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Abstract—The majority of Internet of Things (IoT) devices are
tiny embedded systems with a micro-controller unit (MCU) as
its brain. The memory footprint (SRAM, Flash, and EEPROM)
of such MCU-based devices is often very limited, restricting
onboard Machine Learning (ML) model training for large
trainsets with high feature dimensions. To cope with memory
issues, the current edge analytics approaches train high-quality
ML models on the cloud GPUs (uses large volume historical data),
then deploy the deep optimized version of the resultant models
on edge devices for inference. Such approaches are inefficient in
concept drift situations where the data generated at the device
level vary frequently, and trained models are clueless on how
to behave if previously unseen data arrives. In this paper, we
present Train++, an incremental training algorithm that trains
ML models locally at the device level (e.g., on MCUs and small
CPUs) using the full n-samples of high-dimensional data. Train++
transforms even the most resource-constrained MCU-based IoT
edge devices into intelligent devices that can locally build their
own knowledge base on-the-fly using the live data, thus creating
smart self-learning and autonomous problem-solving devices.
Train++ algorithm is extensively evaluated on 5 popular MCU-
boards, using 7 datasets of varying sizes and feature dimensions.
A few exciting findings when analyzing the evaluation results are:
(i) The proposed method reduces the onboard binary classifier
training time by ≈ 10 - 226 sec across various commodity MCUs;
(ii) Train++ can infer on MCUs for the entire test set in real-time
of 1 ms; (iii) The accuracy improved by 5.15 - 7.3% since the
incremental characteristic of Train++ enabled the loading of full
n-samples of the high-dimensional datasets even on MCUs with
only a few hundred kBs of memory.

Index Terms—Intelligent Microcontrollers, Online Learning,
Optimization, Incremental Learning, Edge Computing.

I. INTRODUCTION

IN the real-world, every new scene generates unseen data
patterns. When an ML model deployed over edge devices

[1, 2] sees any fresh patterns which were not previously
exposed during the training phase, it will either not know how
to react to that specific scenario, or can lead to false or less
accurate results. Furthermore, a model trained using data from
one context often does not produce the expected results when
deployed in another context. Certainly, it is not feasible to
train multiple models for multiple environments and contexts
[3]. In order to achieve truly autonomous local intelligence
at the device level, the devices must have the ability to self-
learn and understand the data patterns with no dependency

on users or cloud services. In other words, if we provide
edge devices the ability to autonomously retrain themselves
(self-learning), they become intelligent machines capable of
learning to perform analytics in any given environment.

In most real-life IoT scenarios, designing a problem-solving
AI is a lengthy and expensive process that demands skills
in statistics, data science, and access to complex datasets
that are difficult to source (GDPR restrictions and privacy
concerns) [4]. Typically, historical data is collected at a central
location for years, using which high-quality ML models are
trained. Once trained, the models are deeply compressed and
deployed on edge devices [5]–[7] across the world to perform
edge analytics [8]. In cases where the historical data becomes
obsolete, or if it is not truly representative for possible cases,
the edge analytics produces inferences at low accuracy (i.e.,
whenever the device processes the previously unseen data)
[9]. In this paper, we propose Train++, a resource-friendly
algorithm to train ML models at the device level, without the
need for any cloud-based ML training services. When devices
are equipped with Train++, the devices gain the ability to
re-train themselves locally and build knowledge on-the-fly
using the live IoT data streams. Thus, Train++ transforms
resource-constrained devices into intelligent devices that can
train and infer offline at the edge.

The state-of-the-art ML frameworks are not suitable for
training models on resource-constrained hardware like com-
modity MCUs, small CPUs, and FPGAs since executing the
frameworks alone requires hundreds of megabytes (MB) for
storage, high memory-resource, file system support, high
clock speeds, multiple cores, parallel execution units, etc [10].
The majority of IoT devices cannot afford to have such high
specifications required by the modern ML frameworks. The
memory of MCUs, which is the brain for billions of edge
devices (or tiny embedded systems) deployed worldwide,
is limited to a few MBs, thus restricting (upper bound is
imposed) onboard model training using high features and
large trainsets [11].

