
1

ML-MCU: A Framework to Train ML Classifiers
on MCU-based IoT Edge Devices

Bharath Sudharsan , John G. Breslin , and Muhammad Intizar Ali

Abstract—The majority of IoT edge devices are embedded
systems with a tiny microcontroller unit (MCU), which acts as
its brain. When users want their edge devices to continuously
improve for better edge-analytics results, there is a need to
equip their devices with algorithms that can learn/train from the
continuously evolving real-world data. Currently, such devices
are not capable of executing any Machine Learning (ML)-based
model training tasks due to their resource constraints such as:
limited memory (SRAM, Flash and EEPROM), low operations
per second, its inability to perform parallel processing, etc. In
this paper, we provide ML-MCU, a framework with our novel
Opt-SGD and Opt-OVO algorithms to enable both binary and
multi-class ML classifier training directly on MCUs. Thus, ML-
MCU enables billions of MCU-based IoT edge devices to self
learn/train (offline) after their deployment, using live data from
a wide range of IoT use-cases. When evaluating our algorithms
on multiple popular MCUs, using various datasets of different
sizes and feature dimensions, one of the most exciting findings
was, our Opt-OVO algorithm trained a multi-class classifier using
a dataset of size 1250 and class count 50, on a $3 resource-
constrained MCU and also performed onboard unit inference
for the same 50 class data in super real-time (6.2 ms).

Index Terms—Self-learning IoT devices, Intelligent Microcon-
trollers, Real-time Machine Learning, Edge Intelligence.

I. INTRODUCTION

IN the real-world, every new scene generates unseen data
patterns. When an ML model deployed over edge devices

sees any fresh patterns which were not previously exposed
during the training phase, it will either not know how to react
to that specific scenario or can lead to false or less accurate
results [1]. Furthermore, a model trained using data from one
context often does not produce the expected results when
deployed in another context. Certainly, it is not feasible to
train multiple models for multiple environments and contexts.
In order to achieve a truly autonomous local intelligence at the
device level, the devices must have the ability to self-learn and
understand the data patterns offline, with no dependency on
users or cloud services. These devices should be capable of
locally gathering knowledge incrementally during the train-
ing/learning phase and should self-learn. Thus, transforming
edge devices into intelligent machines capable of learning and
performing analytics in any given environment [2].

In most real-life IoT scenarios, designing an AI solution
and deploying on edge devices to solve a target problem is
a lengthy and expensive process that demands statistics, data

B. Sudharsan and J.G. Breslin are with the Confirm SFI Centre for Smart
Manufacturing, Data Science Institute, National University of Ireland Galway
(e-mail: b.sudharsan1@nuigalway.ie; john.breslin@nuigalway.ie). M.I. Ali is
with the School of Electronic Engineering, Dublin City University (e-mail:
ali.intizar@dcu.ie).

science skills, and access to complex datasets that are difficult
to source (GDPR and privacy concerns) [3]. A large amount
of historical data is collected and stored at a central location
before training ML models over these large datasets. However,
such approaches are only able to train and infer based on the
collected data. Once trained, the models are deployed across
the board at all devices to perform analytics at the edge.
In cases where the historical data becomes obsolete, or it is
not truly representative for possible cases, the edge analytics
produces inferences at a low accuracy whenever previously
unseen data is processed. In our work, we are proposing
Machine Learning - Microcontroller Unit (ML-MCU), which
is an incremental method to train and infer at the device level
without the need for any cloud-based ML training services.
Whenever ML-MCU is deployed at the device level, it trains
itself locally to build knowledge on-the-fly using the live IoT
data streams, thus transforming IoT devices into intelligent
devices which can train and infer offline at the edge.

The state-of-the-art ML frameworks do not enable training
models on resource-constrained devices like MCUs, small
CPUs, and FPGAs since executing the frameworks alone
requires hundreds of MB for storage, high memory-resource,
file system support, high clock speeds, multiple cores &
parallel execution units, etc. MCUs are resource-constrained
and can not afford to have the high specification required by
the modern ML frameworks [4, 5]. Also, since the memory
(SRAM, Flash, and EEPROM) of MCUs, which is the brain
for billions of edge devices deployed worldwide, is limited to
a few MB, an upper bound is imposed, thus restricting onboard
model training using high features and large trainsets. Hence,
our optimized training algorithms should also be capable of
un-restricting this upper bound to enable utilizing the full n-
samples of the dataset during onboard model training.

To enable MCU-based IoT edge devices to self learn/train
(offline) after their deployment, without restrictions, using the
full n-samples of live IoT use-case data, we provide ML-
MCU and open-sourced its implementation 1. To the best
of our knowledge, our work is one of the few recent novel
approaches enabling a model’s training tasks on MCUs. Our
main contributions in this paper are as follows:

• We provide an algorithm named Optimised-Stochastic
Gradient Descent (Opt-SGD) as a part of our ML-MCU
framework to enable high performance, resource-friendly
binary classifiers training on small edge MCUs. Our
method combines benefits from both Gradient Descent

1The C++ implementation of ML-MCU is available at: https://github.com/
bharathsudharsan/ML-MCU.

https://orcid.org/0000-0001-5906-113X
https://orcid.org/0000-0001-5790-050X
https://orcid.org/0000-0002-0674-2131
https://github.com/bharathsudharsan/ML-MCU
https://github.com/bharathsudharsan/ML-MCU

2

(GD) and Stochastic Gradient Descent (SGD) thus, in-
heriting the stability of GD while retaining the work-
efficiency of SGD.

• We provide an algorithm named Optimized One-Versus-
One (Opt-OVO) as a part of our ML-MCU. To the best
of our knowledge, this is the first novel algorithm to
enable multi-class classifiers training on MCUs. Our Opt-
OVO archives reduced computation by identifying and
removing base classifiers that lack significant contribu-
tions to the overall multi-class classification result. For
further efficiency improvement, we use our Opt-SGD
method inside Opt-OVO for training the � number of base
learners that decompose one multi-class problem into
multiple binary problems. We also provide the flexibility
for users to replace our Opt-SGD method with a base
learner method of their choice, i.e., SVM, LDA, etc.

• We designed both our algorithms to be capable of training
classifiers incrementally, thus enabling edge devices to
self-learn utilizing the full n-samples of high-dimensional
IoT use case data. When updating/re-training the existing
model with a new set of data, our algorithms do not
require the previous training data because it is capable
of updating the former version model without erasing the
information it learned from the previous datasets.

Outline. The rest of the paper is organized as follows. Section
II presents the ML-MCU framework that contains the Opt-
SGD and Opt-OVO algorithms. In Section III, we perform an
extensive evaluation of the framework algorithms. Section IV
briefs the related studies. Section V concludes the paper with
an outline of future directions.

