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ABSTRACT
Transmitting updates of high-dimensional neural network (NN)
models between client IoT devices and the central aggregating
server has always been a bottleneck in collaborative learning - es-
pecially in uncertain real-world IoT networks where congestion,
latency, bandwidth issues are common. In this scenario, gradient
quantization is an effective way to reduce bits count when transmit-
ting each model update, but with a trade-off of having an elevated
error floor due to higher variance of the stochastic gradients. In this
paper, we propose ElastiCL, an elastic quantization strategy that
achieves transmission efficiency plus a low error floor by dynami-
cally altering the number of quantization levels during training on
distributed IoT devices. Experiments on training ResNet-18, Vanilla
CNN shows that ElastiCL can converge in much fewer transmitted
bits than fixed quantization level setups, with little or no compro-
mise on training and test accuracy.
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1 INTRODUCTION
Due to privacy concerns, the distributed clients perform on-device
learning and only share model updates with a central server. In such
settings, using distributed versions of stochastic gradient descent
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Table 1: Summary of notations used during ElastiCL design.

Symbol Description
𝑠 Number of quantization levels
𝑄 (.) Stochastic uniform quantizer [5] with 𝑠 quantization levels
𝜂 Learning rate
𝐿, 𝜎2, 𝑓 ∗ Parameters
w Parameter vector of the global model
𝑑 Dimension of w
𝑓 Empirical risk that need to be minimized
𝜏 Iterations of the SGD method
𝐵 Total bits transmitted by a client IoT device to server
𝑛 Number of clients (IoT devices)
𝐶𝑠 Number of bits transmitted by a client to server per round
𝑘 Index of the communication round

(SGD) has gained attention due to its higher scalability characteris-
tics. A popular example can be using the data-parallel schemes such
as QSGD [1], Buckwild [3], TernGrad [18], SignSGD [2] in a setting
with 𝑛 distributed devices that split a large dataset among them-
selves. Here, each client keeps a private copy of the model parame-
ters while having access to the global function’s stochastic gradients
that need to beminimized. Then, each device, at each training round,
privately computes its stochastic gradient using the local data it sees.
This learned information is then broadcasted/synchronized to other
training-involved devices, using which aggregation is performed at
each device to obtain the updated model parameters.

In such decentralized scenarios, to tackle IoT networks created
bottlenecks [6, 10], the load on the transmission channel is reduced
by limiting the clients-server communication frequency. However,
this optimization is not enough for high-dimensional NN models
with large size model updates [4]. During the model update step
by clients, compression methods have also been investigated to
reduce transmission packet size [16]. However, such compression
methods usually add to the error floor of the training objective
as they increase the variance of the updates. Thus, one needs to
carefully choose the number of quantization levels to strike the
best error-communication trade-off.

We propose ElastiCL, a strategy to dynamically alter the number
of quantization levels used to represent a model update and achieve
a low error floor as well as communication/transmission efficiency.
The key idea of ElastiCL is to bound the convergence of training
error in terms of the number of bits transmitted, unlike traditional
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Figure 1: ElastiCL on ResNet-18 uses fewer bits to reach a lower loss - a loss of 0.036 in 0.297 GB, while the 2-bit method uses
1.78 GB. For non-i.i.d data distribution, ElastiCL on Vanilla CNN achieves the lowest error floor of 0.027 compared to others.

approaches which bound error with respect to number of training
rounds. We use this convergence analysis to adapt the number of
quantization levels during training based on the current training
loss. ElastiCL can be considered orthogonal to other proposed meth-
ods of adaptive compression such as varying the spacing between
quantization levels and reusing outdated gradients. An adaptive
method for tuning the number of local updates or the communi-
cation frequency exists [17] - ElastiCL tunes the number of bits
transmitted per round. Table 1 shows all the notations used during
ElastiCL design in the next section.

2 PROPOSED DESIGN
The motivation behind elastically altering the number of quanti-
zation levels 𝑠 during training is, smaller 𝑠 (coarser quantization)
results in poor convergence of training loss vs training rounds -
but reduces the number of bits communicated per round 𝐶𝑠 . Also,
smaller 𝑠 enables performing more training rounds for the same
number of bits communicated, leading to a faster initial drop in
training loss. So, to reach a lower error floor, one of the ElastiCL
design principles is to start with a small 𝑠 , followed by elastic incre-
ments as training progresses. When considering Q(.) with 𝑠 quanti-
zation levels, if the 𝜂 satisfies 1 − 𝜂𝐿

(
1 + 𝑑𝜏

𝑠2𝑛

)
− 2𝜂2𝐿2𝜏 (𝜏 − 1) ≥ 0,

then the error upper bound in terms of 𝐵:
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and 𝑓 ∗ is the minimum value of our objective, w0 is a random
initialization point. This error bound Eqn (1), for different values of
𝑠 , can be used to analyse the trade-off between coarse and aggressive
quantization. As 𝑠 is decreased, the value of 𝐴1 log2 (4𝑠) decreases
but it also adds to the variance of our quantized updates which
increases 𝐴2/𝑠2. ElastiCL when deployed on IoT devices, elastically
changes 𝑠 in the employed stochastic uniform quantizer to minimize
error upper bound at every value 𝐵. To do this, the entire training

process is discretized into uniform transmission intervals where,
in each interval, 𝐵0 bits are transmitted. Below we present how to
find optimal 𝑠 for each interval.
Finding optimal s for each transmission interval.We propose
selecting an 𝑠 at any 𝐵 (assuming w0 as the point of initialization)
by setting the derivative of our error upper bound in Eqn (1) to
zero. Doing so, we get a closed form solution of an optimal 𝑠 as:

