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a b s t r a c t 

The healthcare Internet-of-Things (IoT) offers many benefits including data transmission in 

real-time mode, the ability to monitor the physiological state of the patient in a different 

interval of time. Devices such as blood-pressure monitors, glucose meters, heart moni- 

toring implants, Electroencephalography (EEG), Electrocardiogram (ECG), and Electromyo- 

graphy (EMG) wearable devices allow health providers to collect the patient health in- 

formation locally and make a real-time decision based on the Patient Health Data (PHD). 

Hospitals have been adopting the IoT for many years and now they have healthcare IoT 

devices in patients’ rooms and their bodies. However, the medical agencies, hospitals, 

and companies do not consider the security risk of healthcare IoT devices connected to 

a Local Area Network (LAN) or Wide Area Network (WAN). The IoT devices can be easily 

hacked and may lead to several potentially life-threatening risks due to poor authenti- 

cation and encryption practices. Existing machine learning algorithms and blockchain ap- 

proach working in the cloud computing environment are unable to meet the Quality of 

Service (QoS) like reliability, authentication, identification, and security requirements of 

healthcare IoT devices. Most of the traditional machine learning algorithms and techniques 

for healthcare IoT lacks the real-world implementation for secure data transmission. There- 

fore, blockchain is introduced for secure and reliable transaction in healthcare IoT. Whereas 

Fog Computing (FC) is introduced to extend the services of the cloud at the edge of net- 

works. Integration of FC with blockchain can overcome the issue of healthcare IoT device 

identification, authentication, and verification for scalable frequent data transmission in 

a decentralized environment. Hence, a novel solution for the abovementioned problem is 

proposed using FC and blockchain. It includes an FC-based three-tier architecture, an an- 

alytical model, a mathematical framework, and an Advanced Signature-Based Encryption 

(ASE) algorithm for healthcare IoT device identification, verification, and Patient Health 

Data (PHD) authentication. The aim is to extend secure data transmission for healthcare 

IoT and end-users availing the real-time services. The proposed model and algorithm will 

be able to provide services for transaction and transmission near the edge in a secure 

manner. By analyzing the generated results from the proposed novel ASE algorithm for 

throughput, packet error, reliability, and malicious node detection accuracy; it is observed 

that the ASE algorithm in the FC environment easily outperforms the cloud and the other 
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existing state of the art techniques such as FogBus, Femto cloud, Blockchain Fog-based Ar- 

chitecture Network (BFAN), and BeeKeeper. The malicious node detection accuracy of the 

ASE algorithm in the FC environment is 91% and in the cloud is 83%. Whereas the relia- 

bility percentage of the ASE algorithm in FC is 95% and in the cloud is 87%. The proposed 

approach is tested on simulators iFogSim (Net-Beans) and SimBlock. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. . Introduction 

Healthcare IoT market share will be around 39% of total IoT devices by 2025 [1] . Whereas the annual revenue for indus-

trial applications of blockchain will be $19.9 billion by 2025, as per the report of Tractia an intelligent firm. IoTs are now

enormously used in healthcare for facilitating the services to patients and doctors in real-time. Some of the healthcare time- 

sensitive applications such as ECG, EEG monitoring requires the constant evaluation of medical reports and Patient Health 

Data (PHD) [ 2 , 3 ]. This all could be possible with the use of healthcare IoT devices in medical agencies and industries.

However, the increase in the number of IoT devices and their increasing use has generated a large volume and veracity

of data traffic. The handling of high IoT data traffic has become a major issue and concern using centralized features of

cloud servers [ 4 , 5 ]. This in return has increased the risks related to patient security and confidentiality. There will be a

risk of patients’ privacy exposure, data eavesdropping, ownership of medical health data, and location privacy. The intrud- 

ers and hackers can now easily attack the IoT network by replication the data and changing the identity of healthcare IoT

devices [ 6 , 7 ]. Currently, the IoT-Cloud system is facing lots of challenges such as single point of failure due to centralized

operation, malicious attacks, privacy leakage, and managing distributed IoT devices [ 8 , 9 ]. The data transmission between

healthcare IoT and cloud requires the trust, identification of devices, and authentication of users for network security and 

secure transmission of PHD. 

Healthcare IoT has an inherent issue for capacity and scalability. Healthcare IoT generates gigabytes (GB) of healthcare 

data in real-time, this limitation represents a great barrier to its integration with blockchain [ 6 , 10 ]. Moreover, the hetero-

geneity of healthcare IoT devices leads to a security issue in IoT networks. The protection and security of healthcare IoT data

are directly linked to the identification of IoT devices. In case of no authentication, for example, attackers or intruders can

hack the ECG IoT device and impersonate a real sensor and produce erroneous values. [ 11 , 12 ]. Blockchain-based approaches

involve significant energy, delay, and computational overhead not suitable for resource-constrained healthcare IoT devices 

[13-15] . 

