
Ubiquitous System Integration as a Service in
Smart Factories

Mirco Soderi, Vignesh Kamath, Jeff Morgan, John G. Breslin
Data Science Institute, National University of Ireland Galway, Ireland {firstname.lastname}@nuigalway.ie

Abstract—The state-of-the-art in manufacturing technology
identifies a data rich, horizontally and vertically integrated
environment, with collaborative control and intelligence systems,
to enable what is called a smart factory. Similar to digital
factories, smart factories signify a greater digital convergence
between manufacturing Operational Technology (OT), and
wider enterprise Integrated Technology (IT). With these new
capabilities comes new challenges in scale, complexity, and the
skills needed to enable ubiquitous system integration. While
in the past, engineers have utilized a variety of proprietary
graphical configuration and programming tools to intuitively
create simple to complex manufacturing systems, presently, the
standard technology ecosystem which engineers design, control,
and maintain, is observably expanding, and/or evolving to
incorporate more open-source technologies, network services,
and distributed devices. Therefore, this paper will examine
the emerging next generation technologies and tools which
will support engineers in designing and interacting with the
new digital manufacturing ecosystem in smart factories. To
achieve this: a state-of-the-art survey of commercial Industrial
Internet of Things (IIoT) technology is presented; three key
ubiquitous technology trends are examined; and a use-case is
presented with a universal framework. Uniquely, this framework
demonstrates the collective capabilities of the technologies to
overcome ubiquitous system integration problems.

Index Terms—Digital Factory, Smart Factory, Internet of
Things (IoT), Software Containers, Graphical Programming
Interfaces (GPI), Enterprise Integration, Micro-services, Node-
RED, Cyber Devices.

I. INTRODUCTION

It has been envisaged that the next generation of man-
ufacturing factories will integrate their business functions
with manufacturing systems, creating new levels of con-
nectivity and autonomy, representative of a digital factory
[1]. Presently, this is being achieved through the merging
of (business) Integrated Technology (IT) and (production)
Operational Technology (OT), with enabling Information and
Communication Technologies (ICT), such as the Internet of
Things (IoT) [2], Digital Platforms [3], and the Cloud [4].
With new connectivity comes new opportunities to align
manufacturing execution and control systems with analytical
and artificially intelligent systems, to collectively produce
Cyber-Physical Systems (CPS) [5], and enable smarter man-
ufacturing, also called smart factories [6]. In both the Smart
and Digital factory paradigm, internal systems redefine their
constructs as either subscribing to services, and/or presenting

This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant Number SFI/16/RC/3918
(Confirm). For the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript version arising
from this submission.

their functions as services, in a true Service-Oriented Ar-
chitecture (SOA) design [5]. Observably, this creates a new
digital frontier, a distributed digital manufacturing ecosystem
[7], as production systems become distributed digital assets
in wide-area networks [8].

To date, considerable efforts have been made to understand
the new digital ecosystem, via state-of-the-art reviewers and
technical articles relating to Advanced Sensor Technologies
[9], Digital Platforms [3], Cloud [4], Production Monitor-
ing and Visualization [10], Preventative Maintenance [11],
Security [12], Industrial Communication [13] and Robotic
Control [14]. From these references, the composition of
the new digital ecosystem can be imagined as consisting
of a range of IoT devices, layered software environments
(Edge-Fog-Cloud), commercial and industrial communication
standards and servers, data models, services/micro-services,
and both commercial and open-source technology. However,
throughout the extended IoT literature, the digital ecosystem
presents several challenges, such as: (i) the diversity and
scaling complexity of industrial IoT devices available which
impact the cost of deployment and integration [7]; (ii) the
complexity of the heterogeneous networks and connected
devices (greenfield/brownfield IT/OT systems) which require
significant work to integrate and unify information models
[15]; (iii) a lack of technical designing interfaces for the
integration of Cyber and Physical Systems and exploring the
interaction dynamics of the resulting CPS [16]; (iv) limited
interfaces between enterprise corporate enterprise levels and
the manufacturing shop floor level [17]; and (v) a require-
ment for a diverse technical and analytical skillset for the
new digital worker [18] [19] [20], a worker 4.0 [21], or
commonly referred to as a digital engineer. Presently, there
is an opportunity to investigate solutions to these challenges,
which from here on in is referred to as the Ubiquitous System
Integration challenge.