II. ML-MCU FRAMEWORK

Here we present our ML-MCU framework, which enables
training ML classifiers directly on MCU boards. When users
want their edge devices to learn from the new data patterns
it sees after deployment, they just need to use any of our
framework’s algorithms that we present in the upcoming
sections 2. In Fig. 1, we show our ML-MCU framework.
In such an online, incremental training setup, to facilitate
feeding the live data stream directly to the Opt-SGD or Opt-
OVO framework algorithms, we generate data chunks from the
data stream then provide it to the algorithm during training
and evaluation. This additional step is mandatory since the
computation process (classifier training) is slower than the
speed of the data stream, which might lead to data loss (no
buffer/cache memory on MCUs to compensate for the delay).
To better understand the need for training models using ML-
MCU on IoT edge devices, in the following, we present two
use case scenarios.
Self-learning HVACs for superior thermal comfort. Cur-
rently, HVACs in smart buildings control their internal en-
vironment using a standard HVAC control strategy. In most
cases, such a standard/one-size-fits-all strategy fails to provide
a superior level of thermal comfort for people because every

2Refer to our Edge2Train work [2] for details on how to fuse ML-
MCU framework algorithms with the device’s IoT application/program for
improving edge analytic results by training using the evolving real-world data.

Fig. 1. ML-MCU framework to train ML classifiers on MCUs.

building/infrastructure has differences (e.g., location, size of
a building, its thermal confinement, etc.). In this scenario, if
the HVAC control edge devices are equipped with any of our
training algorithms, they can learn the best strategy (offline) to
perform tailored control of the HVAC system for any building
types, eliminating the need to find and set distinct HVAC
control strategies for each building, in order to provide the
desired thermal comfort for people.

Providing sensitive medical data for research. The data
required for most researches are sensitive in nature, as it
revolves around a private individual. Currently, privacy regula-
tions restrict sending sensitive yet valuable medical data from
hospitals and imaging centers to biological research conduct-
ing pharmaceutical companies. When the resource-constrained
medical devices like insulin-delivery devices, electric steam
sterilizers, BP apparatus, etc., are equipped with any of ML-
MCU algorithms, they will become capable of training offline
using the sensitive medical data, even without depending on
the hospital’s local servers. After training, we can extract

3

the weights (learned information) of the trained models from
multiple similar devices without exposing the data and send
it to research firms (securely via https) without voiding
the privacy regulations. This method of transmitting trained
models (knowledge gained from distributed data) instead of
the actual data fuels fine element analysis at various stages
of drug development, from identifying target molecules to
recruiting patients for clinical trials by providing the much-
needed sensitive data. Also, enables manufacturers to know
their device field performance, perform analysis for early
warnings, etc.

A. Opt-SGD for Training Binary Classifiers on MCUs

In this section, we provide our Opt-SGD algorithm to enable
training binary classifiers directly on MCUs.

1) Background and Setup: Here, we first brief the core
concept of the popular GD and SGD, then the setup. We view
the optimization method to enable binary classifier training on
edge devices as a loss minimization problem with the form,

min
G∈R3

, where 5 (G) = 1
=

=∑
8=1

58 (G) , (1)

Where, 3 is the number of features, = is the number of samples
and 58 (G) is the loss for sample 8. Here, we seek to find a
predictor G ∈ R3 minimizing the loss 5 (G). In our ML model
training scenarios, this = is very large and we consider the
new incoming data patterns as the local dataset,

� =

{
X = {G (0) , G (1) , . . . , G (=) } where G (=) ∈ R=

Y = {H (0) , H (1) , . . . , H (=) } where H (=) ∈ {0, 1} ,
(2)

To solve the problem in Eqn (1), given the model’s parameters
G: (e.g. weights of a classier), where G: ∈ R3 , the existing GD
method sets:

G:+1 = G: − Δ 5 ′(G:) , (3)

Where Δ is the stepsize and 5 ′(G:) is the gradient of 5 at
G: . To compute 5 ′(G:) (the full gradient), the batch method
computes the gradients of = functions. It is prohibitive to
calculate = for every iteration since most ML datasets are
large and the hardware we target to compute are MCUs, which
are highly memory-constrained. Using this method on MCUs
has other limitations such as; it leads to high computation
time and sometimes crashing the training process. It causes
memory overflows when data does not fit within the MCU’s
SRAM. Finally, after training, batch methods do not allow
online model updations, i.e., using new data on-the-fly.

SGD method addresses these limitations by computing the
parameter’s gradient only using a single or a few data fields
(uniformly picks random 8’s) from the dataset. The SGD
update is given by,

G:+1 = G: − Δ 5 ′8 (G:) , (4)

Using this will reduce the computation for each iteration by =
factor since � (5 ′

8
(G:)) = 5 ′(G:). To summarise, batch meth-

ods, over the same dataset, perform redundant computations by
recomputing gradients before updating each parameter, which
is very expensive on MCUs. To eliminate this redundancy

Algorithm 1 Opt-SGD to train binary classifiers on MCUs.
1: Opt-SGD Parameters: max: Maximum number of

stochastic steps every epoch, Δ: Step size, and i: Con-
vexity constant for 5 .

2: for s = 0, 1, 2, . . . , do
3: 6B ← 1

=

∑=
8=1 5

′
8
(GB).

4: HB,0 ← GB .
5: Let CB ← C with probability (1−Δ)

<0G−C

f
. where C = 0 to

<0G.
6: for C = 0 to CB − 1 do
7: Pick 8 ∈ 1, 2, . . . , =, uniformly at random.
8: HB,C+1 ← HB,C − Δ(6B + 5 ′8 (HB,C) − 5 ′8 (GB).
9: end for

10: GB+1 ← HB,CB .
11: end for

SGD performs one update at a time, resulting in higher
learning speeds.

2) Opt-SGD Algorithm: To improve thus briefed existing
GD, we need to reduce the gradient computation costs. For
existing SGD, we need to reduce the stochastic gradient’s
variance. In the rest of this section, we present our Opt-
SGD, which combines benefits from both GD and SGD,
thus inheriting the stability of GD while retaining the work-
efficiency of SGD. We present our Opt-SGD in Algorithm 1
that users can use to enable high performing, resource-friendly
binary classifiers training on small edge MCUs. During IoT
application design, the users have to set the OptSGD parame-
ters, stepsize Δ and a constant <0G for limiting the number of
stochastic gradients computed for every epoch. We recommend
users to experiment training using our method with various Δs
and select the value corresponding to the highest performance
for their use-cases. In Algorithm 1, to make the best use of
datasets, we use the concept of epochs (one pass over the
dataset), where we shuffle the dataset in every epoch to prevent
cycles. In our algorithm, the outer for loop is indexed by epoch
counter B and the inner loop is indexed by C. In every epoch
B, we first compute 6B , which is the full gradient of 5 at GB .
In every step, a random CB ∈ [1, <0G] number of steps are
produced using a geometric law given below:

f =

<0G∑
C=1
(1 − Δ)<0G−C . (5)

We can compute one stochastic gradient for every single
inner for iteration, i.e., 5 ′

8
(HB,C) at the cost of storing 5 ′

8
(GB),

where 8 = 1, 2, . . . , =. But as mentioned, since = is very
large for ML datasets, it is not possible to store on MCUs
memory. Hence we load the data in batches and compute
many stochastic gradient. In the next step of the algorithm, we
subtract the stochastic gradient 5 ′

8
(GB) from 6B and 5 ′

8
(HB,C) is

added to 6B to ensure the expectation is w.r.t 8 (the random
variable),

� (6B + 5 ′8 (HB,C) − 5 ′8 (GB)) = 5 ′(HB,C) . (6)

Hence, our algorithm is a non-standard execution of the
traditional SGD. To the best of our knowledge, Opt-SGD is

4

one of the few recent novel approaches that offer a high per-
formance, resource-friendly method to enable model training
on MCUs.