To replicate the patient information among multiple fog nodes placed at the edge can be possible through a distributed 

ledger. Both blockchain and fog nodes operations are decentralized and distributed in nature [ 6 , 16 ]. Both FC and blockchain

have become fundamental techniques that result in the paradigm shift from centralized control to decentralized control. 

The patient confidential data can be recorded at different fog nodes using ledgers to provide transparency, security, and 

identity to IoT devices. FC nodes can be used for mining purpose in the hybrid model. Hence to overcome the issue of PHD

authentication and identification of IoT devices in healthcare; FC plays a major role using the blockchain model by providing 

a distributed scalable network at the edge of IoT networks. Distributed FC nodes act as miners can collect the transaction

information in blocks to check the validity. FC overcomes the limitation of high data traffic in healthcare IoT by minimizing

the packet error during PHD transmission. 

While blockchain can resolve and overcome the issue of security and privacy in IoT-FC-cloud system [ 17 , 18 ]. Further-

more, blockchain technology is used to provide various cryptographic operations with mining at the edge of networks. The 

main advantage of using blockchain in the proposed model is that it keeps the records of PHD transactions by attaching

timestamps to each block id along with the usage of different private keys and hash codes. Fog nodes in our proposed work

are responsible for handling all possible communication between healthcare IoT devices to secure transaction between nodes 

and devices. Transmission of healthcare IoT requires a secure communication channel using decentralized blockchain tech- 

nology and distributed FC approach. A signature scheme is used to ensure that the PHD is not modified during transmission

from a healthcare IoT device to a fog node. Once the fog node verifies the PHD with a healthcare IoT digital signature and if

the verification is conducted correctly, then it sends the acknowledgement/ response of the health data to the wearable IoT 

device. This process authenticates the PHD. Healthcare IoT devices are resources constrained devices, and with the increase 

in the number of IoT device; blockchain perform poorly. Therefore, to overcome this issue the IoT network is divided into

several nodes and the PHD is distributed to different fog nodes. These fog nodes are spread over several clusters. Next, the

storage of healthcare IoT data on the blockchain is not feasible therefore we have used fog nodes as they provide a safe

platform with additional cryptographic security operations such as signatures and high advanced encryption algorithms [ 18 , 

19 ]. All the transactions are stored in different blocks and transferred to distributed fog networks. Diffie-Hellman key ex- 

change technique and ring signature are used to transfer keys between healthcare IoT and fog nodes. The integration of the

blockchain model at the edge of the network can provide reliable access and control over the healthcare IoT network. In
2 
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other words, there will be decentralized data storage via blockchain. The proposed intelligent FC-based blockchain model, a 

mathematical framework, and an algorithm are designed and developed to resolve the issue of healthcare IoT data authen- 

tication and IoT device identification for secure PHD transmission at the edge of networks. 

2. Our Contributions 

The principal aim of this research is the development of a novel approach to meet the QoS requirement related to

security, authenticity, and reliability of Patient Health Data (PHD) transmission between healthcare IoT, fog nodes, patients 

(wearable device users), doctors, and the cloud servers using FC-based blockchain approach. To accomplish the main aim, 

the contributions of this paper are as follows: 

• We proposed and designed a three-tier FC-based architecture for healthcare IoT in a blockchain platform to send secure 

and reliable data between IoT, fog nodes, patients, and doctors. 

• Next, we developed a decentralized FC-based blockchain analytical model and a mathematical framework for secure data 

transmission and transaction in healthcare IoT. The model further performs identification, verification of certificates and 

keys for IoT devices and fog nodes using a private blockchain. 

• We designed and developed a novel Advanced Signature-Based Encryption (ASE) algorithm. The algorithm performs the 

identification of heterogeneous and homogeneous healthcare IoT devices, verification of data sources and targets, and 

authentication of transmitted data via different IoT devices and fog nodes. The algorithm uses Diffie-Hellman (DF) key 

exchange method. The data is encrypted and then decrypted using a private blockchain and different cryptographic oper- 

ations. The developed algorithm performs authentication of healthcare IoT devices using joint probability of IoT devices 

with random number generation. The proposed algorithm is a combination of four different algorithms. 

3. Organization 

The remainder of the paper is organized are as follows. An overview of blockchain and healthcare IoT with FC is given in

Sec. 4 . Sec. 5 briefly discuss the motivation and significance of the study. Sec. 6 introduces the system model and FC-based

blockchain architecture. The methodology and the proposed work are discussed in Sec. 7 and Sec. 8 . Sec 8 . introduces the

proposed system along with the ASE algorithm. Sec. 9 introduces the proposed analytical model along with its description. 

Whereas Sec. 10 discuss the mathematical framework for the proposed blockchain model. Sections 11 and 12 discuss the 

model implementation, experimental evaluation, results, and its setup. Finally, a short conclusion is given in Sec. 13. 

