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Abstract. Edge analytics refers to the application of data analytics and
Machine Learning (ML) algorithms on IoT devices. The concept of edge
analytics is gaining popularity due to its ability to perform AI-based ana-
lytics at the device level, enabling autonomous decision-making, without
depending on the cloud. However, the majority of Internet of Things
(IoT) devices are embedded systems with a low-cost microcontroller unit
(MCU) or a small CPU as its brain, which often are incapable of handling
complex ML algorithms.
In this paper, we propose an approach for the efficient execution of already
deeply compressed, large neural networks (NNs) on tiny IoT devices. After
optimizing NNs using state-of-the-art deep model compression methods,
when the resultant models are executed by MCUs or small CPUs using
the model execution sequence produced by our approach, higher levels
of conserved SRAM can be achieved. During the evaluation for nine
popular models, when comparing the default NN execution sequence with
the sequence produced by our approach, we found that 1.61-38.06% less
SRAM was used to produce inference results, the inference time was
reduced by 0.28-4.9 ms, and energy consumption was reduced by 4-84
mJ. Despite achieving such high conserved levels of SRAM, our method
100% preserved the accuracy, F1 score, etc. (model performance).

Keywords: Edge AI · Resource-Constrained Devices · Intelligent Micro-
controllers · SRAM Conservation · Offline Inference.

1 Introduction

Standalone execution of problem-solving AI on IoT devices produces a higher
level of autonomy and privacy. This is because the sensitive user data collected by
the devices need not be transmitted to the cloud for inference [18,19]. However,
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such problem-solving AI is usually a Neural Network (NN) with complex and
large architecture that demands a higher order of computational power and
memory than what is available on most IoT edge devices [13, 14]. Majority of
IoT devices like smartwatches, smart plugs, HVAC controllers, etc. are powered
by MCUs and small CPUs that are highly resource-constrained. Hence, they lack
multiple cores, parallel execution units, no hardware support for floating-point
operations (FLOPS), low clock speed, etc.

The IoT devices designed using such chipsets are tiny in form factor (be-
cause FLASH, SRAM, and processor are contained in a single chip), magnitude
power-efficient, and cheapest than the standard laptop CPUs and mobile phone
processors [12,22]. During the design phase of IoT devices, in order to conserve
energy and to maintain high instruction execution speeds, no secondary/backing
memory is added. For example, adding a high-capacity SD card or EEPROM
can enable storing large models even without compression. But such an ap-
proach will highly affect the model execution speed since the memory outside
the chipset is slow and also required ≈ 100x more energy to read the thousands
of outside-located model parameters.

The memory footprint (SRAM, Flash, and EEPROM) and computation power
(clock speed and processor specification) of such devices are orders of magnitude
less than the resources required for the standalone execution of a large, high-
quality Neural Network (NN) [20,21]. Currently, to alleviate various critical issues
caused by the poor hardware specifications of IoT devices, before deployment
the NNs are optimized using various methods such as pruning, quantization,
sparsification, model architecture tuning, etc. [14,16] Even after applying state-
of-the-art optimization methods, there are numerous cases where the models
after deep compression/optimization still exceed a device’s memory capacity by
a margin of just a few bytes, and users cannot optimize further since the model
is already compressed to its maximum. In such scenarios, the users either have to
change the model architecture and re-train to produce a smaller model (wasting
GPU-days and electricity), or upgrade the device hardware (for a higher cost).

However, the benefits of designing IoT devices using such tiny chipsets come
at the cost of low memory and computational power [15, 17]. To cope with
such constraints, in the field of ML model optimization and deep compression,
there exists numerous studies that propose pruning, quantization, sparsification,
utilization of cheaper network layers, etc., to deep compress large models without
compromising on model’s accuracy. In this paper, we propose that if we use an
efficient model execution approach to execute the deep compressed NNs, we can
comfortably accommodate a more complex/larger model on the same tiny IoT
device. The contributions of this paper can be summarised as follows:

– Our proposed approach shows high model execution efficiency since it can
reduce the peak SRAM usage of a NN by making the onboard inference
procedure follow a specific model execution sequence.

– Our approach is applicable to various NN architectures, and models trained
using any datasets. Thus, users can apply it to make their IoT devices/prod-
ucts efficiently execute NNs that were designed and trained to solve prob-
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lems in their use-case. We also implemented and made our approach freely
available online.