To enable training ML models offline on edge MCUs
without upper bounds, we designed the Train++ algorithm
to possess both resource-friendly and incremental ML model



training characteristics. For each new data input, Train++
predicts an output, which is a yes/no decision much similar
to the binary classification. After prediction, we show the
correct outcome/labels, so the algorithm modifies its classifier,
aiming to obtain accurate predictions on the upcoming rounds.
We solve a constrained optimization problem to perform this
classifier modification while also making the updated classifier
stay very close to the current classifier version so as to retain
the information learned in previous rounds. When Train++
is deployed on devices, it reads the live data, learns from it
using the incremental method, then discards it, thus saving the
memory required to store training data. The main contributions
can be summarised as follows:

ML model training on commodity MCUs. To the best of
our knowledge, the work presented in this paper is one of
the few recent novel approaches enabling high-performance
ML model training on MCUs. We provide Train++ algorithm
and open-sourced its C++ implementation, using which users
can train binary classifiers on MCUs using a large volume
of high dimensional real-time IoT use-case data. We provide
Train++ Pipeline to show the users how the core Train++
algorithm can be used to produce self-learning devices capable
of learning to perform analytics for any target IoT use cases.

Validation study and evaluation results. We extensively
evaluate Train++ by loading its C++ implementation on
5 different MCUs and making it perform onboard ML
model training and inference using 7 datasets that have
various train set sizes and feature dimensions. A few of
the exciting findings when analyzing the evaluation results
are: (i) Train++ is compatible with various MCU boards
and multiple datasets. (ii) It can load, train, and infer using
high features and large-size datasets even on MCU boards
with only a few hundred kBs of memory. (iii) The models
trained on MCUs using Train++ show accuracy close to those
of Python scikit-learn trained classifiers on high-resource
CPUs. (iv) For few datasets, MCUs trained faster than CPUs
due to the high-performance characteristics of Train++, its
algorithmic simplicity (implementation less than 100 lines),
and independence of third-party libraries. (v) Across various
MCUs, Train++ consumed ≈ 34000 - 65000x times less
energy to train and consumed ≈ 34 - 66x times less energy
for unit inference.

The remainder of this paper is structured as follows; Section
II contains a comprehensive review of the state-of-the-art
approaches. Section III presents the core contributions of this
paper that is the Train++ algorithm to create self-learning
IoT devices. In Section IV, algorithm evaluation and results
comparison is performed. Section V discusses the real-world
benefits of Train++, current limitations and provide a greater
context for future research. Finally, Section VI concludes the
paper.

II. RELATED WORK

To ensure comprehensiveness, we cover the research works
from both the ML model training, inference on MCUs domain,
and the classifier training methods domain.

A. Machine Learning on Microcontrollers

Training ML models on MCUs is an emerging area
of research. The majority of the existing frameworks like
Tensorflow Micro [12], Edge-ML [13], Open-NN [14], etc., do
not yet provide methods to enable training models on MCUs.
To achieve resource-efficient training, so far, researchers have
focused on optimizing existing algorithms to run them on
various resource-constrained setups. For example, Lee et al.
[15] executed a gaussian mixture model on an embedded
board aiming to re-train an ML algorithm at the edge level.
Articles [16, 17] present optimized methods to enable training
models on smartphones. SEFR, a low-power classifier [18], is
the most related work to enable a binary classifier training and
inference on MCUs. The Artificial Intelligence for Embedded
Systems (AIfES) library is a C-based platform-independent
tool for generating NNs compatible with a range of open-
source MCU boards. AIfES can be used with Windows and
embedded Linux platforms by producing efficient code in the
form of Dynamic Link Library (DLL). Similar to ML-MCU
[19], Edge2Train [8], TinyOL [20] and Globe2Train [21, 22],
AIfES permits to implement ML model training process on
the embedded devices. Cartesiam NanoEdge AI Studio [23]
enables the creation of ML static libraries to embed them in
Cortex-M MCUs. It allows integrating the training process
within the constrained device. In addition, it also can perform
unsupervised algorithm [24] training on MCUs.

However, the above-mentioned work and other similar
algorithms [9, 25] are tailored for specific applications and
do not enable MCU-based IoT edge devices to self learn/train
from a wide range of IoT use-case data. Train++ algorithm
is superior to state-of-the-art methods since, even on tiny
MCU-based devices, it can load and train faster, using the
full n-samples of high-dimensional data, thus producing self-
learning devices capable of learning to perform analytics for
any target IoT use cases.

There is another category of research work presenting
algorithms for resource-efficient model inference on MCUs
[26]. Here, a set of articles propose compression techniques
to reduce the size of the model’s weights using quanti-
zation and pruning techniques. Condensa [27], a system
for users to compose simple operators to build complex
model compression strategies. In [28], two new compression
methods jointly leverage weight quantization and distillation
of larger networks. In [25], a tree-based algorithm for
efficient prediction in milliseconds even on slow MCUs was
implemented. Similarly, ProtoNN [29], a k-Nearest Neighbor
inspired algorithm with several orders of low storage, and
prediction complexity addresses the problem of real-time



and accurate prediction on resource-scarce devices. In both
[27, 28] and other similar articles proposing compression
[30, 31] and optimization [32, 33] methods, the models are
trained in high resource setups, then a multi-stage MCU-aware
optimization (tailored) is performed before deployment [34].
Similar to the above works, even the Train++ can infer in
super real-time on MCUs. We do not attempt to outperform
their state-of-the-art inference methods since they are tailored
to be application-specific, whereas ours can train and infer
onboard using real-time data from any IoT use-cases.