In summary, this paper will examine the emerging next
generation technologies and tools which will support en-
gineers in designing and interacting with the new digital
manufacturing ecosystem in smart factories. To achieve this, a
state-of-the-art survey of Industrial Internet of Things (IIoT)
technology has been carried out, and this has allowed the
identification of some key technology trends which offer
potential solutions to the Ubiquitous System Integration chal-
lenge, that are analysed and discussed in Section II. Fur-
thermore, such ubiquitous technologies are formulated into a
universal framework representative of the new digital manu-
facturing ecosystem. This universal framework is presented



in Section III, with a use case operating within the Industrial
Computation Laboratory. A specialization of the universal
framework, namely the secure-by-design Ubiquitous System
Integration as a Service architecture is presented in Section
IV alongside the implementation details of its key compo-
nents. It is important to note that all artifacts are available to
download as open source, in order to promote research and
development in the community as well as industry adoption of
these foundational digital and smart factory capabilities. The
results are summarized in Section V. Future directions are
announced in Section VI. Conclusions are drawn in Section
VII.

II. TECHNOLOGY TRENDS

The purpose of the IIoT technology survey carried out in
the context of this work is to understand the state-of-the-
art for engineers working within the digital ecosystem. For
context, present speculation into the impact of the Indus-
trial Internet of Things (IIoT) technology has placed focus
on the optimization of supply chains with new efficiency
improvements [22]. It is forecasted that the enterprise and
automotive market will grow to 5.8 billion IIoT endpoints
[23], with the total IIoT market expected to reach 263 billion
dollars in 2027 [24]. The composite IIoT technologies which
represent this speculation have been analytically reviewed in
Boyes et al. [25] both conceptually and characteristically.
Key reference is made to the Purdue reference model for
manufacturing enterprise architecture, and an IoT architecture
model consisting of OT (sensors, actuators, gateways, data
acquisition devices), and IT (Edge processing, data centre,
and the Cloud).

In total 33 technologies were surveyed, including 5 IoT
devices, 5 Application-Specific Integrated Circuit (ASIC)
devices, 8 IIoT and industrial compute devices, 10 industrial
control devices, and 5 interconnected middleware (Fog) tech-
nologies. For context, the technologies reviewed can enable
high-speed machine control and supervisory control, small-
to-large sensing and data acquisition capabilities, low-to-
high Edge computing performance, fixed-to-configurable-to-
customizable hardware and software capabilities, and low-
to-high level programming. They all have been analysed
as for their functional capability, scaling cost, strategic
technology partnership, analytical strategy (Edge/Fog/Cloud
dependencies), technology familiarity, time to market, con-
figuration vs customization requirements, solution own-
ership/support/maintenance, and data/communication stan-
dards.

The following key trends and collective insights have
emerged: (i) Integration of Information Communication Tech-
nology, specifically the universal communication standards,
such as OPC UA and MQTT/SparkPlug, and the embedded
communication mediums, such as Wi-Fi and dual ethernet
for WAN and LAN capabilities. All of them enable standard
data distribution paths from Edge devices to Fog systems,
and new paths toward Cloud connectivity. (ii) Utilization of
open hardware and software platforms, examples of which
can be seen in (a) the low-cost Raspberry Pi platform for