– When the NNs optimized using state-of-the-art deep compression sequences
exceed the device’s memory capacity just by a few bytes margin, the users
cannot additionally apply any optimization approach since the model
might be already maximum compressed or the users cannot find a study
that contains methods compatible to the previous optimizations. In such
scenarios, when our approach is used, the same NNs that couldn’t fit on the
user’s device (due to SRAM overflow), can be comfortably accommodated
due to the fact that our approach provides a model execution sequence
that consumes less SRAM during execution.

– Orthogonal to the existing model memory optimization methods, our
approach 100% preserves the deployed model’s accuracy since it does not
alter any properties and/or parameters of models, neither alter the standard
inference software. Instead it instructs the device to just use the SRAM
optimized execution sequence it provides.

– Many IoT devices running large NNs fail due to overheating, fast battery
wear, and run-time stalling. The prime reason for such failure causing
issues is the exhaustion of device memory (especially SRAM). To accurately
estimate the memory consumed by models during execution on IoT devices,
we provide a Tensor Memory Mapping (TMM) program that can load
any pre-trained models like ResNet, NASNet, Tiny-YOLO, etc., and can
accurately compute and visualize the tensor memory requirement of each
operator in the computation graph of any given model. A part of the
approach proposed in this paper relies on the high-accuracy calculation
results of TMM.

Outline. The rest of the paper is organized as follows; Section 2 briefs essential
concepts and related studies. In Section 3, we present the complete proposed
approach, and in Section 4, we perform an empirical evaluation that aims to
justify the claims of our approach before concluding our paper in Section 5.

2 Background and Related Work

In Section 2.1, we present the top deep model compression techniques that
produce the smallest possible model, which can be executed on MCUs and small
CPUs using our proposed approach. In Section 2.2, we view the trained NN as a
graph and explain its standard execution method, followed by the related studies
comparable with our model execution approach.

2.1 Deep Model Compression

The approaches in this category employ various techniques to enable fitting
large NNs on IoT devices. For instance, Model design techniques emphasize
designing models with reduced parameters. Model compression techniques such as
quantization and pruning [14] can be used. Quantization takes out the expensive
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floating-point operations by reducing it to a Q-bit fixed-point number, and
pruning removes the unnecessary connections between the model layers. Other
techniques such as layer decomposition [11], distillation [3], binarisation [5] is
also applicable. Also, neural architecture search methods [25] can be used to
design a network with only a certain floating-point operation count to fit within
the memory budget of the MCUs. If users want to achieve a higher level of
size reduction, let’s assume when they aim to execute models like Tiny-YOLO
and Inception v3 (23.9 MB after post-training quantization) on IoT devices, we
recommend performing Deep Model Compression. Here the users, in a sequence,
have to realize more than one of the briefed model optimization techniques.

After following the deep optimization sequence of their choice, the NNs become
friendly enough to be executed on tiny devices. Additionally, when such deep
optimized models are executed using our proposed approach, its peak on-device
execution memory usage can be reduced.

2.2 Executing Neural Networks on Microcontrollers

A neural network is a graph with defined data flow patterns having an arrangement
of nodes and edges, where nodes represent operators of a model, and graph edges
represent the flow of data between nodes. The operator nodes in the model
graph can be 2D convolutions (Conv2D), or Depthwise separable 2D convolution
(DepthwiseConv2D) etc. These operator nodes can take more than one input to
produce an output. Recently, a few ML frameworks have released tools to optimize
model graphs in order to improve the execution efficiency of NNs. For example,
the optimizer tool fuses adjacent operators and converts batch normalization
layers into linear operations. In such model computation graphs, buffers are used
to hold the input and output tensors before feeding them to the operators during
the model execution. After execution, the items in the output buffer will be
provided as input to the next operator, and the input buffers can be reclaimed
by removing the stored data.

Structure of Computation Graphs. When executing a model, the graph
nodes in both the regular graph and its optimized version are executed one by
one in a topological fashion/order. For example, the VGG and AlexNet iteratively
apply a linear sequence of layers to transform the input data. But, similar to
the computation graph shown in Fig. 1, the newer networks like the Inception,
NasNet, MobileNet, etc. are non-linear since it contains branches. Here, the input
data transformation is performed in divergent paths because the same input is
accessible by numerous operators present in several layers i.e., the same input
tensors are accessible for processing by several layers and operators. Hence when
executing such branched models on MCUs, the execution method can have access
to multiple operators.