4. Related Work 

Currently, FC-based IoT is a hot topic. The previous papers did not include some major security aspects which are: (i)

The data transferred from healthcare IoT devices to cloud servers are typically unencrypted and may get easily tampered 

with and attacked. This leads to a risk of releasing patient sensitive information (ii) To the best of our knowledge there is an

urgency for healthcare IoT device identification which will lead to healthcare data verification and authentication this can 

conveniently be completed using blockchain in IoT-FC system [20] . In greater detail, servers should perform some authen- 

tication and verification in a decentralized manner at the edge of networks. In this section current techniques, approaches, 

and algorithms are discussed in detail related to healthcare IoT, fog, and cloud. These techniques mainly focused on security, 

reliability, cyber-attacks, IoT data authentication, and IoT device identification. Some of the existing works on blockchain and 

healthcare IoT security are summarized as follows: 

In [21] , LijinNg et.al proposed a novel system called BeeKeeper based on blockchain and IoT. In their proposed system

a cloud server can process the data by performing computations on the user data. Any node can be a leader for server

authorization which is elected by the present leader. They have used the Ethereum blockchain to deploy BeeKeeper. In [14] ,

Somino et.al used different credentials by mixing private and public attributes. The users who own these attributes can use 

the credentials. The users here are the people using IoT devices. However, their proposed techniques are unable to perform 

the identification of IoT devices. They have used cryptographic operations with blockchain technique in IoT to minimize 

delay and network traffic. However, no work has been on the scalability issue of blockchain and IoT. 

Similarly, in [15] , Rahulamathavan et.al developed a partially centralized protocol. In this, the main authority was re- 

sponsible for generating parameters for users and miners. The authors used encryption-based attributes so that they can be 

verified and decrypted by some specific miners and users who own the attributes. The technique was somehow helpful for 

IoT to maintain secure transmission. But their proposed work lacks the issue of device identification, authentication of keys. 

They mostly focus on secure transmission using a centralized manner. A distributed environment is absent. 

In [22] , the authors used blockchain for data integration and secure transmission. The unencrypted data are mostly stored 

in different locations at the receiving site following a peer-to-peer file storage protocol. They developed protocols for edge 

devices like FC which helps the end-users to process the data by maintaining integrity through blockchains. In [23] , the con-

sensus algorithm applications are explained in Proof-of-Work (PoW) blockchain models. In which miners find the solution 

to the given problem by distributing their computing powers. In [24] , the authors presented an FC-based architecture using

blockchain to improve latency and scalability in IoT networks. The architecture is an application to provide secure services 

to telehealth and tele-industries. 
3 
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In [25] , the authors proposed the integrated system of the blockchain with FC-based network architecture for Internet- 

of-Everything’s (IoE). Furthermore, the FC nodes provide low latency and secure transmission to the smart city networks. 

In [26] , the authors used blockchain for IoE in a decentralized manner. Which further makes the system tamper-proof.

Moreover, it has reduced the maintenance, installation, and deployment cost. Their proposed system works well for IoE 

and smart cities which saves the devices from a man-in-the-middle attack. Furthermore, there are certain agreement 

and smart contracts for data transmission and transaction which are stored in Blockchain. In [27] , authors Naveed Islam

et.al proposed an FC-based framework using blockchain for healthcare applications such as recognition of patient activity. 

Their proposed framework categorizes and classifies the video frames based on patient activities using the Support Vec- 

tor Machine (SVM) algorithm. However, the system does not fulfil the requirement of the identification of IoT devices in 

e-healthcare. 

In [28] , the authors proposed a blockchain-based architecture in the FC environment for IoE. It is a secured architecture

that works in a fog-based network called Blockchain Fog-based Architecture Network (BFAN). Their proposed work utilizes 

blockchain for the security of data using various encryption and authentication techniques. The proposed architecture can 

be deployed in smart cities. The main aim of their proposed work is to minimize latency and energy consumption and to

further improve secure data transmission using blockchain. Similarly, in [29] , the authors Michael Harbert et.al proposed a 

plasma-based framework to overcome the issue of heavy load in blockchain when working for IoT. Their proposed frame- 

work is based on the concept of integrating FC with blockchain. In [7] , the authors Muhammad Tahir et.al proposed a novel

work for authentication and identification of IoT networks. Their proposed work consists of a blockchain-based IoT network 

that uses a probabilistic model and random numbers. 

In [30] , the authors proposed an infrastructure that works on the concept of Proof-of-Work (PoW). It is a lightweight in-

frastructure. The major function of the proposed model is to offload the computational task to fog and cloud using a consen-

sus algorithm. They have used the Stackelberg algorithm which formulates the resource management at the fog nodes using 

a computational process. The optimization part is handled by the miners at the nodes. The purpose of service for offloading

depends on the miners’ interest. The model is verified and validated using the backward induction method. Whereas, in 

[31] , the authors discussed various aspects and research challenges associated with the fusion of fog and cloud for latency

minimization, resource allocation, secure transmission, optimization, energy consumption, and RAM usage in IoT. They ex- 

pressed the problem of an increase in the number of heterogeneous devices and applications. In [32] , the authors used the

reinforcement learning algorithm with computation offloading of blocks, the approach works on a distributed environment 

where fog nodes are placed at the edge of IoT networks. However, their research work was unable to address the issue of

security and privacy for data transmission between IoT, fog and cloud. 