B. Incremental Classifier Training Algorithms

The concept of updating or modifying a classifier to
improve its performance by solving a constrained optimization
problem has been presented in [35, 36]. There is widespread
literature for online margin-based inference algorithms whose
roots date back to the Perceptron algorithm [37, 38]. Recent
examples include ROMMA [39], ALMA [40], NORMA [41],
and the MIRA [42] algorithms. The NORMA algorithm
shares a similar view of classification problems, but its update
rule is based on a stochastic gradient approach. The MIRA
and Herbster’s [43] algorithm for binary classification (both
designed to solve separable problems) is closely related to our
work. We surpass them by making Train++ applicable for
both separable and non-separable settings and also extending
it to solve regression problems.

Another set of articles present an incremental learning
approach for different applications such as, for automatic
online picture collection [44], incremental and decremental
training for linear classification [45]. Also, the online methods
have been well studied, a few related articles are, in [46],
a robust and efficient algorithm for online classification
problems was presented, online active learning techniques for
online classification tasks was investigated in [47]. In [48],
similar to the proposed approach, an online passive-aggressive
algorithm based low-budget online learning algorithm was
presented. The proposed Train++ can also be viewed as
a highly-optimized online binary classifier training method
that aims to enable training models, but on highly resource-
constrained MCU-based IoT devices.

III. TRAIN++ DESIGN

In this section, we present the Train++ pipeline, then the
core Train++ algorithm, which is a part of the pipeline that
enables ML model training on commodity MCUs.

A. Train++ Pipeline to Create Self-Learning IoT Devices

In Fig. 1, using a four-step pipeline, we show how to use
the proposed Train++ algorithm to enable the edge MCUs to
self-train offline for any IoT use case. This pipeline enables
users to build powerful ML models quickly and inexpensively
without needing statistics, data science skills, and complex
datasets. Here, in Step One, the users can select any MCU of
choice depending on the target use case. Then in Step Two,

Fig. 1. Train++ pipeline produces devices capable of self-learning to perform
analytics for any given target IoT use case.

the contextual sensor data corresponding to normal working
will be collected as the local dataset and used for training
in the next step. The labels/ground truth for the collected
training data rows shall be computed using method from
[8]. In Step Three, the edge MCUs learns using theTrain++
algorithm. In Step Four, the resultant MCU-trained model can
start inference over previously unseen data. In the following,
we brief a few use-case scenarios where Train++ can train
models offline on edge MCUs, producing devices capable of
learning to perform analytics for any target IoT use cases.

Condition monitoring edge MCU. Incrementally learn by
monitoring the contextual sensor data corresponding to regular
vibration patterns from the pump’s crosshead, cylinder and
frame. Generate alerts using the learned knowledge if anomaly
patterns are predicted or detected.

Edge MCU for a perfect coffee. Learn the data patterns
of temperature, time, and material proportion when a person
makes his/her best coffee. When brewing new coffees, use this
knowledge to detect and alert when there is a considerable
deviation from the best coffee patterns. Thus, we can ensure
the person gets the coffee of his/her taste all the time.

Usage patterns learning edge MCU. Learn the usual
residential electricity consumption patterns and raise alerts in
the event of unusual usage or overconsumption. Thus, we can
reduce bills, detect leaks, etc. Similarly, the devices can learn
to perform continuous diagnostics for detecting fault-causing
anomalies, learning to improve home appliance safety.



B. Train++ Algorithm Design

In the above use cases, the live sensor data stream which
act as local training dataset is represented as

Dataset =

{
X = {x0, x1...xt} where xt ∈ Rn

Y = {y0, y1...yt} where yt ∈ {−1,+1} ,
(1)

Here, in Eqn (1), X is the dataset rows that contain features
of input data samples, and Y holds the corresponding labels.
We consider t (dimension of time) indefinite since real-time
sensor data keeps arriving with indefinite length. Initially
the algorithm infers using a binary classification function
that updates from round to round and the vector of weights
w ∈ Rn, takes the sign(x.w) form. The magnitude |x.w|
is the confidence score of prediction. After prediction, the
task of Train++ becomes to learn the weight vector w
in an incremental method. wt is the weight vector that
Train++ uses on round t and yt(xt.wt) is the margin obtained
at t. Whenever the algorithm makes a correct prediction
sign(xt.wt) = yt. After prediction, we instruct the Train++
to predict again with a higher confidence score. Hence, the
goal of our algorithm becomes to achieve at least 1 as the
margin, as frequently as possible. Whenever yt(xt.wt) < 1
the following hinge-loss function makes Train++ suffer an
instantaneous loss,

l(w; (x, y)) =

{
0 if y(x.w) ≥ 1

1− y(x.w) otherwise ,
(2)

