Globe2Train: A Framework for Distributed ML
Model Training using IoT Devices Across the Globe

Bharath Sudharsan®, John G. Breslin*, and Muhammad Intizar Al
*Confirm SFI Research Centre for Smart Manufacturing, Data Science Institute, NUI Galway, Ireland
{bharath.sudharsan, john.breslin} @insight-centre.org
§School of Electronic Engineering, Dublin City University, Ireland, ali.intizar@dcu.ie

Abstract—Training a problem-solving Machine Learning (ML)
model using large datasets is computationally expensive and
requires a scalable distributed training platform to complete
training within a reasonable time frame. In this paper, we
propose a novel concept where, instead of distributed training
within a GPU cluster, we train one ML model by utilizing the
idle hardware of numerous resource-constrained IoT devices
existing across the globe. In such a global setting, staleness
and real-world network uncertainties like congestion, latency,
bandwidth issues are proven to impact the model convergence
speed and training scalability. To implement the novel concept,
while simultaneously addressing the real-world global distributed
training challenges, we present Globe2Train (G2T), a framework
with two components named G2T-Cloud (G2T-C) and G2T-Device
(G2T-D) that can efficiently connect together multiple IoT devices
and collectively train to produce the target ML models at very
high speeds. The evaluation results with analysis show how the
framework components jointly eliminate staleness and improve
training scalability and speed by tolerating the real-world network
uncertainties and by reducing the communication-to-computation
ratio.

Index Terms—Distributed Machine Learning, IoT Devices,
Scalable Model Training, Latency Tolerance.

I. INTRODUCTION

Nowadays, IoT datasets are being published at an explosive
rate since the modern ML libraries, tools, and frameworks
enabled deep compression, deployment, and execution of
autonomous data collection plus data annotation algorithms
on IoT devices [6]-[8]. To train ML models in a reasonable
time using large-high-quality datasets gathered over decades,
the generally practiced approach of loading datasets and
training a model within a GPU cluster or a data center is
traditional, slow and might consume days or even weeks for
the model to converge. Hence, we propose the concept of a
scalable distributed training system that efficiently harnesses
the hardware resource of millions of idle IoT devices [9]-
[11] without disturbing their routine and collectively train to
produce the target ML models at very high speeds.

The Globe2Train (G2T) framework that we present in this
paper implements our novel concept by enabling the dis-
tributed training of one ML model on numerous geographically
separated IoT devices. In this work, like in [12, 13], we do not
aim to collectively train a model without centralizing the data,
which is similar to Federated Learning (FL). We instead aim

to improve model convergence speed and training scalability
by providing G2T. However, existing large-scale federated,
decentralized learning works do not scale well under networks
with high network latency and congestions [1], which can be
addressed by the G2T components.

We claim that our concept of distributed training of one
ML model on the hardware of thousands of IoT devices will
become the future of ML and IoT because; (i) In the GPUs
to IoT devices ratio, the IoT devices hold a much greater
proportion. i.e., market estimates show that roughly 50 billion
MCU and small CPU chips were shipped in 2020, which far
exceeds other chips like GPUs (only 100 million units sold);
(i1)) Every modern household does not compulsorily own a
GPU, yet it roughly has around a dozen of IoT devices which
when efficiently connected together using G2T can locally,
within their home network train mid-sized ML models without
depending on Cloud or GPU servers that can perform the
same training task at very high speeds, but at an additional
expense; (iii) In most real-life IoT scenarios, the training
dataset that produces problem-solving models when used,
can often be hard to source (GDPR and privacy concerns).
In such cases, when G2T is deployed across the devices
that have access to the same type of rich training data, it
can collectively train a model without storing the live data.
Thus, producing problem-solving models without voiding
the privacy protection regulations; (iv) Training advanced
ML models on a single GPU might consume days or even
weeks to converge. Here, the G2T can tolerate high latency,
low bandwidth constraints and collectively harness the idle
hardware resource of thousands of mid-sized IoT devices and
complete training at extremely high speeds. For example, at
the time of writing, the latest GEFORCE RTX 2080 Ti GPU
has 11 GB RAM but costs ~1500 $. Whereas one Alexa
smart speaker has 2 GB RAM and efficiently connecting 20
can collectively pool 40 GB of RAM. In this way, we can
complete training faster than the expensive GPU and at a
0 $ investment since millions of IoT devices already exist
globally, and most of them are idle. The contribution of this
paper can be summarized as follows:

o We present G2T framework that brings into practice the
novel concept of global distributed ML model training

TABLE 1
COMPARISON OF GLOBE2TRAIN FRAMEWORK WITH THE MOST RELATED PAPERS.

Paper Experimentation Trgin'ir}g On—deyice MCUs & small Staleness Uncertaivnties Scalability Parametgrs
hardware reliability algorithm CPUs support toleration compression
Distributed Not Investigated (NI), Non Comparable Few distributed
(1 AWS resources server din’t fa(il) (NC)p X Reduced v servers Delayed updates
2] Multiple GPUs NI, C%PUs i{l clgster NC X NC X Hunflreds of GPUs X
also don’t fail in a cluster
[3] Mobiles NI ML framework-based X Reduced v Millions of mobiles Sparse updates
[4] Edge servers, Rpis Not Available (NA) Cannot run on MCUs X NI X NC Pruning, Quant
[5] Laptops, Rpis NA Cannot run on MCUs X NI X NC X
MCUs that are G2T-C counter G2T-D is desi.gned All ct.lipsets in G;T—C is Tolerates un Thf)us'fmds of Resoqrcg-friendly
G2T widely used to balances for for resource-friendly ~ Arduino IDE, designed not avoidable latency, distributed shrinking by
(ours) design IoTA devices device/network training, transmission Atmel studio, to face congestion, heterogeneous ~ G2T-D to reduce
failures even in poor network ARM Keil MDK staleness bandwidth issues IoT devices bandwidth

on the hardware of numerous, geographically separated,
resource-constrained idle IoT devices. The characteristics
of the G2T framework components enable the completion
of ML model training within a reasonable time frame
while addressing challenges raised due to staleness and
real-world network uncertainties in the distributed global
training settings.