wide spread sensing, (b) the increasing usage of Linux
operating systems for real-time control, higher level pro-
gramming capabilities, and Cloud connectivity, and (c) the
virtual software Containers that enable ubiquitous software
and micro-service deployment across multiple platforms. (iii)
Diversity of compute technology, from Application Specific
Integrated Circuits (ASICs) such as on-chip programming
via Field Programmable Gate Arrays (FPGA), Graphical
Programming Units (GPUs) for Edge machine learning,
and dedicated Visual Processing Units (VPUs) for pattern
recognition, to embedded and modular controllers, devices,
industrial computers, and network gateways. (iv) Expansion
of the Cloud to Edge services, intended as the deployment of
Cloud services to both Edge and Fog environments, offering
Software as a Services (SaaS) onto dedicated computing
hardware which is closer to its intended application of use
(examples of this can be seen in vision machine learning
services, and IoT hubs for data acquisition and transportation
to the Cloud via OPC UA and MQTT communication).
(v) Increase of graphical programming and configuration
interfaces, for example devices/controllers with “out of the
box” graphical and Web browser compatible user interfaces
to configure and sometimes even program the device, and the
use of graphical programming languages like Node-RED. (vi)
Singular to modular designs, separation between the low cost
centralized IoT devices, and distributed/decentralized modu-
lar IoT devices offering extensible re configurable modular
sensing, and clustered compute modules. Uniquely, the use of
virtual software Containers is enabling modularity in software
solutions deployable across different device types, offering
modular M2M communication, graphical programming, data
processing and data sharing (vii) Collective vendor offerings,
where IoT technology typically comes in a bundle with a
vendor-specific Fog/Cloud solution, thereby encouraging the
building of digital ecosystems that are exclusive to a single
brand (although in most cases connectivity to the main Cloud
providers is granted anyway). (viii) Dual operating systems,
which enable higher programming and wider communica-
tion capabilities: some industrial controllers rely on a dual
operating system to balance real-time control and complex
task execution, and some providers of automation control
devices rely on Linux-based operating systems to enable the
usage of solutions and services that are freely available, and
maintained by wider software communities.

III. UBIQUITOUS SYSTEM INTEGRATION FRAMEWORK

Based on the technology trends outlined in Section II,
a Ubiquitous System Integration Universal Framework is
proposed and represented in Fig. 1. The framework encom-
passes: (i) field-level industrial communication with OPC
UA and MQTT; (ii) Graphical Programming Interfaces (GPI)
for Cyber-Physical System integration and data visualization;
(iii) virtual Containers to deploy software applications and
services in a ubiquitous scalable Fog cluster; (iv) a set of
Dock functionalities, that typically consist of customizable
signal/data processing services, such as signal processing,
complex fuzzy logic, or machine learning. As such, this



framework is representative of a digital ecosystem which
is decentralized yet interconnected, and collaborative. The
purpose of this framework is to connect industrial controllers
(manufacturing machines) and IIoT devices (process monitor-
ing) to factory services (Manufacturing Execution Systems),
and to collect, analyse and display data (Manufacturing
Intelligence).

Fig. 1. Ubiquitous System Integration Universal Framework

Objectively, this framework provides an entry-level ca-
pability for digital and smart factories. This capability is
however evidently scalable and universal for Cyber-Physical
System integration, which will enable it to be applied to
a wide range of manufacturing production systems. For
example, multiple Fog clusters can be realised and seamlessly
connected. As such, the framework can systematically scale
in complexity, with new IIoT connectivity, computation, user
interfaces, system integration. In doing so, the framework can
be developed and expanded over time to include new nodes,
new Containers, and new clusters to support advanced digital
and smart factory capabilities (see also Section IV).

A. Proof of concept

A proof of concept of the framework has been put in place
in the Industrial Computation Laboratory. A picture of this
framework is provided in Fig. 2.

In our proof of concept, the hardware of the digital ecosys-
tem consists of three industrial PLCs and two IIoT devices,
which are connected to two network switches representing
an industrial network and an IoT network. The PLCs are
programmed with a virtual state machine, with five operating
steps and three global states. The PLCs are connected to
the industrial network and communicate with an industrial
middleware server via a proprietary Ethernet protocol. The
industrial middleware server has read/write access to the PLC
data and presents this data to other systems via OPC UA
protocols. The IIoT devices acquire data from three sensors
and are connected to the IoT network. The IIoT devices

Fig. 2. Proof of concept of the Universal Framework

communicate sensor data to a MQTT broker via the MQTT
protocol.

The software of the digital ecosystem is wrapped in a Fog
cluster that consists of a few Docker Containers, and it in-
cludes: (i) a Mosquitto MQTT broker for internal and external
data streaming; (ii) an InfluxDB Timeseries database instance
for historic data storage; (iii) Grafana for data visualization;
(iv) a Node-RED instance for the implementation of the cyber
devices, i.e. the Cyber-Physical Systems.