Similarly, in [4] , the authors introduced a technique for data protection in centralized cloud servers from outside hack- 

ers. Their proposed technique is a combination of dynamic metadata and database schema design. They have used various 

cryptographic techniques in their algorithm. Future works require the implementation of the proposed work using a re- 

inforcement learning algorithm. In [33] , the authors applied the concept of binary ATM for a reduction in latency which

further solves the problem of packet error in the cloud. Their results show that binary ATM is superior to conventional

methods. Apart from this, node processing delays, which depend on the number of packets, are lower in binary ATMs when

the component of constant bit rate (CBR) is equivalent to or lesser than variable bit rate (VBR). 

However, in [34] , the authors proposed the method of the Femto cloud. Their proposed method specifies a changing, self-

configurable and multi-device mobile cloud from a group of mobile devices. This method enables many mobile devices to 

be arranged in integrated cloud computing servicing. The scheduler necessarily appoints duties using scheduling algorithm 

accessible tools to increase the available metrics while managing device churning. In [35] , the authors proposed a framework

called FogBus to minimize the data traffic by minimizing the network and CPU usage in IoT-Fog-Cloud infrastructure. Their 

proposed approach used a blockchain-based technique to minimize the high data traffic and secure the private confidential 

IoT data from outside intruders and hackers. It applies several encryption techniques to secure operations on IoT sensitive 

data. Also, the proposed framework facilitates the IoT-Fog (Edge)-Cloud infrastructure integration. 

Similarly, in [36] , the authors discussed the role of IoT for smart healthcare applications. Their discussion includes various 

technologies, several challenges, and opportunities associated with healthcare IoT, e-healthcare, and telemedicine. The au- 

thors further discussed the role of FC to minimize the high latency and meet QoS requirements for time-sensitive application 

in smart healthcare. They proposed a unique model to monitor patient health conditions. Next, the authors discussed the 

various wearable device to monitor and record patient vital signs. They used a machine learning approach in their system 

model. 

In [37] , the authors proposed a framework for a smart healthcare system using deep learning-based techniques to di- 

agnose the patient heart disease in real-time mode by integrating IoT and FC. The framework was able to meet the QoS

requirement for healthcare IoT. It was designed to operate for latency-sensitive applications like healthcare monitoring and 

flight control. Healthcare IoT generates a large amount of data called Big data. This data requires a large computation, next 

the data is transferred to databases and from databases to cloud data centres which lead to a drop in the performance

of the system. Therefore, the proposed fog-enabled cloud framework meets the QoS for healthcare IoT in terms of power 

consumption, jitter, and prediction accuracy of heart disease diagnosis. 

The existing IoE, IoT and medical devices work on a centralized model for communication. The IoT devices are validated 

by the cloud servers which in turn increase, the overhead related to cost for maintenance and infrastructure. Therefore, with 

the IoT device identity, the IoT data can be authenticated. Healthcare IoT device identification is important for authentica- 
4 
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Fig. 1. Conventional healthcare IoT integrated model 

 

 

 

 

 

 

 

 

tion and access control. This can be achieved using an integrated FC-based blockchain model which works in a distributed 

environment and decentralized manner. Where there is no single point of failure. 

5. Motivation and Significance of the Study 

This section discusses the conventional healthcare IoT data transmission with the cloud as a centralized server and the 

proposed enhanced data transmission model using the FC-based blockchain technique. 

The main motivation for this study is the requirement of security, reliability, and authenticity for highly sensitive health- 

care IoT applications. The fusion of blockchain and IoT with cloud computing working as a centralized server faces several 

challenges such as malicious node behaviour, packet errors, vulnerable codes in smart contracts, and unauthenticated IoT 

data. In the existing scenario, the trustworthiness of healthcare IoT data is of major concern for medical agencies. There can

be tampered, alternation, falsified information in healthcare IoT through some intruders and hackers which may affect the 

end outcome of medical agencies, and hospitals. 

In the medical healthcare IoT system, cloud servers have been used for storing, analyzing, and processing large data 

collected from IoT devices [24] . However, there are still three main challenges in healthcare IoT and cloud servers for secure

data transmission such as 1) IoT device identification 2) Patient Health Data (PHD) authentication and 3) Verification of 

issued certificates and keys in a distributed environment [17] . In healthcare IoT data loss and error are intolerant. Healthcare

IoT data is a high priority and sensitive data which needs to be updated every second [38] . The current existing algorithms,

protocols, and analytical models for healthcare IoT are not designed to comprehensively address these issues simultaneously. 

They lack the PoW concept in healthcare IoT [39] . 

Most of the previous work for secure PHD transmission in healthcare IoT focused on heavy complex communication 

protocols and algorithms related to computation and memory requirements only [26] . They have faced a single point of

failure due to a centralized cloud server. Therefore, healthcare IoT device identification and PHD authentication remain a 

challenging problem that has been not studied and discussed yet in healthcare IoT. The problem is worth meeting the QoS

requirement for data transmission in healthcare IoT. Hence there is a scope to research this area. However, only a few studies

have been conducted on it, but most of the recent research work lacks real-world implementation. See Figure 1 shows the

conventional method of data transmission between healthcare IoTs and the cloud. Here R1, R2,….., ..Rn are the routers used 

in transmission. 