Mapping Models on the MCU memory. The typical small CPUs and MCUs
based IoT devices have their on-chip memory partitioned into SRAM (read-write)
and NOR-Flash (read-only). The complete memory requirement of a NN is
mapped to these two partitions. Since SRAM is the only available read-write
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Fig. 1. A part of the COCO SSD MobileNet computation graph with its branched
operators: When executing such graphs on IoT devices, our approach reduces the peak
SRAM consumption by producing an optimized operators execution sequence.

space, the intermediate tensors generated during model execution are stored
here, increasing the peak SRAM usage on MCUs. The model parameters such
as trainable weights, layers, constants, etc., do not change during the run-time
(immutable in nature). Hence, they are converted into hex code and stored in
the static Flash memory along with the application of the IoT use case.

The most relevant work to ours are [10] and [9], where a NN execution
runtime for MCUs is attached with their NAS. Next is the [1], which proposes
a method for optimizing the execution of a given neural network by searching
for efficient model layers. i.e., a search is performed to find efficient versions of
kernels, convolution, matrix multiplication, etc., before the C code generation
step for the target MCU. Both the methods aim to ease the deployment of NNs
on MCUs, whereas our approach is to take any deep compressed model and
during execution reduce its peak SRAM usage.

3 Efficient Neural Network Execution Approach Design

As discussed earlier, the trained model size and its peak SRAM need to be highly
reduced due to the limited Flash and SRAM memory capacity of IoT devices.
Here, we present our approach that can reduce the peak SRAM consumed by
neural networks. We first describe our Tensor Memory Mapping (TMM) method
in Section 3.1. Then in Section 3.2 and 3.3, we present the two parts of our
proposed approach, followed by Section 3.4 that combines both the parts and
presents the complete approach in the form of an implementable algorithm.

3.1 Tensor Memory Mapping (TMM) Method Design

Before deployment, the memory requirement of models is often unknown or
calculated with less accuracy. i.e., there will exist a few MB of deviations in the
calculations. When the model is targeted to run on better-resourced devices like
smartphones or edge GPUs, these few MB deviations do not cause any issues.
But when users target the resource-constrained IoT devices (has only a few MB
memory), then the low-accuracy calculation causes run-time memory overflows
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and/or restrict flashing model on IoT devices due to SRAM peaks. Based on
our recent empirical study, we found that many IoT devices that are running
large NNs fail due to overheating, fast battery wear, run-time stalling. The
prime reason for such failure causing issues is the exhaustion of device memory
(especially SRAM). Hence, this inaccurate calculation leads to a horrendous
computing resource waste (especially the GPU days) and reduced development
productivity. In this section, we thereby present our tensor memory mapping
method, which can be realized to accurately compute and visualize the tensor
memory requirement of each operator in any computation graph. We use this
high-accuracy calculation method in the core algorithm design of our efficient
neural network execution approach.

Fig. 2. Accurate computation and visualization of tensor memory requirement for each
operator in NN computation graphs (performed using our TMM): The Algorithm 1
reduces the shown memory peaks by reordering operators to produce a new graph
execution sequence.

Abstraction and Formalization. We treat the internal of neural networks as
mathematical functions and formalize it as tensor-oriented computation graphs
since the inputs and outputs of graph nodes/operators are a multi-dimensional
array of numerical values (i.e., tensor variables). The shape of such a tensor is
the element number in each dimension plus element data type. In the below eqn,
we formally represent a NN as a Directed Acyclic Graph (DAG), and we treat its
execution as iterative forward and backward propagation via the graph branches.

NNDAG = 〈{opi}ni=1 , {(opi, opj)} , {pk}
m
k=1〉 (1)

Here opi are the graph operators, (opi, opj) is the connection to transmit
output tensor from opi as an input to opj , and there are m hyperparameters pk. Let
the topological ordering of operators be Seq = 〈opi1 , opi2 , · · · , opin〉 that extends
from the first graph edge such that opii <Seq opik →

(
opik , opij

)
/∈ NNDAG,

where Seq is the operator execution sequence (we aim to find a memory friendly
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sequence in the later sections). In this graph, when visiting a node op, we need
to calculate the memory it consumes to store (i) newly assigned tensors, (ii)
previously assigned but still in-use tensors, (iii) reserved buffers. To calculate
the memory consumption MNNDAG

of a graph NNDAG we give the following
formulae. We call the first two types of tensors as unreleased tensors.