Fundamental to the Fog cluster is the integration of local
and global Cyber Physical Systems (CPS). This is achieved
by virtually/remotely wiring Node-RED nodes, wrapped in
flows, through the Node-RED graphical programming inter-
face that is accessible through the Web. A flow example
follows: (i) a node is placed/configured to acquire data, such
as an MQTT/TCP/IP input node; (ii) the node is connected to
another node which processes the data, for example extracting
specific values from a message represented as a JSON object;
and (iii) the data processing node is connected to the end
of the flow, which is still a node that stores the data in
a relational database. Other flows have been developed in
the context of this proof of concept that are aimed at: (i)
controlling machine start and stop; (ii) producing machine
and MES records; (iii) detecting and quantifying the machine



downtime. Node-RED nodes can be assigned unique names
and disposed on the screen in a convenient way to ease
software reading and maintenance. Node-RED also provides
useful tools that assist the developer in system design, control,
and error trapping. As such, an engineer can intuitively
manage and scale digital connections and transactions.

Data are displayed through interactive dashboards. This
is achieved in several ways. Firstly, Node-RED enables the
displaying of data, the monitoring of the internal status of
the system, and the performing of actions onto the system,
through the Web. Also, Grafana enables the interactive dis-
playing of historical data, which is achieved through queries
to the time-series database. Since data is exposed through the
Web, it is available to multiple users, such as manufacturing
operators, engineers, and managers. All users can utilize this
data to understand what is happening and get supported in
decision making.

IV. UBIQUITOUS SYSTEM INTEGRATION AS A SERVICE

The Ubiquitous System Integration as a Service (USIaaS)
architecture is for building a network of cyber devices, each
of which, named Service Nodes (SN), is characterized by the
following: (i) it asynchronously communicates with the other
nodes and physical devices by means of MQTT brokers; (ii)
it can have an arbitrary number of inputs and outputs; (iii)
it can perform any of the data transformations, readings, and
writings that are available in an extensible external library,
including reading from and writing to OPC UA servers; (iv)
it is created, deleted, copied, moved, fully configured, in a
matter of milliseconds through secure calls to APIs that are
exposed by the Service Node itself; (v) it can be moved,
stopped, restarted, its execution environment can be updated,
without losing any of its configurations; (vi) it comes with
a graphical Web interface through which it is possible to
monitor and possibly even edit its implementation on the fly
(although discouraged).

In Fig. 3, the internal structure of a Service Node is repre-
sented, along with its interconnections to the other actors in
the digital ecosystem of our proposed reference architecture
and implementation of the Ubiquitous System Integration
as a Service. A Service Node is a dockerized Node-RED
application. Creating a new Service Node is running a new
Docker container that bears a Node-RED instance with a
pre-installed implementation of the Service Node Node-RED
application. The Node-RED implementation of the Service
Node is available as open source1. The application is made
up of two flows: (i) the Configuration flow, where the APIs
that allow the configuration of the Node are implemented;
(ii) the Business Logic flow, where Node-RED MQTT input
and output nodes are located, along with the Transformation
Instance which is an instance of the subflow that implements
the actual job the Service Node performs.

More specifically, the APIs implemented in the Config-
uration flow allow us to: (i) create and delete input and
output MQTT nodes; (ii) configure the endpoint, topic,

1https://drive.google.com/file/d/1jCxldMvs6XUx33E
CKdjBRoFgbeQqNQ [Note: access to Google Drive may be slow]

Quality of Service, secure connection, and credentials, for
the created input and output MQTT nodes; (iii) set and
update the data transformation of the Service Node, selected
from an expandable set of subflows that are implemented
in a separated Node-RED application running in a separated
Docker Container, named the Transformations Library (TL);
(iv) create and remove the wires that connect the input and
output MQTT nodes to the input and output ports of the
Transformation Instance; (v) add and remove Node-RED
modules to allow the execution of subflows that require
specific modules that are not pre-installed in the Node-RED
server instance that comes with the official Docker Image
of Node-RED; (vi) rearrange the graphical elements in the
Business Logic subflow; (vii) pause and restore the Service
Node, disabling and enabling the Business Logic flow; and
(viii) read the current configuration through a number of
specific APIs, one for each configurable aspect of the nodes
that are in the Business Logic subflow.