Figure 1 shows the IoT-cloud environment that uses the multiple hop count for data transmission. All the conventional 

method deals only with data transmission using routers between IoT and cloud. 

See Figure 2 for the advanced integrated FC-based blockchain model. 
5 
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Fig. 2. Proposed integrated FC-based blockchain model 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows an enhanced data transmission method using an FC-based blockchain technique for secure data transmis- 

sion in healthcare IoT and the cloud. Here R1, R2…...., Rn are the routers used in transmission. All the participating servers,

nodes have the PHD and the means to verify that have not been tampered with this authenticity can be easily achieved.

This method will guarantee data reliability and mining to be possible at the fog nodes with blockchain to operate in the

FC environment. In this Figure 2 , we have used the FC approach at the edge of networks. The time-sensitive healthcare IoT

data is processed and filtered at the fog nodes. The fog node in this model is acting as a small sub-cloud server with limited

storage and processing power. These fog nodes are easy to be deployed over a geographical region and can be distributed

at the local hospital sites and medical agencies. When compares to cloud there is no single point of failure in FC. 

Moreover, the FC technique is used in healthcare IoT to bring all the advanced features like resource sharing and server

virtualization of the cloud near the network of IoT. The major benefits of using FC in our proposed system is that it min-

imizes service delay, network traffic and bandwidth consumption. In healthcare IoT, large data transmission of data leads 

to an increase in the network traffic which further increases the data packet error hence to overcome this limitation; FC

plays a very major role in IoT networks. FC acts on the time-sensitive healthcare IoT data in milliseconds and the rest of the

non-time-sensitive data it sends directly to the cloud for future storage and processing. 

Whereas blockchain in the proposed system is used to overcome the issue of security, authenticity, identification, and 

detection of the malicious node along with packet error in healthcare IoT. Blockchain technology is used for storing the 

records of transactions between the different entities. It acts in a decentralized manner by keeping the information of every 

block id along with the attached timestamp. 

The proposed FC-based technique could also be used and deployed for other secure operations and services in health- 

care IoT. Such as e-healthcare, telehealth, telesurgery, telemedicine, remote-surgery, robot-surgery, ECG, EEG, and EMG data 

transmission, remote patient monitoring, and e-healthcare. Besides, the application of the work can be utilized in domains 

like Augmented Reality (AR) in healthcare which includes vein visualization and surgical visualization. Context-based aug- 

mented reality interaction and object guided tracking. The fog nodes can be deployed at the local hospital sites to collect

the patient confidential data; while the historical data can be transferred to the cloud. The overhead related to communi- 

cation cost, computation cost, bandwidth, and energy consumption cost will be reduced due to local deployment. This local 

deployment of fog nodes at the hospital sites will be a major boost in the current scenario of a pandemic like Covid-19. 

6. System Model and Three Tier FC-based Blockchain Architecture 

This section discusses the proposed three-tier FC-based blockchain architecture and system model for healthcare IoT 

using blockchain in the FC environment. 
6 
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Fig. 3. Three-tier FC-based blockchain architecture 

 

 

 

 

Figure 3 shows the proposed three-tier architecture where a fog layer is placed between the healthcare IoT devices layer 

and cloud data centres. The fog layer consists of multiple blocks, smart contracts written in a programming language and 

ledgers. Furthermore, the fog servers are connected to the healthcare IoT layer using decentralized Apps for distributed 

data processing. Patients and doctors can directly access the fog layer in the single-hop count. The main innovation of the

proposed three-tier architecture is that it uses the concept of FC at the edge of healthcare IoT networks along with the

blockchain technique using various cryptographic operations. The proposed architecture is used to design the system model 

for secure healthcare IoT communication along with authentication of healthcare IoT data and identification of IoT devices. 

Whereas the other state of the art techniques lacks the real-world implementation, development, and QoS requirement for 

healthcare IoT. The existing architecture and models are still in infancy when compares with the proposed three-tire FC- 

based blockchain architecture. However, the current analytical models and architectures such as Femto cloud, FogBus, BFAN, 

and BeeKeeper are not optimized for healthcare IoT requirement and could not address the above-mentioned issues. They 

are unable to provide a secure communication channel for time-sensitive healthcare IoT data transmission. See Figure 4 for 

the proposed healthcare IoT system model. 

Figure 4 shows the FC-based blockchain system model for healthcare IoT. The data transmitted from healthcare IoT de- 

vices are first classified into confidential data and non-confidential data. Next, the healthcare IoT data is transferred to the 

fog layer which consists of fog servers where fog nodes using various cryptographic techniques perform data authorization 

and encryption. Fog nodes act as miners and collect the data in different blocks. Hashing is conducted using a healthcare

IoT private key. 