MNNDAG
= max {MFninit

,MFn (opi) | opi ∈ NNDAG} (2)

Here, MFninit
=
∑

MTsr(t) is the function to compute the initial memory
consumption, MFn(op) = MUres(op) + MR(op) is the current memory con-
sumption, MUres(op) =

∑
t∈UresTsr(op)

MTsr(t) is the function that computes

memory requirement of unreleased tensors, MR(op) function returns memory
size of reserved buffers. The set of unreleased tensors are computed using UresTsr,
and for a given tensor t, function MTsr is used to find its allocated memory size.
The Eqn 2 applies to models trained using any ML frameworks like TensorFLow,
PyTorch, etc. to estimate the graph memory consumption, and applicable to
calculate the memory requirements for any operators execution sequence.

Testing the Design. The implementation of our method is suitable for any
pre-trained models like NASNet, Tiny-YOLO, SqueezeNet, etc. For each of the
operators in any given model graph, our method computes the total required
SRAM. i.e., the space required to store the input tensors + output tensors +
other tensors, and then exports the detailed report in CSV format. Our method
can also produce images that show the tensor memory requirement of each
operator. For example, when we feed the Inception V1 that contains 84 graph
nodes/operators to our method, it produces Fig. 2. a. (for brevity, we show
only 0 - 29 operators) along with the detailed CSV report. Similarly, we test
our method on SqueezeNet and MobileNet V1 and show the results in Fig. 2.
b-c. Thus by enabling visualization, our method helps users analyze multiple
memory aspects of networks and obtain valuable insights that can guide them to
customize their model graph for highly reduced memory. For example, we made
the following observations; (i) Most of the Inception V1 nodes consume high
memory to accommodate other tensors, whereas the MobileNet does not contain
other tensors at all; (ii) Three nodes in SqueezeNet consume significantly higher
memory than other nodes. Such nodes can be replaced with cheaper operators
that perform the same tasks.

3.2 Loading Fewer Tensors and Tensors Re-usage

In the traditional model execution methods, multiple tensors of various sizes are
loaded into the buffer (such bulk loading is the reason for causing peak memory
usage) since the traditional methods execute operators requiring different size
tensors. In contrast, our approach executes many operators by just loading a
minimum number of tensors. This part of our approach also aims to achieve
SRAM conservation by tensors re-usage. Here, our approach identifies and
stores a particular set of tensors in the buffer (buffers are created within SRAM)
and first executes the branch of the graph containing operators compatible with
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the stored tensors. Then in the next iteration, it loads tensors that are suitable
as input for the set of operators belonging to the next branch, then performs the
execution. After each iteration, the buffers are reclaimed.

For illustration purpose, in Fig. 1, the intermediate tensors of varying size
are shown in blue circles 1 to 5 which need to be stored in SRAM during

the graph execution. Here, at the first branching point circled B , when the

default model execution software is utilized, the two tensors with blue circles 1
and 2 are loaded on the SRAM. Then it executes all the branched operators
with rose circles 3 to 5 . This method of loading many tensors and executing
many operators leads to the most critical SRAM overflow issue, especially in the
scenarios where multiple branches are emerging from one branching point.

3.3 Finding the Cheapest NN Graph Execution Sequence

The computational graphs of models perform the inference tasks in a collection
of computational steps, where each step depends on the output from a few of
the preceding steps. For example, in the graph of MobileNet shown in Fig. 1.,
these graph steps are the operators and rose circled 1 → 2 means the second
operator depends on the output of the first. Since the computation graphs of
most NNs are DAGs, we can enumerate orders/sequences to execute all the
operators/computational steps.

As shown in Fig. 1, the modern NNs like MobileNet have divergent data flow
paths. i.e., their computation graphs contain branches. As briefed in Section 2.2,
due to such a branched design, a given tensor can be accessed by operators in
various branches. For example, in Fig. 1, the tensor with a blue circle 1 of size
1x10x10x768 can be accessed by three Conv2D operators due to the presence
of a branching point circled B . Similarly, the tensor with blue circle 3 of
size 1x5x5x384 is accessible by two Conv2D layers and by another sequence of

operators circled A . Such branched computation graphs provide freedom for the
model execution software to alter the execution order/sequence of the operators.
In the rest of this section, we show that any topological execution order of the
graph nodes will result in a valid execution scheme; we then explain how our
approach leverages this freedom to achieve its SRAM conservation goal.