e« We provide G2T-C as the cloud-level component de-
signed to connect numerous IoT devices and efficiently
handle the entire distributed training process by de-
composing heavy ML training workloads into multiple
lightweight tasks that can be comfortably handled by
training involved IoT devices. G2T-C ensures reliable
and timely training completion while eliminating the
staleness issue.

o We provide G2T-D as the device-level, resource-friendly
component designed to efficiently transmit the IoT device
trained weights even under poor network conditions. G2T-
D improves training scalability, speed while addressing
the network uncertainty issues in distributed global
training by reducing the communication-to-computation
ratio and tolerating the real-world latency, bandwidth
issues.

Outline. Section II briefs the essential concepts, highlights
research challenges and related studies. Section III presents
the Globe2Train (G2T) framework. Section IV evaluates G2T
and discusses how it addresses distributed global training
research challenges. Section V concludes with an outline of
future work.

II. BACKGROUND AND RELATED WORK

In Table I, we compare G2T with the most related work. In
the remainder, we briefly present essential concepts, research
challenges, then compare ours with state-of-the-art approaches.

A. Machine Learning using Decentralized Data

Modern IoT devices generate and have access to a wealth
of data that can be used to produce powerful models. Often,
such rich data are large in quantity, privacy-sensitive, or most

time both, thus restricting transmitting them to data centers
and training using advanced ML frameworks on GPU clusters
[14]. As the awareness of data privacy is growing rapidly
and also since IoT apps are constantly being monitored for
GDPR compliance, companies are following the FL approach
where models are trained close to the data source. A few
popular examples of training without data centralization are:
data across numerous hospitals were used to train models for
medical treatments [12], patient survival situations across 3
countries were analyzed [13]. However, the FL. advancements
are not of much use since the scalability is poor in high
latency networks [15].

Decentralized learning is an orthogonal exploration where
methods like D2 [16], AD-PSGD [17] perform partial syn-
chronization in each update to escape latency issues. Such
large-scale training takes advantage of data parallelism and
by increasing the count of contributing devices, but at the
cost of transmitting parameters, which is expensive, especially
when multiple devices are pooled. This results in dwarfing the
savings in computation time and producing a low computation-
to-communication ratio [18]. However, again, such learning
approaches do not scale under high network latency [19]. Also,
face other critical problems due to lower network bandwidth,
expensive mobile data plan, intermittent network connection,
which is all common in the distributed, global ML scenario.
We designed G2T components to jointly work and ensure
the real-world network issues do not become a significant
bottleneck when scaling up distributed training.

B. Parameter Quantization/Compression

When the parameters like gradients, weights transferred
during distributed training are reduced, the communication
bandwidth will also reduce [20]. The 1-bit gradient [21]
achieved a 10x speedup by reducing the data transfer size.
The QSGD approach [22] provides a method to trade off
accuracy for gradient precision, and similarly, Terngrad [18]
use 3-level gradients based approach. Also, attempts have been
made to quantize the entire model including the parameters.
e.g., DoReFa-Net [23] uses 2-bit gradients and 1-bit weights.

“— latency:41.6ms
Canada i

Flnlandbn\ Condition
— = B =_ monitor
\ ™~ -~ /_// - B ’77_7
CCTV camera tion sensor " 4o 9 o =
J ¥ Ru55|a

Smart plug _‘_

b. With G2T-D
Regular
| @ Server with component
GZT-C component

Set 1 (3 devices) Set 1 (3 devices)

Computation Computation

Q-

& | &
\l/
T i a. Server with - Communication Comm
\ @ G2T-C C« Fitness band \\ _
Robotic cleaner / e h component - Set 2 (6 devices) Set 2 (6 devices)
; 7
R 22 @
/ / ' speak " __~doorbell Thermostat Comm c
y -
/ a, | Cloud with G2T-C , /’@*\ 1 b. With G2T-D Set 3 (7 devices) Set 3 (7 devices)
e | component [G Regular . - e
g \ d QJ \) 1005 of ms component pc .
E I \ - | Reduce omm
5| \ HVAC controller Smart bulb 10*data
= rows/s
Smart energy Few ,
d _
meter Jsec i?ws;’sta Increase MM Within a dat&‘l center cluster
Smart watch . . MCUs of devices across the world

Smart remote

Latency Speed

Latency Speed

Fig. 1. The Globe2Train (G2T) framework enables distributed ML model training using IoT devices across the globe: a. The framework’s G2T-Cloud (G2T-C)
component is deployed on a central server/cloud. b. The G2T-Device (G2T-D) component is deployed on training involved IoT devices.