See Figure 5 shows the healthcare transaction process and sequence inside the FC-based blockchain model. 

7. Methodology 

The research passes through different activities to answer the research questions as shown in Figure 6 . The activities are

literature review, problem identification, design of three-tier architecture, development and implementation of the proposed 

ASE algorithm, development of FC-based blockchain analytical model, performance evaluation of the algorithm, simulation 

and analysis of the algorithm, demonstration and validation from healthcare data, benchmarking, and comparison with al- 

gorithm optimization. 
7 
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Fig. 4. The system model consists of Healthcare IoT layer, FC-based blockchain ledge layer, and cloud server 

 

 

 

8. Proposed System 

Our proposed system consists of healthcare IoT networks, FC storage, smart contracts, healthcare IoT devices i.e., the 

patient wearing devices, and doctors. Instead of storing healthcare IoT data over blockchains and cloud servers, we stored 

the healthcare data to the fog nodes and master fog servers. The fog storage arranges the PHD generated from healthcare

IoT devices in similar blocks linked with a unique block. The fog nodes are attached to healthcare IoT. The network consists

of fog nodes, healthcare IoT devices and they need to prove that the devices and data are authenticated with identification

of devices, verification of certificates, and the exchange of keys. 
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Figure 5. Healthcare IoT transaction process 

 

 

 

 

 

 

 

 

 

After the completion of PHD data authentication and healthcare IoT devices identification; the transaction is proceeded 

with the signed data digitally using the ring signature. We have grouped the fog nodes into clusters. Each cluster has its

master fog node with the public key. The fog nodes and master fog node exchange their roles from time to time based on

the request of keys and transaction. Master fog node acting as a cluster head maintains the request made by the patients

and users, they decide who can access the PHD of a healthcare IoT device. They also handle the request for PHD and key.

In our system when a healthcare IoT devices want to send/transmit the PHD to a medical agency; the fog server verifies

the transaction by a digital signature and sends it further to IoT networks along with the attached public address of the

concerned doctor or medical agencies. The master fog node verifies the PHD signature and the healthcare IoT public key. 

And if the public key is available the transaction of PHD file is broadcasted, if the key available then ok; else the PHD

file is transacted to other nodes. In the case where the digital ring signature or the public key of any healthcare IoT device

is not verified then the fog node will not broadcast healthcare IoT data to other fog nodes of the same cluster but transfer

to other nodes. See Figure 7 for the digital signature description and sequence. 

Fig. 8 . 

8.1. Advanced Signature-Based Encryption (ASE) algorithm 

The proposed novel ASE algorithm consists of asymmetric cryptographic operations such as Diffie-Hellman key exchange 

and digital signature along with the usage of blockchain techniques. The digital signature in this algorithm consists of three 
9 
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Fig. 6. Shows the research steps taken to achieve the objectives 

Fig. 7. Digital signature sequence 

 

 

phases 1) Generation of keys 2) Generation of signature along with hash code and 3) Verification of signature. Further- 

more, the signatures are mixed to form a ring. The algorithm uses the concept of FC for securely providing time-sensitive

healthcare IoT data to patients and doctors. FC nodes act as miners for keeping the records of the transactions that occurred

between IoT and end-users. Blockchain is used here in a decentralized way for data transmission in healthcare IoT. 

Next, the algorithm is sub-divided into four major algorithms 1) PHD security using blockchain 2) Healthcare IoT data 

encryption using Diffie-Hellman method in blockchain 3) PHD decryption and 4) Healthcare IoT device identification, authen- 
10 
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Fig. 8. Encryption and Decryption sequence model 

 

 

 

 

 

 

 

 

tication, and verification for PHD transmission. The ASE algorithm can provide the secure transmission of PHD to end-users. 

Moreover, the proposed algorithm is expected to handle a large number of service requests from end-users or patients for 

healthcare IoT data. Additionally, this FC-based technique could also be used and deployed for other real-time operations 

and services in healthcare IoT. 

The proposed ASE algorithm easily outperform the existing algorithms and techniques in terms of security and reliability 

of PHD. The existing state-of-the-art approaches are not able to fully utilize the concept of FC and blockchain at the edge

of healthcare IoT devices. Therefore, they are unable to handle the time-sensitive healthcare IoT data. Most of the existing 

works lack the real-world implementation of the designed algorithms and models. The performance of the ASE algorithm is 

evaluated and compared with other existing algorithms in section 12.1 for malicious node detection accuracy and reliability. 

Algorithms 1 –Algorithm 2 Algorithm 3 and Algorithm 4 . 

9. Analytical Model Description 

In the proposed model a certificate and a key are issued for fog nodes and healthcare IoT devices. The healthcare IoT data

is retrieved using the keys. Certificates along with keys are verified using the proposed FC-based blockchain analytical model. 

The data is stored at the fog nodes. The healthcare IoT device sends an artificial key and PHD to the FC-based blockchain

model. Certificates along with keys are verified using the proposed analytical model. Furthermore, the FC system formats 

PHD and send it to other fog nodes for further verification. The Interplanetary File System (IPFS) at fog nodes generates a

hash code of data and send it to the blockchain network for mining to the respective miners. 