3) Opt-SGD Results: Here, we provide the result of
our method, which is the contribution that enables high-
performance, resource-friendly training on MCUs. If function
5 from Eqn. 1 is convex, then Opt-SGD requires,

�F>A: = � 5 = ((= + 2=) log(1/`)) , (7)

Here, �F>A: is the complexity of work, which is the measure
of the total number of executions of stochastic gradient and
also the executions of the total number of full gradient rounds.
= is the number of input samples, 2= = �/i is the condition
number, where i is the convexity constant for 5 , and � > 0
is a constant. The Eqn. 7 can be explained as the work done
to produce an `-approximate solution. We obtained this result
by running our Opt-SGD Algorithm 1 with the stepsize Δ =
� 5 = (1/�), epoch B = � 5 = (;>6(1/`)), the value of epoch is
the number of full gradient executions, and <0G = � 5 = (2=),
the value of <0G is roughly equal to the number of stochastic
gradient executions in one epoch.

In the remainder of this section, we implement our Opt-
SGD and run an experiment to compare its performance
with GD and SGD. In a binary setting, using a zero mean,
symmetric covariance Gaussian distribution, we generate data
points ranging from 102 to 106, which are of the form shown
in Eqn. 2. Here, for each G (=) that is of feature dimension 64,
its class label H (=) is generated using a set of known weights.
After data generation, we pretend to forget the used weights
because our objective is to minimize the objective function,
which also means fitting a binary classification model for the
generated data.

We use the generated data on each algorithm, including
ours. In Fig 2, we show the convergence behavior of each
algorithm for input size ranging from 102 to 106. Here, the Y-
axis represents the gap between optimality, which we measure
and plot after each epoch (one full pass through the dataset).
The convergence of GD and Opt-SGD is linear, whereas the
SGD method shows a sub-linear convergence pattern. GD is
the fastest when the data size is small. From analyzing Fig.
2. a to d, as the data size increases, the inefficiency of GD
increases since to update the model weights for each iteration,
the algorithm needs to pass through the entire dataset. As
expected, we noticed the convergence of SGD to be very slow,
whereas our Opt-SGD was capable to reach high precision
despite its stochastic characteristic. In Fig. 2. d, for a very
large train set, our method is much less efficient than SGD.
But in practical scenarios, we do not train using such large
data on MCUs, and anyways our ML-MCU framework initially
splits the data stream from IoT use-case into data chunks that
are small, for which our algorithm performs better than GD
(higher precision) and faster than SGD.

B. Opt-OVO for Training Multi-class Classifiers on MCUs

The majority of real-world IoT use cases such as health
monitoring, gesture recognition, and equipment condition
monitoring generate multi-class data. Training multi-class

Fig. 2. Comparing the convergence behavior of Opt-SGD with GD and SGD.

classifiers on MCUs, using any existing methods are currently
not feasible. In this section, we provide Opt-OVO, an algorithm
to enable training multi-class classifiers (to distinguish from
multiple possible outcomes) directly on MCUs. Opt-OVO is
superior to Opt-SGD since it applies for multi-class scenarios.
Still, we provided Opt-SGD since its binary classifier training
and inference time is much lesser than when using Opt-OVO.

1) Background: Here, we outline the state-of-the-art OVA
and OVO methods before providing our Opt-OVO, which we
propose as an optimized extension of the OVO method to
enable multi-class classifier training on MCUs.

To provide an MCU-executable multi-classifier training
method, we initially considered employing : − 1 classifiers
where each classifier separates points in a particular class �:
from points that do not belong to that class (solves a two-
class problem). This approach is the existing OVA classifier
where the algorithm finds :−1 classifiers, i.e., 51, 52, . . . , 5:−1.
To explain in detail, the binary classifier 51 classifies 1 from
{2, 3, . . . , :}, the next 52 classifies 2 from {1, 3, . . . , :}, finally
the 5:−1 classifies :−1 from {1, 2, . . . , :−2}. The input values
that are not classified to any classes belong to the : class.
There are multiple examples in the literature showing this
heuristic method ambiguously classifies regions of input space.
This means some input values get classified as they belong to
multiple classes. Another drawback is, it creates one model
for each class, so : − 1 models have to be stored in MCU’s
limited memory, restraining training using large datasets with
multiple classes.

To address these limitations, the existing OVO classifier,
introduces : (: − 1)/2 binary classifiers (one for every pos-
sible pair of classes), where it finds : (: − 1)/2 classifiers,
i.e., 5(1,2) , 5(1,3) , . . . , 5(:−1,:) . To explain in detail, the binary
classifier 5(1,2) classifies 1 from 2, the 5(1,3) classifies 1
from 3, finally the 5(:−1,:) classifies : − 1 from : . Here, the
classification result for each multi-class input is based on the
majority vote amongst the employed classifiers, or in other
words, the final result is the class with the highest votes.

5

2) Setup: We use a set of base classifiers, � to produce
classification results for a multi-class input G (=) . We store
outputs of the entire base classifiers in '�. In other words,
each classifier 18 ∈ � is a base learner that produces a
result ∈ {-1, +1}. Therefore, '� contains outcomes for all
the : (: −1)/2 binary classifiers over the entire training chunk
�CA shown in Fig. 1. We assign ; as the class indicator (label)
for our problem with : (: − 1)/2 classes. To understand our
setup better, '� contains the required information to find out
which class a given multi-class input G (=) belongs to and also
used to compute %(;8 | '�) (Probablity). For example, G (=)

and a set � with three base learners, it’s '� is of the form
'� (G (=)) = 〈−1, +1,−1〉. Using Bayes theorem,

%(H (=) = ;8 | '�) =
%('� | H (=) = ;8)%(H (=) = ;8)

%('�)
∝ %('� | H (=) = ;8)%(H (=) = ;8) ,

(8)

Here, since %('�) is common for all classes, it can be
suppressed. Hence considering this independence between all
the outcomes of base learners in � for a sample input G (=) ,
Eqn. 8 becomes

%(H (=) = ;8 | '�) ∝
∏
18 ∈�

%('18
�
| H (=) = ;8)%(H (=) = ;8) , (9)

Here, '18
�

is the classification result of a base learner 18 ∈
�. As shown, using this independence concept simplifies the
model, but it might not suite for all cases. Hence we relax it
and do not use Eqn. 9 in our algorithm design.

When the results of two base classifiers overlap within a
tight area for the same input data, we group such correlated
classifiers to reduce the number of base classifiers. Our Opt-
OVO algorithm finds groups of correlated base classifiers,
creates a Probability Table (PT) for each group. Hence, the
multi-class classification problem is modeled to be conditioned
to groups of correlated base classifiers �>AA2;0BB . Hence the
model in Eqn. 8 becomes,

%(H (=) = ;8 | '�, �>AA2;0BB) ∝ %(H (=) = ;8)
%('�, �>AA2;0BB | H (=) = ;8) .

(10)

We assume independence only among the groups of highly
correlated base learners 12>AA ⊂ �>AA2;0BB . Therefore, to find
the class of an input G (=) we use,

class(G (=)) = arg max
9

∏
12>AA ⊂�>AA2;0BB

%(H (=) = ; 9)

%('12>AA
�

, 12>AA | H (=) = ; 9) ,
(11)

Here '12>AA
�

is the outcome of all base learners that belong
to the group of highly correlated base classifiers 12>AA ⊂
�>AA2;0BB , for training data �CA . To find the groups of
correlated base classifiers �>AA2;0BB , we create a correlation
matrix �< to measures the level of correlation between two
base classifiers when classifying for a train chunk �CA .