The current state of literature presents schemes that are
applicable to guarantee the convergence of only NNs. i.e.,
TernGrad and DoReFa-Net studied CNNs and QSGD studied
the RNNs training loss. The theoretical quantization limit
cannot exceed 32. To overcome this, parameter sparsification
techniques are proposed. The user predefined threshold-based
sparsification [24], the adaptive compression ratio [25] shows
that, with only negligible performance degradation, 99%
gradients can be pruned. In [26], quantization, compression are
combined to achieve next-level optimization ratio. However,
such advancements cannot solve the latency issue, especially
when the contributing devices are geographically separated
[19]. When comparing G2T with the above, we are the
first to present a method to distributedly train a multi-class
classifier (unlike NNs) on a variety of globally deployed IoT
devices (unlike within data centers) while tolerating latency,
conserving bandwidth by shrinking parameters, and setting
transmission frequency depending on network quality.

C. Distributed Global Training: Research Challenges

The global training scenarios/setups can be impacted by
real-world network uncertainties and staleness.

Network Uncertainties: Congestion and Latency Variance.
The access links that connect IoT devices to the parameter
server show uncertainties such as network unavailability, time-
varying connectivity, etc. For instance, consider the use of
SSGD during a distributed training process, where only one
gradient transmission occurs in one iteration. This aspect can
worsen with an increase in the number of transmissions and
if the previously sent gradients arrive late along with recent
gradients (due to network congestion). The second expected
issue is the large variance in latency, which is common in
real-world IoT networks. While we can aim to maintain a low
average latency by choosing and involving only IoT devices

with a stable internet connection, changes in device network
connectivity due to mobility (e.g., when the IoT device is
placed in a car) can cause variable latency.

Staleness Effect. Most popular distributed model training
algorithms adopt non-synchronous execution for alleviating
the network communication bottleneck that produces stale
parameters. i.e., the model parameters arrive late, not reflect
the latest updates. Staleness slows down convergence and also
degrades model performance. Despite the notable contributions
[3, 27] in the large-scale ML domain, the effects of staleness
during training does not lead to a firm conclusion [15] because
it is practically not feasible to monitor and control staleness
in the current complex distributed environments containing
heterogeneous devices with varying network landscapes.

In [19], we presented in detail the other bottlenecks such
as expensive dataset loading I/O, high FLOPs consumption,
variable model training, and convergence speed, etc.

D. Machine Learning Model Training on IoT Devices

Training models on GPUs and data center servers are much
efficient and provide high-quality models, making MCUs the
least preferred choice for offloading any ML-related tasks.
Practicing decentralized learning close to the data source
has become a common approach to preserve privacy and
comply with the GDPR. Since sensitive personal data is
generated by the billions of daily used tiny IoT devices [28],
there is a pressing need to train models on their resource-
constrained hardware, then transmit the learned information
(model weights). The existing frameworks like Tensorflow
Micro, Keras, Edge-ML, Open-NN, etc. do not yet provide
methods to enable training models on MCUs of IoT devices
[29]. Currently, to achieve resource-efficient training on MCUSs,
authors have optimized training algorithms to run on various

resource-constrained setups, which we describe in the rest of
this section.

In [30], a Gaussian Mixture Model was executed on an
embedded board aiming to re-train an ML algorithm at the
edge level. Articles [31, 32] present optimized methods to
enable training models on smartphones. Multiple Federated
Learning algorithms [33, 34] enable fine-tuning global models
offline, at the edge level using local datasets. SEFR, a low-
power classifier [35] is the most recent work to enable a
binary classifier training and inference on MCUs. However,
thus outlined and other impactful algorithms [36, 37] are
tailored for specific applications and do not enable tiny IoT
devices to self learn/train from a wide range of IoT use-case
data. The AIfES library is a C-based platform-independent
tool for generating NNs compatible with a range of open-
source MCU boards. AIfES can be used with Windows and
embedded Linux platforms by producing efficient code in
the form of Dynamic Link Library (DLL). Similar to ML-
MCU [29], Edge2Train [38] and TinyOL [39], Train++ [40]
that present resource-friendly ML model training algorithms,
AIfES permits to implement ML model training process on
the embedded devices. Cartesiam NanoEdge Al Studio [7]
enables the creation of ML static libraries to embed them
in ARM Cortex-M MCUs. It allows integrating the training
process within the constrained device. In addition, it also can
perform unsupervised algorithm training on MCUs.

III. GLOBE2TRAIN (G2T) FRAMEWORK DESIGN

In this section, we present the G2T framework, using which
we aim to perform distributed model training on IoT devices
like video doorbells, smart meters, thermostats, etc., that
exists across the globe. As shown in Fig. 1, at the central
server/cloud, we first need an algorithm that should efficiently
decompose heavy workloads into multiple lightweight tasks
which can be comfortably handled by tiny IoT devices. Second,
we need a device-level algorithm that can make the training
involved devices complete their given tasks, followed by
the timely transfer of the learned information to the server
even when the connected network is highly uncertain. In
the following, we present G2T components, which are the
thus required algorithms that can jointly enable distributed
machine learning by training one model on numerous global
IoT devices.