Does any topological execution order of the NN graph nodes result in
a valid execution scheme? DAGs of models have topological ordering and do
not have cycles because the edge into the earliest vertex of a cycle would have to
be oriented the wrong way. Therefore, every graph with a topological ordering is
acyclic. But for a directed graph that is not acyclic, there can be more than one
minimal subgraph with the same reachability relation. Where, for a complete
DAG with N nodes, the search space contains 2N(N−1)/2 possible topological
orders/structures. We consider the initial graph node as the source node, where
the input data (i.e., sensor values that require predictions) is fed into the network,
and the ending node as the sink node, where the inference results are transmitted
to control the real world applications. In the graph of MobileNet from Fig. 1., let

us assume the source node to be circle So and the sink node to be circle Si .
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Since NNs are DAGs, the topological execution numbers assigned to the nodes
(operators) increases along the branched path (without forming any cycles) till
the sink node. During this coverage, no graph vertices or nodes are skipped.

Formally, we define thus described topological process as G0 = (V, E),
with operators V = {v1, v2, v3, . . . , vn−1, vn} and E are the edges between
operators. Here the operator execution order is a sequence containing all the
operators ∈ V,

{
vk1

, vk2
, · · · , vkn−1

, vkn

}
such that for all i, j (0 6 i, j 6 n),

if there exists a path from vki to vkj , then i < j. Briefly, if there is a path
from operator v to operator w, then in the execution sequence, v should be set
to be executed before w. Hence, the directed computation graph of NNs is a
DAG if and only if it has a topological ordering. This explanation gives us two
independent statements to prove; First we need to show if a directed graph
follows a topological ordering of operator nodes, it is a DAG. Second, we need
to show that all DAGs follows a topological ordering of operator nodes.

Proof One. Since a biconditional logical connective exists between the above
two statements, either both statements are true or both are false. Hence, proving
either the first or the second statement will suffice both. By contrapositive; if we
prove that if a NN graph is not a DAG, it can not have a topological ordering,
we can satisfy the first statement. In the following, we prove this.

When we assume the computation graph of a NN to not be a DAG, there
will exist cyclic data flow between operators in the graph. For example, in
{v1, v2, · · · , vk, v1}, since there is a path from v1 to v2, the operator v1 must
appear before v2 in the topological ordering scheme. But there is also a path
from v2 to v1 via vk making v2 appear before v1. If we implicate this scenario in
Fig. 1, the execution sequence reaches the sink node (vk) and then returns back
to the source node (v1), clearly voiding the main ordering principle of a DAG,
hence proving the first statement. In the following, we also prove the second
statement, but by induction.

Proof Two. We start to prove the second statement in step one. Here, we define
the base case, which is a graph with just one operator. This graph is a DAG with
topological ordering since the execution order starts from the source node, travels
via the single operator, and ends at the sink node. In step two, we consider a
topologically ordered DAG with multiple operators connected by n vertices as the
induction hypothesis. In order to prove the second statement, for this induction
step two, we need to show that the induction hypothesis implies that a DAG
with n + 1 vertices must have a topological ordering. To prove this, in step three,
we take a NN graph with n + 1 vertices/operators having one 0-degree vertex
v0. In step four, we remove the 0-degree vertex to obtain a computation graph
with n vertices (similar to graph from step two). This resulting graph must be a
DAG since the base graph from step two had no cycles, and also, in this step, we
removed edges (not added).

According to the induction hypothesis from step two, since the resultant
graph from step four is a DAG with n vertices, it also will have a topological
ordering. Thus, a topological operators execution sequence can be constructed
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for the graph from step three that has n + 1 operators, by prepending v0 to the
topological order of the n vertices DAG from step two.