3) Opt-OVO Algorithm: Here, we present our Opt-OVO,
which we propose as an optimized extension of the state-
of-the-art OVO method. From our analysis, we discovered
that when using existing OVO, the : (: − 1)/2 base learn-
ers/classifiers, for a few datasets, contain classifiers that lack

Algorithm 2 Opt-OVO with Opt-SGD based base learners to
incrementally train multi-class classifiers on MCUs.

1: Inputs: Train (�CA) & test (�C4) chunks of local dataset
� (Eqn. 2). Opt-SGD training method from Algorithm 1.

2: Output: Incrementally trained multi-class classifier.
3: for each : (: − 1)/2 base classifiers 18 ∈ � do
4: ">34;8 ← Train (�CA , 18 , Opt-SGD). Train 18 with
�CA using Opt-SGD method.

5: '8 ← Evaluate (�C4, ">34;8 , Opt-SGD). Evaluate
trained ">34;8 with �C4 using Opt-SGD.

6: end for
7: '� ←

⋃
'8 . Store all outcomes '8 of : (: − 1)/2 binary

base classifier 18 in '�.
8: Create a correlation matrix �< for '�.
9: Find groups of highly correlated base classifiers �>AA2;0BB

from �<.
10: Using '� create a PT for each highly correlated classifiers

groups 12>AA ⊂ �>AA2;0BB .
11: Classifier: Classify for any new G (=) by using thus ob-

tained set of base classifiers � and �>AA2;0BB in Eqn. 11.

significant contributions to the overall multi-class classification
result. This occurs when a classifier is already within a big
interdependent group. Hence, we provide a method, which is
a part of our Opt-OVO that identifies then removes the less
important base classifiers, thus improving the overall resource-
friendliness when executing on MCUs.

We present our Opt-OVO in Algorithm 2. Here, in Line 3-
6, all the : (: − 1)/2 base classifiers 18 belonging to � are
trained with the local data �CA (see Fig. 1) using our Opt-
SGD Algorithm 1. In the function in Line 4, we provide the
flexibility for users to replace our Opt-SGD method with the
base learner of their choice, i.e., SVM, LDA, etc. But we
use our Opt-SGD for its resource-friendly characteristics. In
Line 5, we evaluate all the thus trained base classifiers. Here,
each base classifiers 18 produce a binary output ∈ {−1, +1}
for each input vector G (=) . In Line 7, for all data in �C4, we
store outcomes of the : (: − 1)/2 base learners '8 in '�.
Next, in Line 8, we create a correlation matrix �< using the
output of base classifiers stored in '�. In Line 9, from �<,
we find �>AA2;0BB , which is the group of highly correlated
base classifiers. In Line 10, from the groups of this found
correlated base learners, we create a PT of each group to know
the joint probability of the outcome '�. These PTs provide
the joint probabilities of the outcomes '� and the groups of
correlated classifiers 12>AA ⊂ �>AA2;0BB when evaluating using
new/unseen data. In the final Line 11, we classify for any new
multi-class input G (=) by using the algorithm produced set of
base classifiers � and �>AA2;0BB in Eqn 11.

Next, we explain our method to find the groups of highly
correlated base classifiers �>AA2;0BB from correlation matrix
�<. For a multi-class training chunk �CA , we measure the
level of correlation between two base classifiers by considering
their binary classification result ∈ {−1, +1}, '8 , ' 9 . Where '8
& ' 9 ∈ '� are outcomes of base classifiers 18 & 1 9 and its

6

correlation matrix �< is given as,

�<(8, 9) =
1
#

������ ∑
∀G (=) ∈�CA

'8 (G (=))' 9 (G (=))

������ , (12)

Here, if both the base classifiers produce the same output for
all the data points in �CA , then the level of correlation between
them is one, the highest, so, '8 = ' 9 . In cases when their
outputs always don’t match '8 ≠ ' 9 , again their correlation is
one. Whereas if the base classifiers have half outputs matching
and rest not equal, then the correlation is zero. We use this
method in our Opt-OVO Algorithm 2 to group similar output
producing base binary classifiers.

In the remainder of this section, we briefly explain how
researchers and developers can use our ML-MCU algorithms
for enabling their IoT devices/products to perform on-the-fly
offline learning. During the IoT device programming phase
using Arduino IDE, Atmel Studio, Keil MDK, etc., our
algorithm implementation (code) needs to be fused with the
use-case IoT application. Then, when the labeled data fields
(generated by following the method from Edge2Train [2])
that correspond to the low accuracy inference performed are
passed to our algorithm function, it trains and updates the
current classifier version running on the IoT device with a
superior performance version. Our ML-MCU implementation
is also applicable to other self-learning settings where it can
locally train a model from scratch without needing cloud-
based ML training services or proprietary datasets. Here,
instead of passing only the data that correspond to the low
accuracy inference, the complete live data stream should be
cleaned, labeled, and passed to our algorithm function. An
example application of this self-learning setting can be A
coffee machine learning a person’s taste. Here, ML-MCU can
make a coffee machine learn the data patterns of temperature,
time, and material proportion when a person makes his best
coffees. When brewing new coffees, the machine can use this
knowledge to detect and alert when there is a considerable
deviation from the best coffee patterns. Thus, the machine can
ensure the person gets the coffee of his taste all the time.

III. EVALUATION

Here, we evaluate both the Opt-SGD and Opt-OVO al-
gorithms of our ML-MCU framework. For each algorithm,
we start the evaluation by first explaining the evaluation
setup, then for the selected datasets, using our algorithms,
we train models on the selected popular MCU boards, whose
specification is given in Table I. Next, we tabulate the obtained
results (training & unit inference time, model accuracy, and
memory requirements) and analyze them to summarize the
benefits of our methods. Finally, we compare our methods
with the existing results of other methods.

A. Datasets and Evaluation Procedure for Opt-SGD

For evaluation, we selected four datasets using which the
Opt-SGD algorithm trains binary classifiers on the selected
MCUs. The first dataset we chose is the Iris Flowers dataset3,

3https://archive.ics.uci.edu/ml/datasets/iris

TABLE I
SPECIFICATIONS OF MCUS CHOSEN TO EVALUATE ML-MCU.

Board or
MCU #

MCU &
Board Name

Specification

Bits SRAM Flash Clock
(MHz) FP

1 nRF52840
Adafruit Feather 32 256kB 1MB 64 X

2 STM32f103c8
Blue Pill 32 20kB 128kB 72 7

3 Generic ESP32 32 520kB 4MB 240 X

4 ATSAMD21G18
Adafruit METRO 32 32kB 256kB 48 7

which has the least feature dimension of 4 when comparing
with the other selected datasets. Here, we extract 50 positive
and 100 negative samples of Iris Setosa. Then using Opt-SGD,
we trained a binary classifier that distinguishes Iris Setosa
from other flowers based on the input features. The second
round of evaluations was performed using the Heart Disease
dataset 4. Here, after training, based on the input features,
the Opt-SGD trained classifier should be able to identify the
presence of heart disease in the patient. The third round of
evaluation was performed using the Breast Cancer dataset
5. Here we train a binary classifier that can find the class
names (malignant or benign) based on the input features. The
fourth round of evaluation was performed using the MNIST
Handwritten Digits dataset 6, which has the highest feature
dimension of 64. Here, we extracted data fields for digit 6,
with positive and negative samples. Then using Opt-SGD we
trained a binary classifier on MCUs, that distinguishes digit 6
from other digits, based on the input features.