A. Globe2Train-Cloud (G2T-C) Component

On the central server/cloud shown in Fig. 1. a, we propose to
deploy the framework component named G2T-C that interacts
with the training involved IoT devices, assign workloads
depending on their hardware specifications, and collectively
train a high-quality ML model. Using Fig. 2, we explain
the G2T-C. Here, in the first step circled @, we take a
multi-class problem with a dataset. Next, in step circled @,
our algorithm decomposes this multi-class problem into
k(k—1)/2 binary problems because training binary classifiers

Server/Cloud with G2T-C component

@ ® ®

Decompose into Train 10 binary Evaluate devices
~ k(k-1)/2 multiple | base classifiers > trained b;-byo

binary problems by-byg .. other steps \
ForA For B ForC | Learned wewght&% /
. b.=f;5) || ba=fys) 1| Brfiosg
\@ bz:f:m: b5=f:,,j: bg=fis,q) @‘/
Input: Multi- bsfiey | befg | P Output: Model
class problem A& B: Train ‘ | bi=fus trained across
K =5 classes rounds 13/ hitps | \ rounds 14 the globe
| A
@,\ / Finland /,@ https
Ireland Russia é
A. Smart bulb B. Smart speaker C. Video doorbell

32-bit RSIC CPU, 512kB
Flash, 32kB RAM

%' Quad-core, 64-bit ARM® Cortex-A35
y 8GB Flash, 2GB RAM —

ARMP® Cortex™A9 CPU,
2GB RAM, 2GB Flash

Tiny loT devices with G2T-D component

Fig. 2. G2T-C component decomposes one multi-class problem into multiple
binary problems, which IoT devices solve and updates back the weights.

on resource-constrained IoT devices like smart speakers
and video doorbells are more feasible. Here, the algorithm
employed k(k — 1)/2 binary classifiers, trains k(k — 1)/2
classifiers. i.e., f(12), f(1,3)s- - J(k—1,k) ON the available IoT
devices. The IoT device trained binary classifier f(; 7) is
capable to classify 1 from 2, the f(; 3) can classify 1 from
3, and finally the f(_1 1) can classify k — 1 from k. In our
case, we have chosen a 5 class dataset (5 class problem) that
requires a multi-class classifier to be trained to solve this.
As explained, in step circled @ our algorithm produces 10
base binary classifiers by to byg as a result of decomposition.
In step circled @, the data corresponding to each of the
base classifiers b; is sent to the deployed IoT devices via
HTTPS. So, the smart speaker named B needs to train 3
binary classifiers, i.e., by (to differentiate class 1 data from
class 5 data), b5 (class 2 from 3) and bg (2 from 4). Similarly,
the other shown devices, Smart bulb (named A) and Video
doorbell (named C), are assigned binary classifiers that need
to be trained by them. Here, each device trains one classifier
per round. For instance, device C trains classifiers b7 to big
in four rounds.

To train these base classifiers on MCUs or small CPUs
based IoT devices, any of the base learners like LDA or the
Opt-SGD [29] can be used. When there is a large number of
rows or high features in the input dataset, memory overflow
issues will arise at the device end. When Opt-SGD is used,
the device becomes capable of handling high data volume,
velocity situations due to the incremental data loading and
training characteristics of Opt-SGD. i.e., in each round, the
train set will be streamed to each IoT device by central G2T-C,
and the Opt-SGD algorithm executing on the devices will
incrementally load this data stream and update the weights
without losing information it learned from the initial part of
the data stream.

Algorithm 1 G2T-D to efficiently transmit the IoT device
trained weights even under poor network conditions.
1: Input: Available weights wy,...,w, of IoT device

trained base binary classifiers by, ..., b,
Output: Efficiently transmit shrunken weights
Ws0, - - -, Wsp to a central server with G2T-C component
Set weights threshold W; «+ 1/ o network quality
if nin w, > W,

fori=0,1,2,...,ndo

wg; <— shrink the weight w;. Use encode (w;)

end for
Transmit wyg, . .
else

Locally accumulate weights till W,

R A A o

., Wsy. Use HTTPS

—_ =
—_ O

After each training round, in the step circled @, the IoT
devices transmit the learned information (weights) to the
server where G2T-C would be waiting to evaluate the thus
trained base binary classifiers. At this stage, each device-
created model b; will be capable of producing a binary output
€ {—1,+1} for each input vector from the test set of the
input dataset. Then, all the base classifiers by to byg, trained
on the 3 IoT devices (smart bulb, smart speaker, and video
doorbell), are evaluated in step circled @ The remainder
processing, starting from creating the correlation matrix until
creating the probability table, is done by the G2T-C (follows
steps from [29]), using the model weights provided by the
training involved devices. After processing, in the last step
circled @, a multi-class classifier model distributedly trained
across the world is obtained.

In Fig. 2, in step circled @ when a classifier needs to be
trained using the less class count datasets like the MNIST
Fashion, Digits, or Cifar 10, then the IoT devices can train
base-classifiers and transmit its weights within few rounds.
But most ML datasets like Imagenet (200 classes) and COCO
(80 classes) datasets are large. In such cases, multiple rounds
of training data and learned weights get exchanged between
the cloud G2T-C and devices across the world via HTTPS.
For instance, when we want to train a classifier using the
COCO dataset, the G2T-C in step circled @ breaks down
the multi-class problem into 3160 binary problems and let
us assume there are 100 IoT devices available to train. So,
each device has to interact with the cloud over 32 times to
transmit the learned binary base-classifier weights. In such a
bandwidth-demanding scenario, since the real-world networks
suffer from higher latency, lower throughput, and intermittent
poor connections, there is a pressing need to optimize the
transmitted information in multiple aspects in order to reduce
latency, improve transmission speeds and increase scalability
(more devices can contribute to training). To tolerate such real-
world challenges and amortize latency issues, we provide a
resource-friendly G2T-D component in the upcoming section

that needs to execute on tiny IoT devices when they are
distributedly contributing to produce a central multi-class
classifier model.