𝑠∗ =

√
𝜂2𝐿𝜎2𝜏𝐵 log𝑒 (2)
𝑛 (𝑓 (w0) − 𝑓 ∗) (2)

At the beginning of the 𝑘-th transmission interval, clients are
viewed as restarting learning at a new initialization point w0 = w𝑘 .
Using Eqn (2) we see that the optimal 𝑠 for transmitting the next
𝐵0 bits can be given as:

𝑠∗
𝑘
=

√
𝜂2𝐿𝜎2𝜏𝐵0 log𝑒 (2)
𝑛 (𝑓 (w𝑘 ) − 𝑓 ∗)

As 𝑓 (w𝑘 ) becomes smaller, the value of 𝑠∗
𝑘
increases supporting

ElastiCL concept - elastically increasing 𝑠 as training progresses. In
practice, parameters 𝐿, 𝜎2 and 𝑓 ∗ are unknown. Hence, to obtain a
practically usable sequence for 𝑠∗

𝑘
, it is assumed 𝑓 ∗ = 0 and divide

𝑠∗
𝑘
by 𝑠∗0 to obtain approximate adaptive rule in Eqn (3). Here, grid

search can be used to find 𝑠∗0 value.

𝑠∗
𝑘
≈

√
𝑓 (w0)
𝑓 (w𝑘 )

𝑠∗0 (3)

Model training rate. ElastiCL design so far assumed the existence
of a fixed learning rate 𝜂. In practice, for better convergence, the
learning rate needs to be gradually decreased during training. By
extending Eqn (3), an adaptive/elastic sequence of 𝑠 for a given
sequence of learning rates is given in Eqn (4). Here, 𝜂0 is the initial
learning rate, and 𝜂𝑘 is the learning rate in the 𝑘-th interval.

ElastiCL = 𝑠∗
𝑘
≈

√√
𝜂2
𝑘
𝑓 (w0)

𝜂20 𝑓 (w𝑘 )
𝑠∗0 (4)

3 EXPERIMENTATION
We tested ElastiCL by comparing its performance with fixed quan-
tization schemes. Here, each learned parameter (model update) is
represented using 𝑏 = {2, 4, 8, 16} bits, and a stochastic uniform
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quantizer is employed. The performance is measured by training
Vanilla CNN and ResNet-18 for classification tasks using the CIFAR-
10 dataset. The number of local updates is set to 𝜂 = 0.1, 𝜏 = 10,
then let ElastiCL train on 10 devices for the CNN and 6 devices for
the ResNet-18. To replicate the real-world heterogeneous IoT de-
vices [11, 14], edge GPUs, AIoT boards [12, 13] were used as clients
on which ElastiCL was deployed. The resource-constrained MCU
devices can also be involved by employing IoT hardware-friendly
training algorithm like Train++ [15], Glob2Train [8], Edge2Train
[7], ML-MCU [9]. During training, the learning rate was reduced by
a factor of 0.9 every 100 training rounds. The testing was performed
by storing and using both independent and identically distributed
(i.i.d), non-i.i.d distributions data on clients. In the non-i.i.d settings,
for each dataset, sorting was performed according to the target
class labels, then equally split among client devices.

The testing results are presented in Figure 1, which shows that
ElastiCL can reach an error floor using much fewer bits. It can be
observed that ElastiCL performs better for ResNet-18 (see Fig. 1.
a-b) but showed slightly inferior performance than the 4-bit setting
for Vanilla CNN (see Fig. 1. c). As observed in Eqn 4, a decreas-
ing learning rate tries to reduce 𝑠∗

𝑘
while the drop in training loss

does the opposite. In such scenarios, it is recommended to use a
conservative learning rate sequence to improve ElastiCL perfor-
mance/benefits. We report that ElastiCL achieved a test accuracy of
71.46% for ResNet-18, whereas 72.19% was achieved by the 16-bit
quantization method. For Vanilla CNN, ElastiCL reached 83.76%
test accuracy, while 83.15% was reached by the 16-bit method.

4 CONCLUSION
This paper presented ElastiCL, a communication efficient strategy
to enable ethical intelligence extraction from large-scale data gener-
ated through a plethora of IoT sensors. ElastiCL is compatible and
contributes to collaborative learning (techniques such as federated
learning, split learning, distributed ensemble learning) by provid-
ing the ability to elastically alter the number of quantization levels
during distributed training. Testing of ElastiCL on heterogeneous
IoT hardware demonstrated its robustness to system variability,
which is vital to scaling machine learning training on ubiquitous
resource-limited client nodes in low bandwidth IoT networks.

The future extended version of this paper plans to include the fol-
lowing: Introduce ElastiCL assurance with proofs for its bounds on
variance and communication bits; Report scalability performance
of ElastiCL by distributed training by varying the count of involved
devices; Report the solution quality provided by training using
ElastiCL in terms of training loss, test accuracy, and variance; Elas-
tiCL results comparison with popular schemes as Deep Gradient
Compression, Atomo, TernGrad, QSGD, SignSGD, Buckwild.
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