B. On-board Binary Classifier Training & Inference using
Opt-SGD

We uploaded the Opt-SGD algorithm’s C++ implementation
on all boards from Table I. We then power on each board, con-
nect them to a PC via the serial port to feed the training data in
chunks, receive training time and classification accuracy from
MCUs. For all of the selected datasets, the first 70% of data
was used for training, the remaining 30% data for evaluation.
When we instruct the board to train, Opt-SGD iteratively loads
the data chunks and trains the classifier using its method from
section II-A. Next, we load the test set, infer using the trained
models to evaluate the trained classifiers. We tabulated thus
obtained results in Table II, using which we analyze the results
in the remainder of this section.

1) Training and Inference Time: From Table II, it is appar-
ent that, even for high dimensional Digits dataset, our method
achieves real-time unit inference, within a ms, even on the
slowest MCU 4. Although CPUs are faster, they cannot be
used as IoT edge devices because; they are ≈200x times more
expensive than MCUs, they have ≈10x bigger form factor,
and consume ≈7x time more energy to train the same models.
Since billions of edge devices are MCU-based, it is feasible
to train even at lesser speeds. Such offline training using Opt-
SGD reduces the hardware cost of edge devices since they

4https://archive.ics.uci.edu/ml/datasets/heart+Disease
5https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
6http://yann.lecun.com/exdb/mnist/

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
http://yann.lecun.com/exdb/mnist/

7

TABLE II
ON-BOARD BINARY CLASSIFIER TRAINING USING OPT-SGD: FLASH,

SRAM, AND TIME CONSUMED TO TRAIN & INFER ON VARIOUS MCUS.

MCU
#

Dataset
Dimension &

Size (No. of row)

Train
Time
(ms)

Accuracy
(%)

Inference
Time
(ms)

Flash & SRAM
Req (kB)

1

Iris Flowers
4, 150

Heart Disease
13, 212

Breast Cancer
Dataset
30, 567

Handwritten
Digits

64, 356

3
6

273
341

84.4
80.1
63.0
89.7

0.022
0.015
0.005
0.018

42.97, 8.79
53.63, 18.76

111.864, 77.32
134.90, 100.39

2 29
77

3837
3759

75.5
82.0
78.0
95.0

0.022
0.03
0.1
0.1

30.84, 6.24
40.832, 16.24
+33.9, +54.33
+56.95, +77.4

3 3
3

112
161

77.7
83.0
62.0
70.0

0.022
0.015
0.005
0.046

131.72, 17.38
228.84, 27.38

287.43, 241.73
310.46, 108.98

4 90
260

13806
14130

84.4
83.0
78.0
90.6

0.044
0.093
0.33
0.36

23.12, 7.21
35.73, 17.26

+32.6, +40.58
+56.4, +63.62

do not need a wireless module (4G or WiFi) to receive the
updated models from the cloud. Also when the data for which
the model has to be updated is small, then it does not require
data center GPUs for training. It can rather be trained on the
edge, using our framework, without compromising accuracy.

2) Accuracy: From Table II, the highest onboard classi-
fication accuracy is 84.4% for the Iris, 83.0 % for Heart
Disease, 78.0 % for Breast Cancer, and 95.0% for Digits
dataset. Although the training time on MCUs is higher than
CPUs, our Opt-SGD trained models produce classification
accuracies close to those of Python scikit-learn trained models.
Unlike other batch methods, since Opt-SGD can incrementally
load data and train models, we expect to achieve accuracies
close to models trained in high-resource setups, even when
experimenting with other larger datasets.

3) Flash & SRAM Requirements: The run-time variables
generated during training need to be stored within the limited
SRAM of MCUs. From Table I, the popular open-source
boards we chose have only 20 kB to a max of 520 kB
of SRAM. We provide the Flash and SRAM requirements
calculated by the compiler for target MCUs for all boards
in Table II. Here, for MCU3 the largest Digits dataset, in-
cluding the Opt-SGD algorithm consumes only 7.7 % Flash
and 20.9 % SRAM. Whereas for MCUs 2 & 5, both the
Flash and SRAM overflowed (exceed MCUs capacity) for
both the Breast Cancer and Digits datasets. Hence, in such
scenarios with large volume and high dimensional data, the
upper bound imposed by MCUs memory-constraints restricts
training models on such small MCUs. Since we designed Opt-
SGD to be capable of incrementally training a model, even on
small MCUs, with only KBs of memory, we can incrementally
load n-samples of high-dimensional data, which might range
from a few MB to hundreds of MBs, then perform the required
model training. Hence, even on the lowest-spec MCU4, we

were able to load both the Breast Cancer and Digits datasets
incrementally and train in 13.8 ms and 14.1 ms respectively.

From the analysis of Opt-SGD’s results presented in this
section, it is apparent that developers can leverage Opt-SGD
to train models offline using real-time data from any of their
use cases on such small MCU boards. We also estimate that
using Opt-SGD, on-board binary classifier training can be per-
formed on thousands of open-source MCU boards supported
by Arduino IDE, which have limited Flash, SRAM, and no
floating-point support.

C. Comparing Opt-SGD with Other Methods

The work complexity of our Opt-SGD, which is the mea-
sured number of stochastic gradient executions required to
produce an `-solution was presented in Eqn 7. Our Eqn is
similar to EMGD results [6], where the performance (work
complexity) of EMGD is given as � 5 = ((= + 22

=) log(1/`)).
This Eqn clearly shows that their method achieves a quadratic
dependence on the condition number 2= instead of linear
dependence, and also their results hold with high probabil-
ity. Similarly, the complexity of the next related stochastic
coordinate descent (RCDC) method was also investigated in
a high probability setup [7]. The SDCA [8] method has work
complexity similar to our Eqn 7. But the condition number
2= in their method is complex than ours since it requires
complete knowledge of the convexity constant i of 5 to
run their algorithm. We found SAG [9] as the most related
method to compare with since it achieves linear convergence
only using the stochastic gradient executions (similar to our
method). During the close comparison, our method was faster
since SAG updates the test points after each execution of a
stochastic gradient. Whereas our Opt-SGD does not always
update during the evaluation of the full gradient. Hence, our
method needs lesser time to perform the same amount of
passes through data chunks than SAG. Another downside of
SAG is, it consumes additional space in MCUs memory to
store = gradients, which is necessary for their method.

In Section II-A3, we compared the convergence behavior
of Opt-SGD with GD and SGD. From dataset to dataset, we
expect the performance gap between Opt-SGD and related
methods to vary. So, to present a fine-grained comparison,
we need to conduct computational experiments. Hence, in
future work, we shall run experiments, where we make the
GD, SGD, SAG, SDCA, RCDC algorithms and Opt-SGD to
solve the same least-squares problem by iterative refinement.
Using the obtained results, we shall perform a fine-grained
comparison and also compare the practical performance with
their theoretical bound on convergence in expectations.