B. Globe2Train-Device (G2T-D) Component

The G2T-D framework component that we present in this
section is a resource-friendly logic (can be implemented in a
few lines of code), that when deployed on IoT devices, will
improve communication aspects during distributed training. In
the considered training across the globe scenario, the network
landscape is dynamic, and the heterogeneous daily IoT devices
contributing to the distributed training have diverse hardware
specifications [41, 42] and internet conditions [43]-[45]. For
instance, when considering the 3 devices shown in Fig. 2, the
video doorbell has FPU, KPU capability to process image
frames, hence could train the G2T-C component assigned base
classifiers efficiently, at higher speeds. The next smart speaker
might have 1 GB of RAM to run DSP algorithms hence it
can also train faster. In the same group of devices, if a smart
bulb is contributing, it has a comparatively weak hardware
specification (e.g., Philips Hue has ~32KB RAM) but might
have excellent network quality.

Such situations can be handled by the G2T-D component
when deployed on all training involved IoT devices. We
present G2T-D in Algorithm 1. Here, when the weights
wo, ..., w, of IoT device trained base binary classifiers
by,...,b, are fed to G2T-D algorithm, even when the
device connected internet suffers high latency, low bandwidth,
congestion issues, it can still manage to transmit the weights
back to the G2T-C server component (which assigned the
device with the two-class problems to solve) because: (i) In
line 4, it intelligently sets the weight threshold W, high for the
training involved devices that have a poor internet connection.
Thus, this step reduces the frequent transmission of weights,
reducing the network bandwidth. i.e., weights are locally
accumulated till it reaches W; and then transmitted. Then in
lines 6 to 8, it shrinks all the accumulated weights using the
encode() function, which packs the non-zero weight values
similar to how Vanilla, Nesterov momentum SGD encodes
the parameters/gradients.

IV. GLOBE2TRAIN EVALUATION

Since the majority of IoT devices are MCU-based, we
use three popular MCUs for evaluation, where MCU1 is an
nRF52840 Adafruit Feather, MCU?2 is a STM32f103c8 Blue
Pill, MCU3 is a ATSAMD21G18 Adafruit METRO. Then,
we take the 22 features, 95 classes Australian Sign Language
signs dataset [46] and aim to distributedly train (on MCUs
1-3) a multi-class classifier model that can identify 95 Auslan
signs such as alive, all, answer, more, etc.

A. Distributed Training on MCUs

As explained in Section III-A, we initiate the distributed
training from G2T-C component, where it decomposes the

MCU #1 MCU #2 MCU #3
10% 100 10* 100
e | 0° Lt =
Round3: C= 25, S:O—BZST“‘) 90 N * 90 Round3: C= 15, 5 =0~ 375 = aa 20
PO T e = o SR e .. **Round3:C=10,5=0-250 e -
o L s 80 N 180 R 80
. : . B . Jp— - e

E +.=*Round2: C=20,5=0-500 o . . E x =" g— " o
— rd ‘*A‘r) . -4.;. a .. f . A - a
w G et 60 & . 160 e ~—-;{Uund2'.c.—10 5-0-250 60 2
E . ‘.4, »*LRound1:C=15,5=0-375 J z+~>Round2: C=5,5=0-125 lo e A ek <
o 10 £ 102 BT 50 o 0 o
[Th] ‘d.") & ; 4 w0 S — w 2
c X3 Y s &] o —_
£ /. #—rRoundl:C=3,5=0-75 e ¥ & ¥Round1:C=55=0-125 w0 X%
o i § g o

I: 3 20 i 20

La : re
S i 10 B 10
102

200 300 400 500 600 100

150

0
200 250 200 250 300 350 400 450

Train set size

Class count (C), Train time (T), Accuracy (A), and Train set size (S).

C=3:4T +A C=5 4T, +A C=10:4T +A C=15 4T, =A C=20:

T, A C=25:4T «A

Fig. 3. Distributed training of a multi-class classifier on 3 MCUs using G2T: Onboard accuracy and training time consumed for each training round.

given multi-class problem with 95 classes into 4465 binary
problems (i.e., K = 95 in K(K — 1)/2), where by to bysss
binary classifiers need to be trained by MCUs 1-3 in numerous
rounds and in each round report back the calculated weights
of a bunch of trained base classifiers. The G2T-C allocates
training workloads depending on the hardware specification
of involved devices. So, MCUI is assigned to learn using
the data of the first 60 classes. Similarly, the next better spec
MCU3 is assigned to train base classifiers for the next 30
classes, and the remainder 18 classes are assigned to MCU3.
After this allocation, the training on each MCU is carried
out using the Opt-SGD algorithm [29]. We show the training
results in terms of training time, accuracy in Fig. 3. Here, in
the first round, MCUI1 trains using data from 15 classes, 3
classes on MCU?2, and parallelly MCUS3 trains using data from
5 classes. Similarly, the results for the subsequent training
rounds are shown in the same Fig. 3. After completing each
round, the accumulated weights of thus trained base classifiers
are shrunken and transmitted to the server by the G2T-D
component. Finally, when all 4465 base classifiers weights
were sent to G2T-C by MCUs, the base models are combined
and a central model is produced.

