algorithms,” Chap-
man Hall/CRC, 2012.

[4] K. Woods, W. P. Kegelmeyer, and K. Bowyer, “Combination of multiple
classifiers using local accuracy estimates,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, no. 4, pp. 405–410, 1997.

[5] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Edge2train: A framework to
train machine learning models (svms) on resource-constrained iot edge
devices,” in International Conference on the Internet of Things, 2020.

[6] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Ml-mcu: A framework to
train ml classifiers on mcu-based iot edge devices,” IEEE IoTJ, 2021.

[7] “Stacking via meta ensembling: https://www.gormanalysis.com/blog/
guide-to-model-stacking-i-e-meta-ensembling/,” 2016.

[8] “Uci machine learning repository: Data set,” archive.ics.uci.edu.
[Online]. Available: https://archive.ics.uci.edu/ml/datasets/banknote

[9] “Uci machine learning repository: Data set,” archive.ics.uci.edu.
[Online]. Available: https://archive.ics.uci.edu/ml/datasets/Haberman

[10] “Titanic: Machine learning from disaster,” Kaggle.com, 2012. [Online].
Available: https://www.kaggle.com/c/titanic/data