SRAM Conservation by Altering Operators Execution Sequence. Hav-
ing proved that changing execution sequence of operators still produces a valid
scheme; our approach achieves its memory conservation goal by intelligently
selecting the execution branch that when executed consumes less SRAM (reduces
the peak memory consumption) than the default sequence. For illustration pur-
pose, in Fig. 1., if the model execution software follows the default operators
execution order; the execution will start at the operator with a rose circle 1
and follow the sequence till the operator with a rose circle 8 , in the order of 1,
2, 3, 4, 5, 6, 7, 8. This unoptimized default order will consume a peak SRAM
of 5900 Bytes. Whereas when our efficient execution approach is utilized, the
operator execution order is altered to form a new sequence that will require a
reduced SRAM of 5200 Bytes. This new order will be 1, 2, 5, 6, 7, 8, 3, 4. Here,
the calculated SRAM consumption/requirement is the sum of the size of tensors
stored in the operator’s input and output buffers added with the tensor size of
the output of previous or next operators. As explained in Section 2.2, this third
set of stored tensors are the input for the other operators that exist in the graph.

3.4 Core Algorithm

Discovering multiple topological orders of nodes in a computation graph belongs
to the literature of graph optimization. The algorithm that we present in this
section belongs here since we designed it considering the computation graph
of a model as a DAG, and as proved in Section 3.3, the execution of available
nodes in any topological order will result in a valid execution sequence. When the
computation graph of any given model is loaded into our algorithm, it analyzes
the complete network by running through each branch of the network and finally
discovering the cheapest graph execution path/sequence. The time consumed
by the algorithm to produce the results depends on complexity Tc

(
|O|2|O|

)
,

where |O| is the total operators count. Since the latest network architectures
contain hundreds of operators, our proposed algorithm is best-suited to run on
better-to-high resource devices such as laptop CPUs. Our algorithm-generated
optimized graph execution sequence should be used by the inference software
when executing the target model on MCU-based IoT devices.

We present our complete approach in Algorithm 1. Here, Lines 10 to 25 is
the core memory reduction function of our algorithm that performs the required
tasks to reduce the peak SRAM usage by reordering operators to produce a new
execution sequence. Before the core function, in Line 3 to 9, we declare all the
function required variables. In Line 11, we remove the tensors that shall not be
used as inputs by the operators in the graph. Also, the tensors that do not contain
the operators that produced are taken out. Thus performed removal actions do not
affect the model performance since the removed tensors are constant consttens.

Next, in Line 18 to 20, we ensure that no operator nodes are executed twice.
This is done by checking whether an operator node has produced any of the
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Algorithm 1 Reducing the peak SRAM consumption by discovering an optimized
operators execution sequence.

1: Input: Computation graph of the trained model.
2: Output: Cheapest graph execution order with reduced peak SRAM requirement.
3: consttens . Constant tensors
4: activetens . Active tensors that change during graph execution
5: settens . Set of tensors
6: remtens . Variable to store the remaining tensors
7: reqtens . Tensors required to produce tens
8: operator (tens) . The operator that computes to produce tensors tens and settens

9: k ←∞, s← 0, k′ ← 0 . Variables
10: memory reduction . Function to find the path that consumes minimum

memory to compute all tens ∈ settens

11: consttens, activetens ← Separate (settens, tens : operator (tens) is none)
. Separate constant and active tensors

12: if no activetens then
13: return

∑
s ∈ consttens

|c| . No remaining operators to reorder. Send sizes
of remaining consttens

14: end if
15: for tens in activetens do
16: remtens ← activetens . Remaining tensors need to be stored in memory
17: reqtens ← operator (tens) . data
18: if any (tens is used to produce rem where rem ∈ remtens) then
19: tens was used to produce rem. So in the future, the operator (tens)

will be executed . Result stored for re-use
20: end if
21: . At this stage, peak memory will be consumed either by; (i) the

operator (tens) that produced rem. In this case the peak is the memory of input
tensors + output tensor + other tensors. (ii) other operators. i.e., recursive case
memory reduction (remtens ∪ reqtens)

22: k′ ← max (memory reduction (remtens ∪ reqtens),∑
t ∈ remtens ∪ reqtens ∪ {tens} |t|)

23: k ← min (k, k′)
24: . The cheapest graph execution order/path is decided here
25: end for
26: return

∑
rem ∈ remtens

|rem| + k
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tensors (remtens) that are remaining after taking out consttens. If such tensors
are existing, in the future, the inference software might require to execute again
the operators that produced those tensors. To conserve memory, in Line 19, the
results of such operators that need to be re-executed are stored in the buffer for
reuse. In fact, such re-execution can cause memory peaks. In Line 22, the memory
reduction function is called multiple times in order to cover all the branches of
the computation graph. Finally, in Line 26, the cheapest graph execution path is
returned. When executing the thus produced reordered operators sequence on
IoT devices, if the scope of loaded tensors is over, we recommend the inference
software to reclaim the memory used by such tensors by removing them from
the SRAM.