Next, the three smart contracts are developed at fog nodes: 

1 To check the status of miners. 

2 To check the format of healthcare IoT data. 

3 To verify the healthcare IoT users. 

In our algorithm, we are using a symmetric key encryption technique. Our proposed algorithm is dedicated to securing 

both IoT-Fog networks and nodes from outside hackers and intruders. We further added a signature for the PHD authentica- 

tion purpose. Due to the limitation of healthcare IoT devices a ring-based signature is used for the verification of certificates

and keys. These signatures are used for PHD-file authentication. Each node sends a public-private key. Mostly, the key pairs 

used for signing and verification. 

The keys used for encryption and decryption and different. In our case, the healthcare IoT has one key pair H _ IoT k prv ,

H _ IoT k pub and the fog nodes will have another key pair f n k prv , f n k pub . The healthcare IoT private key H _ IoT k prv is used to

sign the PHD. While H _ IoT k pub key and H _ IoT k prv the key is used for verification and transaction. Healthcare IoT device feeds

the data to h = generate the hash value Has h . 
PHD 

11 
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Algorithm 1 

Patient Healthcare Data (PHD) Security using Blockchain 

Algorithm 1 performs security of PHD between healthcare IoT devices, fog nodes and end-users. It consists of patients, 

doctors, healthcare IoT devices, and fog nodes which uses an FC-based blockchain system for storing and securing the 

medical data. The users can then retrieve the data from these nodes. The output is the secured PHD. The algorithm further 

performs the healthcare IoT device request by different distributed fog nodes. 

Algorithm Symbol Notation 

P ax : Patient 

d y : Doctors 

H _ Io T z : Healthcare IoT devices 

PHD : Patient Health Data 

Data: 

H _ I oT I D : ID of the interested healthcare IoT devices and healthcare ECG data. 

R: The list of the configuration H _ IoT devices sent by the fog nodes 

Input: Patient = ( P a 1 , P a 2 , P a 3 ,----- P ax ) 
Doctors = ( d 1 , d 2 , d 3 ,---- d y ) 
Healthcare IoT devices = ( H _ Io T 1 , H _ Io T 2 , H _ Io T 3 , H _ Io T z ) 
Output: Patient Healthcare Data ( P ax , H _ Io T z ) 
Successfully stored PHD in FC-based blockchain system 

Algorithm Steps: 

Step 1: FC-based blockchain system creation 

Step 2: Patient selection 

Step 3: Retrieve of PHD 

Step 4: Assignment of doctor to healthcare IoT implant device 

Step 5: Generation of healthcare IoT devices list 

Step 6: Configuration of the healthcare IoT device 

1: while P ax in Patient do 
2: Select P ax 

3: for each H _ Io T z in IoT do 
4: if the doctor d 1 selects H _ Io T z then 
5: Retrieve PHD ( P ax , H _ Io T z ); 
6: Store In FC-based_Blockchain (Retrieved_PHD) 
7: else 

8: Select at least one patient; 
9: end 

10: end 

11: end 

12: function retrieve PHD ( P ax , H _ Io T z ) 
13: P a 1 = P ax from patient; 
14: while H _ Io T z in IoT do 
15: if H _ Io T z € P a 1 then 
16: Retrieved PHD [] < - P a 1 . H _ Io T z . retrieve value 
17: get post. Val (PHD) 
18: else 
19: Assign Doctor for IoT implant to P a 1 
20: goto retrieve PHD ( P ax , H _ Io T z ) 
21: end if 

22: end 

23: end 

24: deviceList = queryAllDevicesInH_IoT ( H _ I oT I D ) 
25 : for ioTdevice in deviceList do for config in R do 

26: if ioTdevice.DeviceID == config.DeviceID then 

27: ioTdevice.status = con?g.request; 
28: event(ioTdevice); 
29: end if 

30: config = R. next(); 
31: end 

32: ioTdevice = deviceList. next(); 
33: end 

 

 

 

 

 

 

A hash value of the PHD is the plain text and signature. H _ IoT k prv the key is then transferred to the proposed algorithm

and send with encrypted PHD. During the verification process, the fog node verifies and generate the hash value and hash

function of the PHD from the same hash function. Using the algorithm and the healthcare IoT public key extract the original

hash value of the PHD and if the hash _ P H _ IoT = = hash _ C f n are similar then the data is verified and not forwarded during

the transaction process. Next, to achieve the H _ IoT anonymity and H _ IoT correctness we have used digital ring structure. 

Healthcare IoT network is a collection of heterogeneous devices. Which allow H _ IoT to sign the PHD in an anonymous key.

This process helps in the identification of H _ IoT devices. 

The authentication process is performed at the healthcare IoT devices and fog nodes. Several messages are transferred 

between the nodes (i.e., healthcare IoT device, fog server, doctors, and patients). The fog nodes will now retrieve the data
12 
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Algorithm 2 

Healthcare IoT Data Encryption using Diffie-Hellman Method in Blockchain. 