The typical execution flow of a Configuration API that
is aimed at setting a configuration parameter is as follows:
(i) The ACL API is called to verify if the requester is
authorized to set that specific configuration. The ACL API
is implemented in a separated Node-RED application that
executes in a separated Docker Container. Although in our
reference implementation the ACL API is implemented in
Node-RED, it can be implemented in any language, and it
can execute the most diverse organization-specific business
logics to decide if the requester is authorized or not, possibly
including LDAP access, Keycloak API calls, and much more.
A sample implementation of the ACL API, arguably not suit-
able for production use just yet, is available as open source2.
(ii) The current implementation of the Business Logic flow,
or of the entire Node-RED application, is retrieved through
appropriate calls to the Node-RED admin APIs. (iii) The
object of interest is identified, and in it, the value of interest
is modified. (iv) The new implementation of the Business
Logic flow or of the entire Node-RED application is persisted
through appropriate calls to the Node-RED admin APIs. (v)
Finally, the response is returned to the requester.

The typical execution flow of a Configuration API that
is aimed at reading the current value of a configuration
parameter follows: (i) the ACL API is called to verify if
the requester is authorized to read that specific configuration;
(ii) the current implementation of the Business Logic flow,
or of the entire Node-RED application, is retrieved through
appropriate calls to the Node-RED admin APIs; and (iii) the
configuration of interest is located therein, and it is returned
to the requester.

The Configuration API that allows setting the transfor-
mation (Transformation Library subflow) that the Service
Node must execute is also implemented in the Configuration
subflow of the Service Node itself. It is exposed at the path
/node/transformation and it proceeds through the following
steps: (i) the validity of the payload of the request, avail-
able in the Transformation Library, is verified. No spaces

2https://drive.google.com/file/d/1EliH pqZS
FQMSW13dWl5GC8XQz1-8Wi



are allowed, and node cannot be used as the name of a
transformation subflow since it is reserved for Service Node
level configurations. (ii) The ACL API is called to verify if
the requester is authorized to set the transformation to be
executed. (iii) The Node-RED admin API is called on the
Transformation Library to retrieve the set of the available
transformations. (iv) The subflow of interest is identified, and
its contained nodes also are identified, along with Node-RED
configuration nodes that are used in them. (v) The current
implementation of the Service Node is retrieved through
calls to the Node-RED admin APIs exposed by the Node-
RED instance that is running in the Service Node. (vi) The
metadata and content of the subflow that implements the
transformation that the Service Node performs are updated,
and set equal to the metadata and content of the new subflow
retrieved by name from the Transformation Library. (vii)
A check is performed to see if all required Node-RED
modules are available in the Service Node. (viii) Also a
check is carried out such that the IDs of objects copied from
the Transformation Library do not conflict with the IDs of
existing nodes in the Service Node. (ix) Appropriate calls
are made to the Node-RED admin APIs of the Node-RED
instance that is running in the Service Node to persist all
changes. (x) Lastly, a response is returned to the requester.

Our current implementation of the Transformation Library
encompasses several ready-to-use subflows, that can be cate-
gorized in: (i) I/O adapters; (ii) filters; (iii) data transformers;
(iv) timed/flow controllers. The available subflows that belong
to the category of the I/O adapters are self-explanatory: (i)
dbtail; (ii) dbread; (iii) dbwrite; (iv) filetail; (v) filewrite; and
(vi) the OPC UA set. The available subflows that belong
to the category of the filters are also self-explanatory: (i)
greaterthan; (ii) lowerthan; (iii) between; (iv) outside; (v)
enum. The available subflows that belong to the category of
the data transformers are also self-explanatory: (i) expr; (ii)
template; (iii) scale; (iv) switch. The available subflows that
belong to the category of the timed/flow controllers are: (i)
clock; (ii) sampler; (iii) quarantine; (iv) watchdog; (v) fork.
All subflows include input and output ports, and a status
port, through which the status of the transformation subflow
(and so the status of the Service Node) is made available. In
this way, the status comes to be visible in the Web interface
that displays (and possibly allows editing of) the Business
Logic flow, where it is represented by means of a coloured
icon and short textual description. Typically, a Transformation
Library subflow implements both the data transformation and
the configuration APIs that are specific to that transformation.
The current implementation of the Transformation Library is
available as open source3.