Table 1. Executing original models and its Algorithm 1 optimized versions: Comparing
the peak SRAM usage, inference time, and the energy consumed for inference.

Model
Task/

Category

Pre-trained
Model
Name

Quantized Model
without Optimization

Quantized Model
with Optimization
using Algorithm 1

Peak
SRAM
usage
(KB)

Inference
Time
(ms)

Energy
Used
(mJ)

Peak
SRAM
usage
(KB)

Inference
Time
(ms)

Energy
Used
(mJ)

Image
Classif-
ication

MobileNetV1 [7] 98.304 1.6 27.59904
65.536
(32 ↓)

0.96
(0.64 ↓)

16.55942
(11 ↓)

SqueezeNet [6] 6195.200 12.4 213.8926
4816.896
(1378 ↓)

10.62
(1.78 ↓)

183.1886
(30.7 ↓)

InceptionV1 [23] 1003.520 43.6 752.0738
802.816
(200 ↓)

38.9
(4.7 ↓)

671.0017
(81.0 ↓)

MnasNet [24] 1605.632 7.4 127.6456
1204.224
(401 ↓)

5.7
(1.7 ↓)

98.32158
(29.3 ↓)

NASNet
mobile [27]

4511.660 63 1086.712
3834.284
(677 ↓)

61.2
(1.2 ↓)

1055.663
(31 ↓)

DenseNet [4] 8429.568 246.3 4248.527
5221.264
(3208 ↓)

241.4
(4.9 ↓)

4164.005
(84 ↓)

Semantic
Segmentation

DeepLabv3 [2] 5639.592 38.2 658.927
5548.116

(91 ↓)
37.07

(1.13 ↓)
639.435
(19 ↓)

Pose
Estimation

PoseNet [8] 6575.904 22.3 384.661
4383.936
(2191 ↓)

19.4
(2.9 ↓)

334.638
(50 ↓)

Text
Detection

EAST [26] 5324.800 43.38 748.278
3686.400
(1638 ↓)

43.10
(0.28 ↓)

743.449
(4 ↓)

4 Experimental Evaluation

In this section, we perform an empirical evaluation to answer the following
questions.
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– To what levels can the proposed approach increase the model execution
efficiency by reducing the peak SRAM usage of NNs?

– Is the approach suitable to diverse NN architectures and NNs trained using
various datasets?

– Can the approach produce an optimized operators execution sequence for
already optimized or deep compressed models?

– Does optimization using the proposed approach impact the accuracy or
performance of the model?

Fig. 3. Benefits achieved after optimization using our proposed approach.

We start the evaluation by downloading popular pre-trained TensorFlow Lite
models (.tflite format) from TensorFlow Hub. For comprehensiveness, the
models selected to evaluate our approach belong to various problem domains
ranging from image classification to text detection and are listed in Table 1. As
described in Section 3.4, since the chosen models contain hundreds of operators,
the complexity of our algorithm will be high. Hence, we conduct the evaluation
on a standard NVIDIA GeForce GPU-based Ubuntu laptop with Intel (R) Core
(TM) i7-5500 CPU @ 2.40 GHz. After the download, we first load and execute
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each model on the same laptop using the default execution sequence of operators
and tabulate the corresponding peak SRAM usage, unit inference time, and the
energy consumed to execute the model and perform inference.

In the same setup, we next apply the implementation of Algorithm 1 on
each model and tabulate the obtained results in Table 1, next to the results
obtained when executing models using their default execution sequence. During
the evaluation, for statistical validation, the reported inference time and the
consumed energy corresponds to the average of 5 runs. In order to perform
analysis, in Table 1, we subtract the values reported under Quantized Model
with Optimization using Algorithm 1 with values under Quantized Model without
Optimization and plot bar-graphs for each model in Fig. 3. Based on this, in the
remainder subsections, we analyze and discuss the benefits achieved as a result
of optimizing models using our proposed approach.