B. Results Analysis

Here we analyze the distributed training on MCUs results
shown in Fig. 3. The total time consumed for three training
rounds by MCU 1-3 is 1.5 sec, 1.6 sec, 11.4 sec respectively.
The slowest MCU3 completed training in 7.6 sec using 15
class data, and parallelly the fastest MCU] trained for data
belonging to other 15 classes in 0.23 sec. The total distributed
training time on MCUs 1-3 was ~ 15 sec, which is only ~ 3
sec slower than training on one Intel Core i7-8650U @ 1.90
GHz CPU laptop with Windows 10 Python scikit-learn setup.
This CPU setup is $700, 32 x times more expensive
than 3 MCUs, and consumes ~ 170x times more energy for
the same training task.

~

~
~ ~
~
~

During this process, to maintain the distributed training
reliability and ensure timely completion, G2T-C made MCU2
perform redundant training using data from 13 classes. Thus,
in a real scenario, G2T-C can counterbalance when a training
involved device fails to complete training due to network
errors, resources occupied by the routine device functionalities,
etc. Here, since the G2T-C efficiently split the workload
and made the MCUs complete training within 3 rounds
and since the G2T-D accumulates the weights, then shrinks
and sends it to the cloud only once per round, overall,
there is less bandwidth usage and reduced computation to
communication ratio. Similar to how we involved just 3 MCUs
and accomplished distributed training, a higher number of IoT
hardware can be efficiently connected by G2T to pool GBs
of RAM and other hardware resources. In this way, we can
complete training faster than training on an expensive GPU,
but at a 0 $ investment since millions of IoT devices exist, and
most of them are idle. In the upcoming subsections, we present
the individual contributions (benefits) of G2T components
and describe how it addresses the global training challenges
presented in Section II-C.

C. Contributions of the G2T-C Framework Component

Here, we comparatively show how the characteristics of
G2T-C can add value when deployed in a central server to
handle the entire distributed training process.

Overcoming the Staleness Effect. Asynchronous SGD
(ASGD) [47] shows better latency and fault tolerance since,
unlike synchronous SGD (SSGD), ASGD does not follow
synchronization and trains models inconsistently. Most of the
popular applications like HOGWILD [48], BUCKWILD [49]
are powered by ASGD are implemented using a parameter
server [50], leading to communication and resource congestion
problems when scaling the distributed learning by adding more
devices. Scalability is the mandatory characteristic required
for us since we aim to train one model using thousands of

IoT devices upon their availability. Moreover, the inconsistent
training strategy of ASGD leads to unpredictable behaviors
when compared with standard training on a single GPU cluster.
Although studies show ASGD to have convergence similar to
SSG [51], SSGD is preferred in practice due to its consistent
behaviors even when devices increase.

The G2T-C is designed not to face staleness and is more
efficient than SSGD and ASGD since, as explained in Section
III-A, the step circled (2) in Fig. 2, intelligently splits the
tasks that execute in multiple rounds on the IoT devices.
As shown, the smart bulb named A is assigned to solve
the two-class problems b; to b3 and update back the learned
weights. Here, if this device solves only b; and goes offline,
the remaining tasks by to bs will be assigned to other better-
resourced devices that have completed their assigned task
faster. Unlike others, the G2T-C approach does not wait
long/depend on gradient/weight updates from slow or poor
network devices in order to keep training. Similarly, any of the
IoT devices from the distributed training network can perform
their assigned tasks without any dependence on the cloud or
other devices involved in training. Also, our approach does
not require a parameter server.

D. Contributions of the G2T-D Framework Component

In the global distributed training scenario, we
model the communication time as t. = latency +
(modelsize/bandwidth). Scalability is essential when
connecting a large number of devices. To improve scalability,
we need to greatly reduce communication frequency, which
is determined by network bandwidth and latency (see above
equation). All conventional studies focus only to reduce
the bandwidth requirements as the latency between GPUs
inside a GPU cluster or servers inside a data center is
usually low. In contrast, in our use case, since we perform
the same training but on the IoT device hardware that is
globally distributed, the latency still remains an issue due
to physical device separation. In the remainder, we explain
how the resource-friendly G2T-D Algorithm 1 improves
training scalability, speed by tolerating the real-world latency,
bandwidth issues.

Congestion and Latency Toleration. Since the G2T-D locally
keeps accumulating IoT device learned weights till it reaches
the weight threshold (intelligently set by considering the cur-
rent network quality), it reduces the weights synchronization
frequency (less usage of congested network) by not allowing
to transmit weights frequently or based on its availability.
So, as shown in Fig. 1. b (left), the training process used in
across the globe setting gains the ability to tolerate latency
(does not reduce the dynamic real-world latency since it is
practically not possible). This latency tolerating property of
G2T-D also increases the training scalability, thus enabling
the participation of more IoT devices to complete training at
higher speeds.

Improved Training Scalability. After the accumulated
weights cross the calculated threshold, in order to conserve
bandwidth, the G2T-D algorithm shrinks the weights (not
quantizing like previous works), then transmit them to the
parameter server. As G2T-D sends the weights at intervals
that depend on the network condition, as shown in Fig. 1.
b (right), this process improves scalability by reducing the
communication-to-computation ratio.

IoT Hardware Friendliness. When following approaches
like the SSDS and ASGD, the IoT devices need to use any of
the techniques such as gradient sparsification (transmit only
important information), temporally sparse updates, gradient
quantization/compression in order to tolerate extreme network
conditions by reducing the data to be transferred. In IoT
devices, accommodating such techniques adds computation
strain while consuming the limited memory that is sufficient
only for training models and executing the device’s routine
functionalities. The presented G2T-D framework component
is highly resource-friendly (implementation is only a few lines
of code), which can shrink and efficiently transmit trained
weights without straining the training involved IoT hardware.