Here, if the margin exceeds 1, the loss is zero. Else, it is
the difference between the margin and 1. Now we require
an update rule to modify the weight vector for each round.
Train++ algorithm updates using this rule,

wt+1 = argmin
1

2
||w − wt||2 + Cξ2 s.t l(w; (xt, yt)) ≤ ξ,

(3)
ξ is a slack variable and C is the parameter to control the
influence of ξ. Here, ξ is non-negative and C is positive.
Whenever a correct prediction occurs, the loss function is 0
and the argmin is wt, hence the Train++ algorithm becomes
permissive. Whereas on the rounds when misclassifications
occur, the loss is positive and Train++ offensively forces
wt+1 to satisfy the constrain l(w; (xt, yt)) = 0. Larger C
values produce strong offensiveness, which might increase
the risk of destabilization when input data is noisy. Whereas
lower C values improve adaptiveness. To provide the ability
for edge devices to cope with noisy input samples (wrong
labeled), reduce rapid changes that produce consequent higher
misclassification rates, finally, to keep the value of wt+1 close
to wt, to retain the information learned in previous rounds.
We increase our algorithm’s robustness. Hence the update rule
in its simple closed-form is wt + τtytxt. When substituting
τ , it becomes,

Algorithm 1 Train++: A high-performance binary classifier
training algorithm for MCU-based IoT devices.

Inputs:
C: Positive parameter to control the influence of ξ.
t: The dimension of time for real-time data inputs.
xt: Real-time sensor data inputs. Where xt ∈ Rn.
yt: Correct labels. Where yi ∈ {−1,+1}.

Output:
wt: Incrementally learned weights.

Receive live data stream, represented as in Eqn (1).
function MCUTrain (xt, yt, t, C)

for t = 0 to setsize do
Predict ŷt for every xt. Use sign(xt.wt).
Compute confidence score of prediction.
Use |xt.wt|.
Compute margin at t. Use yt(xt.wt).
Show original label yt to this algorithm.
if (ŷt equals to yt) then

Prediction was correct. yt = sign(xt.yt).
Predict again with a higher confidence score.
if (sign(xt.yt) lesser than 1) then

Suffer an instantaneous loss. Use Eqn (2).
if (sign(xt.yt) exceeds 1) then

Loss becomes 0.
else

Wrong prediction. Loss becomes 1 - yt(xt.wt).
end if
Incrementally learn wt. Use Eqn (4).
Store the learned weights wt.

end for

wt+1 = wt +
lt

||xt||2 + 1
2C

ytxt ,

Then substituting the loss lt, we get,

wt+1 = wt +
max{0, 1− yt(xt.wt)}

||xt||2 + 1
2C

ytxt , (4)

Now, this update rule meets our expectations since the
weight vector is updated, with a value whose sign is de-
termined by yt, with a magnitude proportional to the error.
During correct classification, the nominator of this equation
becomes 0, so wt+1 = wt. During misclassification, the value
of the weight vector will move towards xt and stops with
a loss of l ≤ ξ. This movement is usually very tiny. After
this movement, the dot product in the update rule becomes
negative, hence the input is classified correctly as +1.

In the remainder of this section, we modify Train++
algorithm for regression problems. Here, all the inputs xt

are associated with their corresponding labels yt ∈ R
(labels/target/ground truth are computed using the method
from [8]), where we try to predict ŷt on every round. In the



linear regression function, yt = xt.wt, wt is the vector that
is learned incrementally using Train++ algorithm. Similar
to the binary classification scenario explained above, after
inference, we show the true label yt to the algorithm, but
here we use a new loss function,

lϵ(w; (x, y)) =

{
0 if |x− y.w| ≤ ϵ

|x− y.w| − ϵ otherwise ,
(5)

Here, ϵ is the parameter to control the algorithm’s sensitivity
to wrong predictions. If the predictions deviate from the true
labels by less than ϵ, the loss is zero. Else, the loss grows
linearly with value of deviation, |ŷt− yt|. At the end of every
round, Train++ uses wt, the input (xt), and its label (yt) to
generate a new weight vector wt+1, which will be used as
weights for the next round. This new weight vector is set
using:

wt+1 = argmin
1

2
||w − wt||2 s.t l(w; (xt, yt)) ≤ ξ ,

Similar to binary classification, this update rule can also be
written in its closed-form as wt + sign(yt − ŷt)τtxt. When
substituting τ and lt, it becomes,

wt+1 = wt +
max{0, 1− yt(xt.wt)}

||xt||2 + 1
2C

xtsign(yt − ŷt) , (6)