The proposed architecture and its implementation have
been designed having security in mind since the outset. All
Node-RED instances are secured through the configuration
of usernames and passwords in their respective configuration
files, and all communications take place over HTTPS. In
the reference architecture, the open-source EMQ broker is
used. The architecture and its implementation are in any

3https://drive.google.com/file/d/1xLL sGaIG9PDwXAxbOhUbrznKieNKXEK

case agnostic with respect to the specific broker in use, if
it implements the MQTT protocol. The EMQ broker used
in the reference architecture has been configured to use an
external ACL API, that in the reference architecture has been
implemented as a Node-RED application. It is at present
mostly suitable for development and testing purposes, and its
sample implementation is available as open source4. In the
reference architecture, all Docker Containers are connected to
the same Docker user-defined bridge/network. For production
use, if not all Containers can be connected to the same Docker
user-defined bridge/network, for example because they are
running on different Docker hosts, the add-host option can
be used to add DNS entries and allow Containers to be in
sight of each other. A number of environment variables are
also expected to be set for Docker Containers that run Service
Nodes5.

Fig. 3. Ubiquitous System Integration as a Service

V. RESULTS

The proof of concept for the Ubiquitous System Integration
Framework presented in Section III encompasses Node-RED
dashboards through which the user is able to monitor the
hardware apparatus, and even to interact with it in real-time.
More specifically, through the Node-RED dashboards, the
user can: (i) display the current values of humidity, vibration,
and temperature, in speedometer/gauge charts; (ii) display
the current status of the PLCs through a separate LED for
each state and PLC, coloured in red or green; (iii) switch
on and off the PLCs through graphical switches drawn on
the Node-RED dashboard. A sample Node-RED dashboard
is represented in Fig. 4. Also, the proof of concept for
the Ubiquitous System Integration Framework encompasses
Grafana dashboards through which the user can: (i) display
the current values of temperature and humidity in gauge
charts that also carry a qualitative description of the current
value by means of a coloured edge; (ii) display the history

4https://drive.google.com/file/d/1qa4Dy53Bj4fUAuw8-GFO2GmDxWFzEUrt
5NRADM USER, NRADM PASS, CFG ACL ENDP (URL of the ACL

API used by Configuration APIs), CFG ACL CACE (local path and file-
name of the CA certificate to be used to validate the self-signed certificate
provided by the Node-RED server instance where the ACL API runs, in
case a self-signed certificate is used), NRLIB ENDP (URL of the Node-
RED server instance where the Transformation Library runs), NRLIB USER,
NRLIB PASS, NRLIB CACE



of the detected values of temperature and humidity both by
means of time series at different resolutions and by means
of bar charts that carry the average values by day for the
last week along with the overall maximum, minimum, and
average value; and (iii) display the history of the PLCs
statuses by means of horizontal bars and pie charts. Sample
Grafana dashboards are represented in Fig. 5.

Fig. 4. Node-RED dashboards

Fig. 5. Grafana dashboards

As for the Ubiquitous System Integration as a Service
presented in Section IV, the following scenario has been con-
sidered for a proof of concept. An operator, or an automated
system, populates a source table in a relational database. We
want to periodically check for new entries, extract a value of
interest, compare it with a configurable threshold, and write a
new row in a different database table, namely the alert table,
when the newly added value in the source table is greater than
the configured threshold. The goal is achieved through the
network of Service Nodes represented in Fig. 6. Each block
is a Docker container. All containers are connected to the
same user-defined Docker network/bridge. The (host) name
of the container is in bold in each block. Docker volumes are
used for data storage, and backups of these are available for
download6. When starting Service Nodes, some environment

6https://drive.google.com/file/d/1 vANjmXCVcxhq29JolcSb02bUnpKqKf0

variables must be set7. All communications are over HTTPS
and authenticated. The backup of the volume to be used
for Service Nodes is not pre-configured , so some rework
is needed before it can be restored to Service Node volumes.
Service Nodes must be configured8 after creation and volume
restore. The APIs can be called when the internal port 1880
of Service Nodes has been mapped to port numbers from
1993 onward, clockwise from the ExampleDbtail container.
The RDB schema is also available for download9.

Fig. 6. A proof of concept for the Ubiquitous System Integration as a Service

VI. FUTURE DIRECTIONS

In the literature, reference is made to the application of au-
tomation and Artificial Intelligence (AI) techniques for smart
system integration [26]. These future IoT systems would
include self-configuration, self-optimization, self-protection,
and/or self-healing capabilities, that would potentially enable
the automated system integration. Presently, the state-of-the-
art identifies trends toward enabling this capability, such as
the OPC UA Service Oriented Architecture (SOA) to enable
interoperability between internal and external factory sys-
tems, and MQTT Sparkplug with autonomous data structure
sharing. As such, the framework presented in this paper can
be expanded upon and improved, yet presently it offers a
pragmatic open-source solution to enable ubiquitous systems
integration for the new digital workforce to enable smart
factories.