D. Datasets and Evaluation Procedure for Opt-OVO

For evaluation, we selected two multi-class datasets using
which the Opt-OVO algorithm trains multi-class classifiers on
the MCUs from Table I. For the first evaluation round, we
use the same 64 features Handwritten Digits dataset, but in
a different setup. Here, we built 3 train sets of various class
counts and sizes. For the first train set, we extract data fields
corresponding to the handwritten digits 0 to 2 to build a 3

8

Fig. 3. Training multi-class classifiers on MCUs using Opt-OVO: Comparing training set size vs training time & accuracy for a. MNIST Digits dataset; train
set size from 0 to 1476 and class count from 3 to 10. b. Australian Sign Language signs dataset; train set size from 0 to 1250 and class count from 3 to 50.

class train set of size 432. The second train set is of class
count 5 (digits 0 to 4) and size 720. The last train set of size
1467 contains 10 classes (digits 0 to 9). In all the 3 train sets,
each class is of the size 144.

The second round of evaluation was performed using the 22
features Australian Sign Language signs dataset 7. Here, we
built 8 train sets of different class counts and sizes. For the
first train set, we extract data fields corresponding to the alive,
all and answer Auslan signs. Hence, the first set is of class
count 3 and size 75. The last set is of class count 50 and size
1250 since it contains data of 50 Auslan signs varying from
alive to more. The in-between train sets contain class counts
ranging from 3 to 50, with their corresponding train set size
ranging from 0 to 1250. In all the 8 train sets, each class is
of the size 25.

For both the datasets, as explained, we purposefully built
train sets of different class counts and sizes in order to
plot and investigate (i) the train set size vs training time &
accuracy. (ii) the class size vs onboard inference time. We
built a test set for each train set that contains unseen data
fields from the corresponding classes in the respective train set
and data fields from the remaining classes. We use these test
sets to compute the accuracy of classifiers trained on MCUs
by Opt-OVO. For brevity purposes, we do not present the
classifier performance in confusion matrices. If users require

7https://archive.ics.uci.edu/ml/datasets/Australian+Sign+Language+signs+
(High+Quality)

performance visualization in a table layout, they can enable
the confusion matrix function we provide in the repository.

E. On-board Multi-class Classifier Training & Inference using
Opt-OVO

We follow the same procedure explained in section III-B,
starting from uploading the algorithm, until loading the test set
and evaluating the trained classifiers. Here, the difference is,
we replace the Opt-SGD with the Opt-OVO algorithm, then
use the multi-class data instead of binary. We illustrate the
obtained training results in the form of graphs in Fig. 3, which
we use to analyze how the training time and accuracy vary w.r.t
to the train set size. We do not analyze the Flash and SRAM
requirements like in section III-B3 because the datasets we use
here exceeded the available onboard memory of all the selected
MCUs. But due to the incremental model training design of
our Opt-OVO, it was able to incrementally load both the high-
dimensional, large volume, multi-class datasets via Serial port,
then perform the required training and evaluation.

1) Training Set Size vs Training Time & Accuracy: The Fig.
3. a & b shows that even on the slowest MCU 4, our Opt-OVO
was able to train using a 10 class, 1476 size, 64 dimension
Digits dataset in 29.6 sec and could train in 7.6 sec using the
15 class, 375 size, 22 features Australian Sign dataset. The
same figures also show that the fastest MCU3 trained in 0.4
sec for Digits and in 4.7 sec using the 50 class, 1250 size
Sign dataset. In these figures, the gap in the Y-axis (base-10
log scale) is the difference in the training time between the

https://archive.ics.uci.edu/ml/datasets/Australian+Sign+Language+signs+(High+Quality)
https://archive.ics.uci.edu/ml/datasets/Australian+Sign+Language+signs+(High+Quality)

9

Fig. 4. Inferring for multi-class data on MCUs: Class size (3 to 50) vs
inference time of the onboard Opt-OVO trained classifiers.

selected MCUs, for fixed class counts. For a clearer view, we
marked this gap in seconds. In Fig. 3. b, at the individual
MCU level, we show how the training time varies when the
class count and train set size increases. In Fig 3, the right
side Y-axis is the MCU trained multi-class classifier accuracy.
We are not presenting the explicit performance comparing of
the classifiers trained using our Opt-OVO, with the classifiers
trained on high resource setups using Python scikit-learn since
we achieve similar accuracies when experimenting using the
same setup and datasets. Also, we are not comparing the
training time on MCUs with CPUs and edge GPUs since they
have ≈ 106x times higher hardware resources. Using Opt-OVO,
users can increase the class count beyond 50 and train without
stability issues when they use the emerging better resource
MCUs with inbuilt FPU, KPU, FFT hardware capabilities.

2) Class Size vs Inference Time: To analyze the impact
of increasing class count on inference time, in Fig. 4. a, we
feed the Opt-OVO trained models a multi-class data (size one)
with class count ranging from 0 to 10 and from 0 to 50 in
Fig. 4. b. For a clearer view, we label the plotted points with
its corresponding values (unit inference time) in seconds. For
statistical validation, the plotted inference time corresponds
to the average of 5 runs. It is apparent that, even for high
dimensional Digits dataset, our method achieves real-time unit
inference, 11.8 ms, even on the slowest MCU4. The fastest
MCU3 was able to infer for a 50 class input in 6.2 ms. In
Fig. 4. b, when the class count increased from 15 to 25, the
inference time increased by 0.9 ms, from 25 to 40 by 2.4ms
and 40 to 50 by 2.2 ms, showing an almost linear relationship.
Overall, it is apparent that our Opt-OVO trained classifiers
perform onboard unit inference for multi-class data in super
real-time, within a second, across various MCUs.

F. Comparing Opt-OVO with Other Methods

Here, we first brief a method to find the computational
requirement of the existing OVA and OVO methods. We then
use it on the related papers to investigate their optimization
efficiency (computational simplification). In this method, we
consider � as the number of base learners that decompose one
multi-class problem into multiple binary problems, #� as the
size of �, the count of classes in the given multi-class problem
as � and)2 is its respective time complexity.

For OVA, #� = � =)2 (�). Here, the time complexity
is)2 (�) since each base learner requires positive examples
of the respective class and negative examples of the rest
of the classes. During testing, OVA needs)2 (�) binary
classifications for each inputs tested. In the case of OVO,

#� = (
�

2) =)2 (�
2). Here, the time complexity is)2 (�2)

since each base learner (binary classifier), each time requires
positive and negative samples of the two classes that are
considered for training. During testing, OVO needs)2 (�2)
binary classifications for each inputs tested. OVO becomes
computationally challenging for high � values.

In [10], authors have combined OVA and OVO to improve
the overall classification. But their approach uses #� =

(�2) + � =)2
(
�2) base classifiers during training. The

method in [11] is a combination of classifiers, where the
output of each base classifier is a probability of the pattern
that belongs to the given class. Here, (� (� + 1))/2 =)2 (�2)
base classisiers are required. In [12], a dynamic programming
approach was used to design a class removal sequence. Their
method only uses #� = � − 1 base classifiers during testing,
but the class removal policy is very expensive to run on MCUs.