The Train++ classifier training method is summarised in
Algorithm 1. We implemented 1 this algorithm in C++ and
open-sourced it so users can train models on MCU-based
edge devices using their live IoT use case data. After training,
when the MCUs want to infer, we pass new inputs, and the
incrementally learned weights wt to a function that performs
sign(wt.new inputs) to predict the output for the newly fed
inputs. Train++ is applicable for regression problems too,
when its loss function in Algorithm 1 is replaced with Eqn
(5), then the incrementally learn function with Eqn (6).

From our experimental experience, we report that training
NNs on commodity MCUs is not feasible since it requires
hardware resources (particularly computational power and
memory) orders of magnitude higher than what is available on
MCU-based IoT devices. Even if we manage to implement the
training of a basic network (only a few layers) on MCUs that
usually has less than 1 MB memory (see Table I), the resultant
models will show less accuracy than simple algorithms like
SVM, Random Forests, etc. In [8], we had already explored
training SVMs on various popular MCU boards.

IV. TRAIN++ ALGORITHM PERFORMANCE EVALUATION

Here we perform multiple datasets and MCUs based
extensive experimental evaluation that aims to answer:

• Is Train++ compatible with different MCU boards, and
can it train ML models on MCUs using datasets with
various feature dimensions and sizes?

1Train++ code: https://github.com/bharathsudharsan/Train_plus_plus

TABLE I
DATASETS AND HARDWARE CHOSEN FOR TRAIN++ EVALUATION.

Dataset#: Name - feature dimension
D1: Iris Flowers [49] - 4 D5: Banknote [50] - 5

Datasets D2: Heart Disease [51] - 13 D6: Survival [52] - 3
D3: Breast Cancer [53] - 30 D7: Titanic [54] - 11
D4: MNIST Digits [55] - 64

MCU# Name Specs: processor flash,
SRAM (kB), clock (MHz)

1 nRF52840 Feather Cortex-M4, 1MB, 256, 64
2 STM32f10 Blue Pill Cortex-M0 128kB, 20, 72

MCU 3 Adafruit HUZZAH32
Generic ESP32

Xtensa LX6,
boards 4 4MB, 520, 240

5 ATSAMD21 Metro Cortex-M0+, 256kB, 32, 48
CPU# Name Basic specs

1 W10 Laptop Intel Core i7 @1.9GHz
2 NVIDIA Jetson Nano 128-core GPU @1.4GHz

CPU 3 W10 Laptop Intel Core i5 @1.6GHz
devices 4 Ubuntu Laptop Intel Core i7 @2.4GHz

5 Raspberry Pi 4 Cortex-A72 @1.5GHz

• Can Train++ load, train, and infer using high features
and size datasets on limited memory MCU boards that
have low hardware specification and no floating point unit
(FPU), accelerated processing unit (APU), convolution
operation accelerator (KPU) support?

• What is the impact on accuracy when training ML
models on MCUs using Train++, and how much does
the accuracy vary in comparison with models trained on
high resource CPU/GPU setups?

In Section IV-A, we explain the experiments and results
comparison procedure. In Sections IV-B - IV-F, we present,
analyze and compare the obtained results.

A. Datasets and Experimentation Procedure

Table I presents the datasets and hardware chosen to eval-
uate the performance of Train++ algorithm. Using Train++,
for datasets D1-D4, we train a binary classifier on MCUs
1-5. Datasets D5-D7 are used in the latter part of this section.
For the first dataset D1, all the classifiers trained on MCUs
1-5 (using Train++) should distinguish Iris Setosa from other
flowers based on the input features. Similarly for D2, the
MCU-trained classifiers should identify the presence of heart
disease in the patient. Similarly, for D3, the classifiers should
be able to predict the class names based on the input features
from the test set. For D4, digit six should be recognized from
other digits.

As explained in Section II, training ML models on MCUs
is an emerging research area. During the time of writing,
Edge2Train [8] is the only work that enables training of ML
models (SVMs) on MCUs. Also, its code is made available
online that can be used to reproduce experimental results. We
compare the evaluation results of Train++ trained models
with Edge2Train trained models. During comparison, we use
the same datasets, MCUs, and procedure as from Edge2Train.