Our own next steps will then consist of the following.
Firstly, a Scala application will be developed that will act
as a server application, and that will be characterized by
the following: (i) it will rely on Spark for distributing the
computation; (ii) it will rely on some of the most commonly
used cloud-storage technologies (HDFS, HBase, Solr, Kudu)
as for the distribution of data; (iii) it will allow the building
of networks of atomic advanced analytics/ML tasks, fully
configurable through API calls; and (iv) it will allow data
storage to the cloud, algorithms/networks executions, and
status and result reading, by means of API calls. The Scala

7https://drive.google.com/file/d/1D 5bCJGIQOatVx5DxWbVABOsE3jDWz8z
8https://documenter.getpostman.com/view/16531967/Tzm5Gbqy
9https://drive.google.com/file/d/1RhQ5kWffvroG5f-5lRqbx-DWjpJfB-Rk



server application will be then integrated with Node-RED to
make it straightforward to access its functionalities through
the creation and configuration of Node-RED nodes. Remark-
ably, Service Nodes are Node-RED applications. Therefore,
we envisage a day when the Edge/Fog layers will come to
encompass “cyber devices that compute advanced analytics”
with the highest possible flexibility.

VII. CONCLUSIONS

In conclusion, in this paper, a number of key technology
trends to solve ubiquitous system integration challenges have
been identified and described, based on a survey of the state-
of-the-art in Industrial Internet of Things (IIoT) technologies.
The trends can be summarized as follows: (i) standardized
communication with OPC UA and MQTT; (ii) Graphical
Programming Interfaces (GPI) with Node-RED flow pro-
gramming; and (iii) Virtual Containers with microservice
deployment in the Docker engine. These enabling ubiqui-
tous technology trends were also formulated into a scalable
universal framework which provides foundational digital and
smart factory capabilities. Collectively, this framework and
its technologies offer potential solutions to ubiquitous system
integration challenges, and in doing so provide a means to: (i)
standardize the complexity in Cyber-Physical System (CPS)
integration; (ii) deploy scalable solutions to meet present
and future application requirements; and (iii) systematize
the performing of scalable factory-wide digital/smart trans-
formations. Therefore, objectively the key technology trends
identified and demonstrated in this paper, represent ubiquitous
building blocks and digital tools for next generation engineers
to construct, develop, and expand the new digital frontier,
namely the digital manufacturing ecosystem. As such, the
proposed architecture and implementation for a Ubiquitous
System Integration that is fully configurable through APIs can
be reviewed as a valid starting point for the building of basic
to complex digital ecosystems for intelligent manufacturing.

REFERENCES

[1] G. Chryssolouris, D. Mavrikios, N. Papakostas, D. Mourtzis, G. Micha-
los, and K. Georgoulias, “Digital manufacturing: History, perspec-
tives, and outlook,” in Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, 2009, doi:
10.1243/09544054JEM1241.

[2] Y. Bin Zikria, S. W. Kim, O. Hahm, M. K. Afzal, and M. Y.
Aalsalem, “Internet of things (IoT) operating systems management:
Opportunities, challenges, and solution,” Sensors (Switzerland). 2019,
doi: 10.3390/s19081793.

[3] J. K. Gerrikagoitia, G. Unamuno, E. Urkia, and A. Serna, “Digital
Manufacturing Platforms in the Industry 4.0 from Private and Public
Perspectives,” Appl. Sci., 2019, doi: 10.3390/app9142934.

[4] S. Yangui, “A panorama of cloud platforms for iot applications across
industries,” Sensors (Switzerland), 2020, doi: 10.3390/s20092701.

[5] M. Moghaddam, M. N. Cadavid, C. R. Kenley, and A. V. Deshmukh,
“Reference architectures for smart manufacturing: A critical review,”
J. Manuf. Syst., 2018, doi: 10.1016/j.jmsy.2018.10.006.

[6] L. Monostori et al., “Cyber-physical systems in manufactur-
ing,” CIRP Ann., vol. 65, no. 2, pp. 621–641, 2016, doi:
https://doi.org/10.1016/j.cirp.2016.06.005.