Our Opt-OVO method produces a higher level of optimiza-
tion than the above methods since it can intelligently identify
and remove base classifiers that lack significant contributions
to the overall multi-class classification result, enabling training
up to 50 class data on highly resource-constrained MCUs.
Additionally, our method has benefits such as; it does not
depend on the number of selected base classifiers, and it also
provides the flexibility for users to use any base learner method
of their choice, i.e., SVM, LDA, etc.

IV. RELATED WORK

Since our ML-MCU enables incremental binary and multi-
class classifier training on MCU-based tiny edge devices, for
comprehensiveness, our state-of-the-art review consists of the
two following subsections:

A. Machine Learning on Microcontrollers

Here, we classify the existing literature into two broad
categories: training models on MCUs and resource-efficient
model inference on MCUs.

Training ML models on MCUs is an emerging area of
research [13, 14]. The existing frameworks like Tensorflow
Micro, Keras, Edge-ML, Open-NN, etc. do not yet provide
methods to enable training models on MCUs. Currently, to
achieve a resource-efficient training, authors have optimized
existing algorithms to run on various resource-constrained
setups. In [15], a Gaussian Mixture Model was executed on
an embedded board aiming to re-train an ML algorithm at
the edge level. Articles [16, 17] present optimized methods
to enable training models on smartphones. Multiple Federated
Learning algorithms [18, 19] enable fine-tuning global models
offline, at the edge level using local datasets. SEFR, a low-
power classifier [20] is the most recent work to enable a binary
classifier training and inference on MCUs. However, thus

10

outlined and other impactful algorithms [21, 22] are tailored
for specific applications and do not enable MCU-based IoT
edge devices to self learn/train from a wide range of IoT use-
case data. Our ML-MCU’s algorithms are superior to state-of-
the-art methods since they can incrementally train both binary
and multi-class classifiers iteratively, enabling edge MCUs to
continuously improve themselves for better analytics results.

In the category of algorithms for efficient model inference
on MCUs, there is a set of articles proposing compression
techniques to reduce the size of the model’s weights using
quantization and pruning. CONDENSA [23], a system for
users to compose simple operators to build complex model
compression strategies. Two new compression methods jointly
leverage weight quantization and the distillation of larger
networks was proposed in [24]. Authors in [22] have im-
plemented a tree-based algorithm for efficient prediction in
milliseconds even on slow MCUs. Similarly, ProtoNN [25], k-
Nearest Neighbor inspired algorithm with several orders lower
storage and prediction complexity addresses the problem of
real-time and accurate prediction on resource-scarce devices.
In [23, 24, 26, 27] and other articles proposing compression
[28, 29] and optimization [30, 31] methods, the models are
trained in high resource setups, then a multi-stage MCU-aware
optimisation (tailored) is performed before deployment.

Similar to the above works, even our framework algorithms
can infer in super real-time on MCUs. For example, the MCU3
used Opt-OVO to perform onboard unit inference for a 50
class data sample in super real-time of 6.2 ms (in Section
III-E). We do not attempt to outperform the state-of-the-art
inference methods since they are tailored to be application-
specific, whereas our ML-MCU algorithms are capable to train
and infer using real-time data from any IoT use-cases.

B. Optimizing the SGD and OVO Methods
SGD is an iterative method for optimizing an objective

function with suitable smoothness properties. The Random
Coordinate Descent for Composite functions (RCDC) method
[7] can be directly applied to the equation of a loss mini-
mization problems or its dual version. Applying an RCDC to
the dual formulation is known as Stochastic Dual Coordinate
Ascent (SDCA) [8]. The analysis of SDCA in their paper
shows that it is comparable or better than SGD. Article [32]
study parallel stochastic coordinate descent method where they
show block coordinate descent methods when accelerated by
parallelization can benefit a type of minimization problem
used in their paper. Stochastic Average Gradient (SAG) [9]
is the first method relevant to SGD, that is different from the
above coordinate descent approaches while exhibiting linear
convergence. The Epoch Mixed Gradient Descent (EMGD) [6]
is similar to the SAG, SDCA, and our method, but it achieves
a quadratic dependence on the condition number instead of
linear dependence. Articles [33, 34] combine GD and SGD,
vary sample size to achieve reduce variance. However, the
benefits obtained as a result of their realization is lesser than
the above recent methods. Classical paper [35] on stochastic
approximation methods is partially related to our work.

From the literature that aims to optimize the popular OVA
and OVO methods, we select and brief the papers that are re-

lated to our approach. In [10], authors have combined OVA and
OVO to improve the overall classification. But their approach
uses +� extra classifiers during training. The method in [11], a
combination of classifiers use �2 extra base classifiers. In [36],
a class embeddings method to choose the best base classifiers
was presented. In [12], a dynamic programming approach
was used to design a class removal sequence. Although their
method uses fewer (�−1) base classifiers during testing, their
class removal policy is very expensive for MCUs. Since the
existing methods improve the OVA and OVO at the cost of
adding extra base classifiers, it is not feasible to implement
them for training models on MCUs.

V. CONCLUSION: DISCUSSION AND FUTURE WORK

We presented ML-MCU, a framework with resource-friendly
binary and multi-class classifier training algorithms to enable
billions of MCU-based IoT edge devices to self learn/train
(offline) on-the-fly, using live data from a wide range of IoT
use-cases. Thus, the devices equipped with any of our algo-
rithms can self-learn to perform analytics for any target IoT
use cases without requiring a historical dataset. As explained
with evaluations, the few most exciting benefits are; the
incremental training characteristics of our algorithms enabled
loading the full n-samples of large volume high dimensional
data without memory overflow issues, also it incrementally
updated the trained models without losing any information
it learned from the old data streams. Next, models trained
on MCUs using ML-MCU produced accuracies close to ML
framework trained models on high resource setups. Finally,
we achieved a significant level of optimization compared to
existing methods, thus facilitated training using 50 class data
on MCUs and then performed unit inference in super real-time.

Utilizing the open-sourced implementation of ML-MCU al-
gorithms, researchers and developers can start to practice split-
learning, federated learning, centralized learning, distributed
ensemble learning by involving even the most resource-
constrained MCU-based IoT devices in complex learning
tasks. For example, in a sensitive medical data collection use-
case, without disturbing the routine of resource-constrained
medical device (such as electric steam sterilizers, BP appa-
ratus, etc.), our framework algorithms can locally learn (data
does not leave the device) using the sensitive patient data,
then share only the learned parameters to the hospital/research
center servers. Since even the light ML frameworks ver-
sions like TensorFLow Lite cannot be used in such use-
cases involving resource-constrained MCU-based devices, we
believe ML-MCU to provide the basis for a broad-spectrum of
decentralized and collaborative learning applications.

We see the lack of real-world experimental evaluation as the
major limitation. Also, the framework behavior and its on-
device self-learning performance need to be investigated by
deploying the implementation (code) of the framework algo-
rithms on real-world devices. Hence in future work, we plan to;
(i) Make a generic IoT device autonomously learn to perform
condition monitoring of an industrial paint compressor. Here,
the task of ML-MCU is to make the device incrementally learn
by monitoring the contextual sensor data corresponding to

11

regular vibration patterns from the pump’s crosshead, cylinder
and frame. Then, generate alerts using the learned knowledge
if anomaly patterns are predicted or detected; (ii) Make the
energy/power meters autonomously learn the usual residential
electricity consumption patterns and raise alerts in the event of
unusual usage or overconsumption. Thus, ML-MCU can make
the power meters self-learn to perform offline analytics that
can reduce bills, detect leaks, etc.