TABLE II
HIGH-PERFORMANCE ML MODEL TRAINING ON MCUS USING TRAIN++:
ACCURACY, MEMORY AND TIME CONSUMED BY MCUS FOR ON-BOARD

TRAINING AND INFERENCE.

MCU
#

Dataset
Dimension &

Size (No. of row)

Train
Time
(ms)

Accuracy
(%)

Inference
Time
(ms)

Flash & SRAM
Req (kB)

1

Iris Flowers
4, 150

Heart Disease
13, 212

Breast Cancer
Dataset
30, 567

Handwritten
Digits

64, 356

< 1
< 1
5
7

97.33
80.18
85.0
98.0

< 1
< 1
1
1

41.62, 8.76
51.95, 18.74
110.41, 77.32

133.46, 100.36

2 4
13
66
83

96.0
82.08
78.0
95.0

1
1
9

11

269.36, 6.24
36.93, 16.23
+53.6, +29.0
+76.7, +52.0

3 < 1
< 1
2
2

96.67
80.0
78.0
98.0

< 1
< 1
< 1
< 1

217.27, 17.37
227.35, 27.35

285.94, 859.32
308.97, 108.97

4 < 1
< 1
2
2

97.33
80.0
73.0
95.0

< 1
< 1
< 1
< 1

217.27, 17.37
227.35, 27.35

285.94, 859.32
308.97, 108.97

5 12
44
286
304

96.67
80.18
85.0
97.75

1
6

36
45

20.46, 9.20
20.47, 19.17

+46.7, +40.58
+69.7, +63.62

The difference is, we use Train++ instead of Edge2Train’s
classifier training algorithm.

We upload the Train++ algorithm’s C++ implementation
on all MCU boards from Table I. Then power on each board,
connect them to a PC via the serial port to feed the training
data in chunks, receive training time and classification accu-
racy from MCU boards. We perform a 70/30 training/testing
split for each of the above datasets. When we instruct the
boards to train, Train++ iteratively loads the train set and
trains the classifier using its method from Section III. Next, we
load the test set on MCUs, make the MCU trained classifier
models perform inference in order to evaluate them. The
results are shown in Table II, using which we analyze and
compare results in the upcoming subsections.

B. Training and Inference Time on MCU Boards

Here, in Table II, we record the ML model training and
inference time consumed on MCUs when using Train++.
Comparing with Edge2Train results, it is apparent that using
Train++, MCU1 trained 33.5 sec faster for the Iris dataset, 45.7
sec faster for Digits. Likewise MCU2 trained 226.1 sec faster
for Iris, and Edge2Train could not load the Digits dataset
due to SRAM overflow. Since Train++ has an incremental
training characteristic, even after the SRAM requirement
exceeds by +29 kB (Table II), we were able to load the

Fig. 2. Training models on MCUs using Train++: Comparing training set
size vs training time and accuracy for selected datasets.

dataset incrementally, to perform the training and complete
training in 83 ms. MCUs 3, 4 trained ≈ 10 sec faster for Iris
and ≈ 25 sec faster for Digits. The slowest MCU5 trained
785.5 sec faster for Iris, and although the SRAM requirement
exceeds by +63.62 kB, using Train++, MCU5 was able to
load the entire dataset incrementally and train in 304 ms. We
are not comparing the inference time in detail since, for the
same datasets, Train++ models infer for the entire test set in
lesser time than the Edge2Train model’s unit inference time.

Next, to explain the relationship between training time, train
set size, and feature dimension, using Train++, we trained
binary classifiers on all MCUs 1-5 by providing training sets
of varying sizes. We illustrate the results only for MCUs
2, 5 in Fig. 2 since other MCUs trained using the largest
Breast Cancer dataset and the highest features Digits dataset
very fast, in 2 ms. In this figure, the gap in the y-axis is the
difference in the training time between the selected datasets,
and for a clearer view, we marked this gap in ms. For MCUs
2, 5, we noticed that the training time grows almost linearly
with the number of training samples for all the datasets. For
the Iris dataset with 4-dimensional features, MCU2 only took
4 ms to train on 105 samples, whereas it took 83 ms to train
on the Digits dataset with 64-dimensional features. MCU5



Fig. 3. Edge2Train vs Train++: Comparison of energy consumed for on-
board classifier training and unit inference on MCUs 1-5.

is the slowest since it only has a 48 MHz clock and does
not have FPU support. Hence it took 12 ms to train on 105
samples of the Iris dataset (3x times slower than MCU2) and
304 ms to train on the Digits dataset (3.6x times slower than
MCU2).