V. CONCLUSION: DISCUSSION AND FUTURE WORK

In this paper, we presented Globe2Train, a framework for
training ML models on idle IoT devices, millions of which
exist across the globe. We showed how the proposed G2T-C
and G2T-D framework components can improve distributed
training scalability, speed while reducing communication
frequency and tolerating network latency. Since the G2T-
D can significantly compress gradients/parameters during
distributed training, it can be used in federated learning, split
learning, distributed ensemble learning approaches, thereby
providing the basis for a broad spectrum of decentralized
and collaborative learning applications. Similarly, since the
G2T-C can decompose one multi-class problem into multiple
binary problems, it can be used to decompose a high resource-
demanding problem (can run only on GPU clusters/servers
with TensorFlow, PyTorch) into multiple resource-friendly
tiny parts that can distributedly execute on numerous idle IoT
devices across the globe.

We see the lack of comprehensive real-world experimental
evaluation of G2T as the major limitation. Hence, in future
work, we plan to implement the following steps, observe
and report the framework behavior with its performance; (i)
Deploy the G2T-D component on a few IoT devices that
are geographically separated and connected to networks with
poor to good conditions. Then deploy the G2T-C component
on an Amazon AWS server and establish communication
with IoT devices; (ii) Take a multi-class classification dataset,
define an ML model on the server, then instruct the G2T-C to
decompose the given ML multi-class problem into multiple
binary problems and assign it to the connected IoT devices;
(iii)) Make the IoT devices solve the binary problems (by

performing model training), then using G2T-D report back
the calculated weights; (iv) Now, we should have a full ML
model, that was distributedly trained by multiple IoT devices
and capable to solve a multi-class problem. We evaluate this
model using accuracy, Fl-score metrics, compare, report, and
investigate the obtained results with the results of a single
GPU trained model trained using the same dataset.

ACKNOWLEDGEMENT

This publication has emanated from research supported in
part by a research grant from Science Foundation Ireland
(SFI) under Grant Number SFI/16/RC/3918 (Confirm) and
also by a research grant from SFI under Grant Number
SFI/12/RC/2289_P2 (Insight), with both grants co-funded
by the European Regional Development Fund.

(1]
[2]
(3]

[4]

[3]

(6]

(71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

REFERENCES

L. Zhu, Y. Lu, Y. Lin, and S. Han, “Distributed training across the
world,” 2019.

J. Lin, C. Gan, and S. Han, “Training kinetics in 15 minutes: Large-scale
distributed training on videos,” arXiv preprint, 2019.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint, 2017.

W. Xu, W. Fang, Y. Ding, M. Zou, and N. Xiong, “Accelerating federated
learning for iot in big data analytics with pruning, quantization and
selective updating,” IEEE Access, 2021.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE Conference on
Computer Communications (INFOCOM), 2018.

“Tinyml ai inference library,” 2021. [Online]. Available: https:
//github.com/uTensor/uTensor

“Empower your teams to quickly, easily and cost-effectively integrate
ai into your projects,” 2021. [Online]. Available: https://cartesiam.ai/
B. Sudharsan and P. Patel, “Machine learning meets internet of things:
From theory to practice,” in European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), 2021.

B. Sudharsan, P. Corcoran, and M. 1. Ali, “Smart speaker design
and implementation with biometric authentication and advanced voice
interaction capability.” in 27th AIAI Irish Conference on Artificial
Intelligence and Cognitive Science (AICS), 2019.

B. Sudharsan, S. Malik, P. Corcoran, P. Patel, J. G. Breslin, and M. 1.
Ali, “Owsnet: Towards real-time offensive words spotting network for
consumer iot devices,” in IEEE 7th World Forum on Internet of Things
(WF-IoT), 2021.

B. Sudharsan, D. Sundaram, J. G. Breslin, and M. 1. Ali, “Avoid
touching your face: A hand-to-face 3d motion dataset (covid-away) and
trained models for smartwatches,” in 10th International Conference on
the Internet of Things Companion, 2020.

A. Jochems et al., “Distributed learning: developing a predictive model
based on data from multiple hospitals without data leaving the hospital-a
real life proof of concept,” Radiotherapy and Oncology, 2016.

A. Jochems, T. M. Deist et al., “Developing and validating a survival
prediction model for nsclc patients through distributed learning across
3 countries,” Journal of Radiation Oncology Biology Physics, 2017.
B. Sudharsan, P. Yadav, J. G. Breslin, and M. I. Ali, “An sram optimized
approach for constant memory consumption and ultra-fast execution of
ml classifiers on tinyml hardware,” in IEEE International Conference
on Services Computing (SCC), 2021.

W. Dai, E. P. Xing et al., “Toward understanding the impact of staleness
in distributed machine learning,” arXiv preprint, 2018.

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized

training over decentralized data,” arXiv preprint, 2018.
X. Lian, W. Zhang, C. Zhang, and J. Liu, “Adpsgd asynchronous

decentralized parallel stochastic gradient descent,” in International
Conference on Machine Learning (ICML), 2018.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Neural Information Processing Systems (NIPS), 2017.

B. Sudharsan, O. Rana, P. Patel, J. Breslin, M. Intizar Ali, K. Mitra,
S. Dustdar, P. Prakash, and R. Ranjan, “Towards distributed, global,
deep learning using iot devices,” IEEE Internet Computing, 2021.