[7] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “In-
dustrial Internet of Things: Challenges, Opportunities, and Directions,”
IEEE Trans. Ind. Informatics, vol. 14, no. 11, pp. 4724–4734, Nov.
2018, doi: 10.1109/TII.2018.2852491.

[8] I. Grángel-Gonzalez et al., “The industry 4.0 standards landscape from
a semantic integration perspective,” in IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA, 2017, doi:
10.1109/ETFA.2017.8247584.

[9] T. Kalsoom, N. Ramzan, S. Ahmed, and M. Ur-Rehman, “Advances
in sensor technologies in the era of smart factory and industry 4.0,”
Sensors (Switzerland). 2020, doi: 10.3390/s20236783.

[10] P. Moens et al., “Scalable fleet monitoring and visualization for
smart machine maintenance and industrial iot applications,” Sensors
(Switzerland), 2020, doi: 10.3390/s20154308.

[11] S. Cavalieri and M. G. Salafia, “A model for predictive maintenance
based on asset administration shell,” Sensors (Switzerland), 2020, doi:
10.3390/s20216028.

[12] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “A Systematic
Survey of Industrial Internet of Things Security: Requirements and Fog
Computing Opportunities,” IEEE Commun. Surv. Tutorials, 2020, doi:
10.1109/COMST.2020.3011208.

[13] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of indus-
trial communication: Automation networks in the era of the internet
of things and industry 4.0,” IEEE Ind. Electron. Mag., 2017, doi:
10.1109/MIE.2017.2649104.

[14] M. Salhaoui, A. Guerrero-González, M. Arioua, F. J. Ortiz, A. El
Oualkadi, and C. L. Torregrosa, “Smart industrial iot monitoring and
control system based on UAV and cloud computing applied to a
concrete plant,” Sensors (Switzerland), 2019, doi: 10.3390/s19153316.

[15] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Inf.
Syst. Front., 2015, doi: 10.1007/s10796-014-9492-7.

[16] Y. Cohen, M. Faccio, F. Pilati, and X. Yao, “Design and management of
digital manufacturing and assembly systems in the Industry 4.0 era,”
International Journal of Advanced Manufacturing Technology. 2019,
doi: 10.1007/s00170-019-04595-0.

[17] H. Panetto, B. Iung, D. Ivanov, G. Weichhart, and X. Wang,
“Challenges for the cyber-physical manufacturing enterprises
of the future,” Annual Reviews in Control. 2019, doi:
10.1016/j.arcontrol.2019.02.002.

[18] S. S. Fernández-Miranda, M. Marcos, M. E. Peralta, and F.
Aguayo, “The challenge of integrating Industry 4.0 in the de-
gree of Mechanical Engineering,” Procedia Manuf., 2017, doi:
10.1016/j.promfg.2017.09.039.

[19] U. Mohammad et al., “Smart factory reference model for training on
Industry 4.0,” J. Mech. Eng., 2019.

[20] D. Calvetti, P. Mêda, M. C. Gonçalves, and H. Sousa, “Worker
4.0: The future of sensored construction sites,” Buildings, 2020, doi:
10.3390/BUILDINGS10100169.

[21] FESTO, “Industry 4.0 User’s Guide: Ed-
ucator Edition,” 2020. [Online]. Available:
https://www.festo.com/net/SupportPortal/Files/551591/Festo Inudstry
4.0 User’s Guide Educator Edition White Paper.PDF. [Accessed:
09-Feb-2021].

[22] Deloitte, “From Interpretation to Prediction Unleashing the Value of
the Industrial Internet of Things,” 2017.

[23] Gartner, “Gartner.com,” 2019. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-
gartner-says-5-8-billion-enterprise-and-automotive-io. [Accessed:
01-Feb-2021].

[24] Meticulous Market Research, “Industrial Iot Market,” 2020. [Online].
Available: https://www.meticulousresearch.com/product/industrial-iot-
market-5102.

[25] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (IIoT): An analysis framework,” Comput. 524 Ind.,
2018, doi: 10.1016/j.compind.2018.04.015.

[26] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Trans. Ind. Informatics, vol. 10, no. 4, pp. 2233–591 2243, Nov.
2014, doi: 10.1109/TII.2014.2300753.