C. ML Model Accuracy on MCU Boards

From Table II, the highest onboard classification accuracy
is 97.33% for the Iris (D1), 82.08% for Heart Disease
(D2), 85.0% for Breast Cancer (D3), and 98.0% for Digits
dataset (D4). In Fig. 2, we illustrate the training sample
size vs accuracy (accuracy scale in the right side y-axis).
When comparing the accuracy of Train++ trained models
with Edge2Train trained models, for the same Iris dataset,
the accuracy improved by 7.3% and by 5.15% for the
Digits dataset. This improvement is because our training
algorithm enabled incremental loading of the full dataset.
Other algorithms like SVMs work in batch mode, requiring
full training data to be available in the limited MCU memory,
thus sets an upper bound on the train set size. Hence, as shown
in Fig. 2, our models achieved overall improved accuracy
compared to the Edge2Train models, which were trained
with limited data (unable to load full dataset due to memory
constraints).

D. Flash and SRAM Usage on MCU Boards

Most embedded systems have limited kBs of SRAM,
which restricts training models using high feature dimensions
and large train sets. Train++ unrestricted this upper bound,
thus enabling us to train using the full n-samples of the
high-dimensional datasets. We provide the Flash and SRAM
requirements (calculated by the compiler for target MCUs)
in Table II. For MCU1, Iris dataset and Train++ algorithm
in total used only 4.1% of Flash and 3.4% SRAM. For the
Digits, the same MCU1 requires 6.54% and 29.93%. When
we use the Edge2Train, in the case of MCUs 2, 5, we cannot
train using the Digits dataset because SRAM overflowed
by +52.0 kB and +63.62 kB. Similarly, for Heart Disease,
both the Flash and SRAM requirements exceed the MCU’s
capacity. The results from Table II shows that the incremental
training characteristic of Train++ enables training on limited
Flash and SRAM footprints while also allowing to use full
n-samples of the high-dimensional datasets.

E. Energy Consumption on MCU Boards

We follow the same procedure as is Edge2Train to calculate
the energy (in Joules) consumed by MCUs to train and
infer using the proposed method. We multiply the Current
(Amperes) rating of MCUs with its Potential/Voltage (Volts)
and corresponding task time (seconds). In this formula, the
task time is the training and inference time (values are from
Table II) consumed by Train++ when executing on MCUs
1-5. Then, for comparison purposes, we plot thus calculated
energy along with Edge2Train energy consumption results,
in the form of a stacked bar chart.

Here, from Fig. 3 (y-axis in base-10 log scale), it is apparent
that Train++ consumed ≈ 34000 - 65000x times less energy
to train and consumed ≈ 34 - 66x times less energy for unit
inference. For a given task that needs to be completed by using
the same datasets on the same MCUs, Train++ achieved such
significant energy consumption due to its high-performance
characteristics (i.e., it trained and inferred at much higher
speeds than other methods). Hence, when Train++ is used,
MCUs can perform onboard model training and inference at
the lowest power costs, thus enabling offline learning and
model inference without affecting the IoT edge application
routine and operating time of battery-powered devices.

F. MCUs vs CPUs: ML Model Performance

Here, additional experiments are performed to extensively
evaluate the training performance of Train++ on MCUs. After
training using the datasets D5 - D7, we analyze and compare
the Train++ results produced on MCUs with the model
training results produced on CPUs. The CPUs selected for
experimentation are given in Table I. An 80/20 training/testing
split is performed for datasets D5 - D7, using which Train++
performs onboard model training. Using Arduino IDE, the
train sets of split dataset and C++ implementation of the
Train++ algorithm is uploaded on all 5 MCUS, using the



Fig. 4. Onboard training of ML models on various MCUs (uses C++ implementation of Train++) and CPUs (uses standard Python scikit-learn) using the
same selected datasets: Comparing training time and accuracy (training results) produced by MCUs 1-5 with the results of CPUs 1-5.

Arduino IDE. Each MCU board is then powered and connected
to PC via serial port to receive training time and classification
accuracy.

In Fig. 4 (left y-axis in base-10 log scale), we present
the training time and accuracy (right y-axis in percentage)
obtained during training across MCUs 1-5. We follow the
same setup and procedure when training on high-resource
CPUs 1-5. The results are then shown in the same Fig. 4 to
compare the Train++ trained models with Python scikit-learn
models. For statistical validation, the plotted time corresponds
to the average of 5 runs. In Fig. 4, we use labels to help
quickly identify the time consumed by MCUs and CPUs to
train using the complete train set of the selected datasets. In
the remainder of this section, using Fig. 4, we analyze and
compare the accuracy and training time of the MCU models
with CPU models.