ACKNOWLEDGEMENT

This publication has emanated from research supported in
part by a research grant from Science Foundation Ireland (SFI)
under Grant Number SFI/16/RC/3918 (Confirm) and also by
a research grant from Science Foundation Ireland (SFI) under
Grant Number SFI/12/RC/2289_P2 (Insight), with both grants
co-funded by the European Regional Development Fund.

REFERENCES

[1] C. Savaglio and G. Fortino, “A simulation-driven methodology for iot
data mining based on edge computing,” ACM Transactions on Internet
Technology (TOIT), vol. 21, no. 2, pp. 1–22, 2021.

[2] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Edge2train: A framework to
train machine learning models (svms) on resource-constrained iot edge
devices,” in International Conference on the Internet of Things, 2020.

[3] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A
dynamic service migration mechanism in edge cognitive computing,”
ACM Transactions on Internet Technology (TOIT), vol. 19, no. 2, pp.
1–15, 2019.

[4] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Rce-nn: a five-stage pipeline
to execute neural networks (cnns) on resource-constrained iot edge
devices,” in Proceedings of the 10th International Conference on the
Internet of Things, 2020, pp. 1–8.

[5] B. Sudharsan, P. Patel, J. G. Breslin, and M. I. Ali, “Ultra-fast machine
learning classifier execution on iot devices without sram consumption,”
in IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PerCom Workshops), 2021, pp. 316–319.

[6] L. Zhang, M. Mahdavi, and R. Jin, “Linear convergence with condition
number independent access of full gradients,” in Advances in Neural
Information Processing Systems, 2013, pp. 980–988.

[7] P. Richtárik and M. Takáč, “Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function,”
Mathematical Programming, vol. 144, no. 1-2, pp. 1–38, 2014.

[8] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan,
“A dual coordinate descent method for large-scale linear svm,” in
Proceedings of the 25th international conference on Machine learning.

[9] M. Schmidt, N. L. Roux, and F. Bach, “Minimizing finite sums with the
stochastic average gradient,” 2013.

[10] N. Garcia-Pedrajas and D. Ortiz-Boyer, “Improving multiclass pattern
recognition by the combination of two strategies,” IEEE Transactions
on Pattern Analysis and Machine Intelligence.

[11] M. Moreira and E. Mayoraz, “Improved pairwise coupling classification
with correcting classifiers,” in ECML, 1998.

[12] J. Manikandan and B. Venkataramani, “Design of a modified one-
against-all svm classifier,” in 2009 IEEE international conference on
systems, man and cybernetics. IEEE, 2009, pp. 1869–1874.

[13] G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of things as
system of systems: A review of methodologies, frameworks, platforms,
and tools,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2020.

[14] B. Sudharsan and P. Patel, “Machine learning meets internet of things:
From theory to practice,” The European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), 2021.

[15] J. Lee, M. Stanley, A. Spanias, and C. Tepedelenlioglu, “Integrating
machine learning in embedded sensor systems for internet-of-things
applications,” in IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), 2016, pp. 290–294.

[16] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger,
“Condensenet: An efficient densenet using learned group convolutions,”
2017. [Online]. Available: http://arxiv.org/abs/1711.09224

[17] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet:
Platform-aware neural architecture search for mobile,” CoRR, vol. abs /
1807.11626, 2018. [Online]. Available: http://arxiv.org/abs/1807.11626

[18] C. Briggs, Z. Fan, and P. Andras, “A review of privacy preserving feder-
ated learning for private iot analytics,” arXiv preprint arXiv:2004.11794.

[19] Q. Li, Z. Wen, and B. He, “Federated learning systems: Vision,
hype and reality for data privacy and protection,” CoRR, vol. abs /
1907.09693, 2019. [Online]. Available: http://arxiv.org/abs/1907.09693

[20] H. Keshavarz, M. S. Abadeh, and R. Rawassizadeh, “Sefr: A fast
linear-time classifier for ultra-low power devices,” arXiv preprint
arXiv:2006.04620, 2020.

[21] G. Kamath, P. Agnihotri, M. Valero, K. Sarker, and W. Song, “Pushing
analytics to the edge,” in IEEE Global Communications Conference,
GLOBECOM, 2016.

[22] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine
learning in 2 KB RAM for the internet of things,” in Proceedings of
the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, ser. Proceedings of Machine
Learning Research, vol. 70. PMLR, 2017, pp. 1935–1944. [Online].
Available: http://proceedings.mlr.press/v70/kumar17a.html

[23] V. Joseph, S. Muralidharan, A. Garg, M. Garland, and G. Gopalakrish-
nan, “A programmable approach to model compression,” arXiv preprint
arXiv:1911.02497, 2019.

[24] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” CoRR, vol. abs/1802.05668, 2018.
[Online]. Available: http://arxiv.org/abs/1802.05668

[25] C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape, A. Ku-
mar, S. Goyal, R. Udupa, M. Varma, and P. Jain, “Protonn: Compressed
and accurate knn for resource-scarce devices,” in Proceedings of the
34th International Conference on Machine Learning.

[26] B. Sudharsan, P. Patel, J. G. Breslin, and M. I. Ali, “Sram optimized
porting and execution of machine learning classifiers on mcu-based
iot devices: demo abstract,” in Proceedings of the ACM/IEEE 12th
International Conference on Cyber-Physical Systems (ICCPS), 2021.

[27] B. Sudharsan, P. Patel, A. Wahid, M. Yahya, J. G. Breslin, and M. I.
Ali, “Porting and execution of anomalies detection models on embedded
systems in iot: Demo abstract,” in International Conference on Internet-
of-Things Design and Implementation (IoTDI), 2021.

[28] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[29] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approxi-
mation of convolutional neural networks,” CoRR, vol. abs/1604.03168,
2016. [Online]. Available: http://arxiv.org/abs/1604.03168

[30] S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep
learning layers for constrained resource inference on wearables,” in
Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems. [Online]. Available: https://doi.org/10.1145/2994551.2994564

[31] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learn-
ing in 2 KB RAM for the internet of things,” in Proceedings of the 34th
International Conference on Machine Learning, ICML 2017.

[32] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for big
data optimization,” Mathematical Programming.

[33] M. P. Friedlander and M. Schmidt, “Hybrid deterministic-stochastic
methods for data fitting,” SIAM Journal on Scientific Computing.

[34] G. Deng and M. C. Ferris, “Variable-number sample-path optimization,”
Mathematical Programming, vol. 117, no. 1-2, pp. 81–109, 2009.

[35] K. Marti and E. Fuchs, “Rates of convergence of semi-stochastic
approximation procedures for solving stochastic optimization problems,”
Optimization, vol. 17, no. 2, pp. 243–265, 1986.

[36] V. Athitsos, A. Stefan, Q. Yuan, and S. Sclaroff, “Classmap: Efficient
multiclass recognition via embeddings,” in 2007 IEEE 11th International
Conference on Computer Vision. IEEE, 2007, pp. 1–8.

http://arxiv.org/abs/1711.09224
http://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1907.09693
http://proceedings.mlr.press/v70/kumar17a.html
http://arxiv.org/abs/1802.05668
http://arxiv.org/abs/1604.03168
https://doi.org/10.1145/2994551.2994564