4.1 SRAM Usage

In practice, there are many cases where ML models optimized using state-of-
the-art deep compression sequences exceed the target device’s SRAM capacity
just by a few KB margin. In such cases, users cannot additionally apply any
optimization approach since it might not match the previous optimizer compo-
nents, or the model might be already be maximum compressed. So they either
have to alter the model architecture and re-train to produce a smaller model
(waste of GPU days and electricity) or upgrade the IoT device hardware (loss of
money). In the remainder of this section, we show how our approach can enable
the accommodation and execution of memory overflow issues causing models on
IoT devices.

We take the quantized DenseNet with its default execution sequence and feed
it to our TMM program from Section. 3.1. From the resultant computed memory
requirement for each operator in the default graph, the 24th operator showed the
peak SRAM consumption of 8429.568 KB. Next, after applying our Algorithm
1 on DenseNet, the resultant memory-friendly graph execution sequence, when
evaluated by the TMM program, showed the peak memory of only 5221.264 KB
(peak reduced by 38.06%).

Similarly for MobileNet V1, the peak SRAM usage reduced from 98.304
KB to 65.536 KB (see Table 1). Here our approach has reduced the memory
peak by 32.76 KB (by 33%). In Fig. 3. c., we plot thus calculated peak SRAM
reduction percentage for MobileNet V1 (label A in x-axis) and the remaining 8
models selected for evaluation. The maximum peak SRAM reduction of 38.06%
was achieved for the DenseNet and the least of 1.61% reduction for DeepLabv3.
It is apparent from the results that the execution sequence produced by our
approach is applicable for a wide range of ML models that have diverse network
architectures. Also, since it reduces the SRAM peaks, the models that are still
large after optimization can be accommodated on tiny IoT devices. Thus, our
approach eliminates the re-training step that aims to produce small models, and
also, the device hardware need not be upgraded to accommodate the models.
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4.2 Model Performance

As a part of experimental results, we report that despite the SRAM conservation,
the model executed using the SRAM optimized sequence provided by Algorithm
1 showed the same performance (accuracy, F1 score, etc.) as the models when
executed with their default sequence. This is because, unlike existing methods,
ours does not alter any properties/parameters of models, neither alter the standard
inference software (just instructs to use a different model execution sequence).
Also, as proved in Section 3.3, the SRAM optimized sequence produced by our
approach is a valid model execution sequence. This 100% model performance
preservation characteristics enable even tiny IoT devices to produce high accuracy
offline analytics results.

4.3 Inference Time and Energy Consumption

Here in order to investigate the impact of our approach on inference/model
execution performance, we execute each model first with their default execution
sequence, then with the memory peak reduced sequence produced by our approach.
We report the difference in inference time and consumed energy for both default
and optimized sequence in Table 1 and show it in Fig. 3. a - b. For the same tasks
performed on the same device using the same datasets, the new graph execution
sequence for DenseNet shows the maximum inference time reduction of 4.9 ms
and the least of 0.28 ms reduction for EAST. We also achieved 4 - 84 mJ less
energy to perform unit inference since executing the model using the SRAM
optimized sequence produced by our approach is 0.28 - 4.9 ms faster than the
default sequence.

In realistic scenarios, to infer using a stream of data input, the deployed
model is executed in a loop. Here, even the minor inference speedups and energy
conservation produced by our approach get multiplied, driving the IoT devices
close to producing real-time edge analytics results at a lower power cost. Thus,
even the autonomous tiny IoT devices can efficiently control real-world IoT
applications by making timely predictions/decisions and also perform offline
model inference without affecting the operating time of battery-powered devices.

5 Conclusion

In this paper, we presented an approach to efficiently execute (with reduced
SRAM usage) deeply optimized (maximally compressed) ML models on resource-
constrained devices. For nine popular models, when comparing the default model
execution sequence with the sequence produced by our approach, we showed that
1.61-38.06% less SRAM was used to produce inference results, the inference time
was reduced by 0.28-4.9 ms, and energy consumption was reduced by 4-84 mJ. As
well as achieving highly conserved SRAM levels, our method 100% preserved the
model performance. Thus, when users apply the approach presented in this paper,
they can: (i) Execute large-high-quality models on their IoT devices/products
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without needing to upgrade the hardware or alter the model architecture and re-
train to produce a smaller model; (ii) Devices can control real-world applications
by making timely predictions/decisions; (iii) Devices can perform high accuracy
offline analytics without affecting the operating time of battery-powered devices.
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