MCUs vs CPUs: Training Time Comparison. Although the
CPUs 1, 3, 4 have ≈ 1000x times better specifications and
200x times more expensive than MCUs. It is apparent from
Fig. 4 a-c that, across all the datasets, MCUs 1, 3, 4 trained
faster than their competitor CPUs. In the CPU class, the
Jetson Nano with the highest hardware resource trained using
Banknote dataset (D5) in 1.8 ms, in 2 ms for Haberman’s
survival dataset (D6), and 3ms for the Titanic dataset (D7).
In the MCU class, the MCUs 3, 4, based on the same LX6
processor have the highest resource, trained in 2 ms, 0.8 ms,
and 1 ms (same dataset sequence as above).

MCUs vs CPUs: Accuracy Comparison. For all the datasets,
after training using various train set sizes, the resultant models
were evaluated using the test set (20% of whole data), and
the corresponding accuracy is plotted in Fig. 4. For D5, the
highest accuracy was 96% on CPU2 and 95% on MCU2. For



D6, MCU1 performed the best, producing the highest accuracy
of 98%, followed by CPU2 that showed 96% accuracy. In
D7, we removed non-numeric features, then the rest of the
procedure remains the same. For D7, MCU1 trained classifier
produced the highest accuracy of 82%, and CPU2 showed
79.5% from its class. Although the training time on a few
MCUs was higher than CPUs, Train++ trained classifiers
show classification accuracy close to those of Python scikit-
learn trained classifiers on high-resource CPUs.

During this experiment, in default settings, the MCU2
could not load the full D5 and D7 datasets because SRAM
overflowed by +8.71 kB and +11.20 kB. But the incremental
training characteristic of Train++ enabled training using the
full n-samples of both the datasets. In addition to the offline
model training and inference demonstration from Section IV,
our algorithm trained using three new datasets with different
sizes and feature dimensions.

V. DISCUSSION

From the extensive evaluation of Train++, it is apparent
that developers can utilize its C++ implementation to train
models offline using real-time data from any of their use cases
on commodity MCUs. We also estimate that using Train++,
onboard model training, and super real-time unit inference
can be performed on thousands of open-source MCU boards
supported by Arduino IDE, which have limited Flash, SRAM,
and no FPU, APU, KPU support. When the same experiments
are run on the latest Artificial Intelligence of Things (AIoT)
hardware, Train++ can perform onboard training at much
higher speeds and produce unit inference in microseconds.

As demonstrated with results, such tiny resource-
constrained devices could train faster than CPUs because
theTrain++ algorithm does not depend on external or third-
party libraries, and its core implementation is just less than
100 lines. Hence, the devices using our method consume lesser
storage and time (to load and execute models) than Python
or other ML framework classifiers. But, for high-features
and large datasets with heterogeneous contents, server-class
GPUs are preferred over MCUs and CPUs. Our focus is
on the MCUs since, in the real world, billions of IoT edge
devices are MCU-based, where it is feasible to train even at
lesser speeds. Such offline training using Train++ reduces
the hardware cost of edge devices since they do not need a
wireless module (4G or WiFi) to receive the updated models
from the cloud [56, 57]. Also, when the data for which the
model has to be updated is small, it does not require data
center GPUs for training. Models can rather be trained on
the edge, using the proposed method, without compromising
the model accuracy.

We see the lack of real-world experimental evaluation as
the major limitation. Also, the algorithm behavior and its
on-device self-learning performance need to be investigated
by deploying the implementation (code) of Train++ on real-
world devices. Hence in future work, we plan to; (i) Make a

generic IoT device autonomously learn to perform condition
monitoring of an industrial paint compressor by monitoring
and learning from the contextual sensor data corresponding to
regular vibration patterns from the pump’s crosshead, cylinder
and frame. Then, generate alerts using the learned knowledge
if anomaly patterns are predicted or detected; (ii) Make the
energy/power meters autonomously learn the usual residential
electricity consumption patterns and raise alerts in the event
of unusual usage or overconsumption. Thus, Train++ can
make the power meters self-learn to perform offline analytics
that can reduce bills, detect leaks, etc.

VI. CONCLUSION

We presented Train++, a resource-friendly binary classifier
training algorithm that enables the onboard training of high-
performance ML models on commodity MCUs. When MCU-
based IoT devices (tiny embedded systems) are equipped with
Train++, they get transformed into intelligent devices that
can self-learn (locally re-train themselves) using large volume,
high dimensional, real-time data. Thus, even the resource-
constrained tiny IoT hardware with Train++ can self-learn to
perform analytics for any target IoT use cases. The extensive
evaluation using 7 datasets shows that Train++ can guarantee
superior onboard model training performance, accuracy, and
perform ultra-fast inference while showing a higher level of
memory conservation. In future work, we plan to implement
the Train++ algorithm for regression problems which was
outlined in this paper.
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