B. Sudharsan, D. Sheth, S. Arya, F. Rollo, P. Yadav, P. Patel, J. G.
Breslin, and M. 1. Ali, “Elasticl: Elastic quantization for communication
efficient collaborative learning in iot,” in Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, 2021.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in Interspeech, 2014.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Randomized quantization for communication-optimal stochastic gradient
descent,” arXiv preprint, 2016.

S. Zhou, Y. Zou et al., “Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients,” arXiv preprint, 2016.
N. Strom, “Scalable distributed dnn training using commodity gpu
cloud computing,” in International Speech Communication Association
(ISCA), 2015.

C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakr-
ishnan, “Adacomp: Adaptive residual gradient compression for data-
parallel distributed training,” in AAAI Conference, 2018.

F. Sattler, S. Wiedemann, and W. Samek, “Sparse binary compression:
Towards distributed deep learning with minimal communication,” in
International Joint Conference on Neural Network (IJCNN), 2019.

I. Mitliagkas, C. Ré et al., “Asynchrony begets momentum, with an
application to deep learning,” in 54th Allerton Conference, 2016.

B. Sudharsan, S. P. Kumar, and R. Dhakshinamurthy, “Ai vision: Smart
speaker design and implementation with object detection custom skill
and advanced voice interaction capability,” in //th IEEE International
Conference on Advanced Computing (ICoAC), 2019.

B. Sudharsan, J. G. Breslin, and M. I. Ali, “Ml-mcu: A framework to
train ml classifierson mcu-based iot edge devices,” IEEE Internet of
Things Journal, 2021.

J. Lee, M. Stanley, A. Spanias, and C. Tepedelenlioglu, “Integrating
machine learning in embedded sensor systems for internet-of-things
applications,” in IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), 2016.

G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger,
“Condensenet: An efficient densenet using learned group convolutions,”
arXiv preprint, 2017.

M. Tan, B. Chen, V. Vasudevan, and Q. V. Le, “Mnasnet: Platform-aware
neural architecture search for mobile,” arXiv preprint, 2018.

C. Briggs, Z. Fan, and P. Andras, “A review of privacy preserving
federated learning for private iot analytics,” arXiv preprint, 2020.

Q. Li, Z. Wen, and B. He, “Federated learning systems: Vision, hype
and reality for data privacy and protection,” arXiv preprint, 2019.

H. Keshavarz, M. S. Abadeh, and R. Rawassizadeh, “Sefr: A fast
linear-time classifier for ultra-low power devices,” arXiv preprint, 2020.
G. Kamath, P. Agnihotri, M. Valero, K. Sarker, and W. Song, “Pushing
analytics to the edge,” in Global Communications (GLOBECOM), 2016.
A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine
learning in 2 KB RAM for the internet of things,” in 34th International
Conference on Machine Learning (ICML), 2017.

B. Sudharsan, J. G. Breslin, and M. 1. Ali, “Edge2train: A framework to
train machine learning models (svms) on resource-constrained iot edge
devices,” in 10th International Conference on the Internet of Things
(IoT), 2020.

H. Ren, D. Anicic, and T. Runkler, “Tinyol: Tinyml with online-learning
on microcontrollers,” arXiv preprint, 2021.

B. Sudharsan, P. Yadav, J. G. Breslin, and M. 1. Ali, “Train++: An
incremental ml model training algorithm to create self-learning iot
devices,” in Proceedings of the 18th IEEE International Conference on
Ubiquitous Intelligence and Computing (UIC 2021), 2021.

B. Sudharsan, P. Patel, J. G. Breslin, and M. 1. Ali, “Sram optimized
porting and execution of machine learning classifiers on mcu-based
iot devices: demo abstract,” in Proceedings of the ACM/IEEE 12th
International Conference on Cyber-Physical Systems (ICCPS), 2021.

[42]

[43]

[44]

[45]

B. Sudharsan, P. Patel, J. G. Breslin, and M. 1. Ali, “Ultra-fast
classification on iot devices without sram consumption,” in IEEE
International Conference on Pervasive Computing and Communications
(PerCom), 2021.

B. Sudharsan, D. Sundaram, P. Patel, J. G. Breslin, and M. 1. Alj,
“Edge2guard: Botnet attacks detecting offline models for resource-
constrained iot devices,” in IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affiliated Events
(PerCom Workshops), 2021.

B. Sudharsan, J. G. Breslin, and M. I. Ali, “Adaptive strategy to improve
the quality of communication for iot edge devices,” in IEEE 6th World
Forum on Internet of Things (WF-10T), 2020.

F. Rollo, B. Sudharsan, L. Po, and J. G. Breslin, “Air quality sensor
network data acquisition, cleaning, visualization, and analytics: A
real-world iot use case,” in Adjunct Proceedings of the 2021 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2021 ACM International Symposium on

[40]

[47]

[48]

[49]

[50]

[51]

Wearable Computers, 2021.

M. Waleed, “Dataset,” UCL. [Online]. Available: https://archive.ics.uci.
edu/ml/datasets/Australian+Sign+Language+signs+(High+Quality)

J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
transactions on automatic control, 1986.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Neural Information
Processing Systems (NIPS), 2011.

C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré&, “Taming the wild: A
unified analysis of hogwild-style algorithms,” in Neural Information
Processing Systems (NIPS), 2015.

J. Dean, G. Corrado, K. Chen et al., “Large scale distributed deep
networks,” in Neural Information Processing Systems (NIPS), 2012.
X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Neural Information Processing
Systems (NIPS), 2015.