Algorithm 2 performs the encryption of PHD over the blockchain. The PHD is generated from H _ IoT and is encrypted using 

algorithm 2. The digital signature is designed using the Hash and private key. Asymmetric public-private key pairs are also 

used in the development of an algorithm. And at the last signatures are mixed to form a Ring. The algorithm uses the 

Diffie-Hellman method for the exchange of key among different healthcare IoT devices and nodes. 

Algorithm Symbol Notations 

PHD : Patient Health Data 

K sym : Symmetric key 

K pub : Public key 

C: Ciphertext 

C K : Cipher key 

f n : Fog node 

f n K pub : Fog node public key 

S K pub : Signed public key 

S K pri v : Signed private key 

H _ IoT _ PHD _ F ile : Patient Health Data file generated from healthcare IoT 

P _ SIGNAT URE: Patient signature 

P ax : Patient 

Encryp t sym : Symmetric encryption 

Encryp t asym : Asymmetric encryption 

Algorithm Steps: 

Step 1: Start the encryption process 

Step 2: Generation of symmetric keys 

Step 3: Next, generation of signature and use of Diffie-Hellman key exchanges. 

Step 4: Generate the hash code 

Step 5: Hash estimation 

Step 6: Mix the signature to form a Ring 

1: Function Encryption ( H _ IoT _ PHD _ f ile ) 
2: if Patient confirms PHD storage over blockchain then 
3: Generate a symmetric key K sym 

4: C < −Encryp t sym ( H _ IoT _ PHD _ F ile , K sym ) 
5: C k < −Encryp t asym ( K sym , f n K pub ) 
6: else 

7: do no operation 
8: end if 

9: end function 

10: Function P_SIGNATURE ( H _ IoT _ PHD _ F ile ) 
11: if Patient chose anonymity over blockchain then 
12: Generate a asymmetric public-private key pair ( S K pub , S K pri v ) 
13: Has h p < - Estimate hash of H _ IoT _ PHD _ F ile 

14: Design the digital signature using the Has h p and signed private key S K spri v 
15: Share the public key S K pub to the f n and receiver using Diffie-Hellman key exchanges 
16: Mix the signature with other f n and devices to form a ring 
17: end if 

18: end function 

Algorithm 3 

PHD Decryption 

The algorithm performs the asymmetric decryption of PHD_ File using a fog node private key and a symmetric key. 

Algorithm Symbol Notations 

C: Ciphertext 

C k : Cipher key 

f n K prv : Fog node private key 

K sym : Symmetric key 

H _ IoT _ PHD _ F ile : Patient health data file generated from healthcare IoT 

Input: Encrypted H _ IoT _ PHD _ F ile , ciphertext, cipher key, and encrypted symmetric key 

Output: Decrypted H _ IoT _ PHD _ F ile and K sym 

Algorithm Steps: 

Step 1: Start the decryption process 

Step 2: End of the decryption process 

1: function DECRY PT ION (C, C k , f n K prv , K sym ) 
2: K sym < - Decryptio n asym ( C k , f n K prv ) 
3: H _ IoT _ PHD _ F ile < - Decryption (C, K sym ) 
4: end function 

13 
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Algorithm 4 

Healthcare IoT Device Identification, Authentication and Verification for PHD Transmission. 

Algorithm 4 performs the identification of healthcare IoT devices using FC and blockchain. The authentication and verification of issued 

certificates and private keys for healthcare IoT devices are conducted using random number generation and with joint probability formulation in 

the blockchain system. Each healthcare IoT device is uniquely identified by a “device ID” and the stored healthcare data. The mapping of device 

ID for healthcare IoT devices is conducted by fog nodes for device identification using a configured data stored on the blockchain. 

Algorithm Symbol Notations 

f n : Fog node 

H _ IoT : Healthcare IoT device 

f s : Fog server 

f n : Fog node 

D A : Data allocation 

T S : Timestamp 

C: Ciphertext 

C t : Certificate 

C S : Cloud server 

d y : Doctors 

S K pub : Signed public key 

S K pri v : Signed private key 

K : Key 

Has h C : Hash code 

Prv t K : Private key 

C t _ H _ IoT : Certificate linked with healthcare IoT 

C t _ f n : Certificate linked with fog node 

D F : Data format 

M: Miners 

P ax : Patient 

hash _ P H _ IoT : Hash code for the patient IoT device 

H _ IoT _ PHD _ F ile : Patient Health Data file generated from healthcare IoT 

hash _ C f n : Hash code for the fog node 

H _ IoT _ PHD _ F ile _ C: Patient health data file C generated from healthcare IoT 

H _ IoT _ PHD : Healthcare IoT PHD 

S C : Smart contracts 

Algorithm Steps: 

Requirement: f n and H _ IoT devices are present in the fog layer and healthcare IoT layer 

Step 1: Classification of H _ IoT _ PHD 

Step 2 : Fog servers f s consists of f n to check for D A . 

Step 3: Next D A at fog nodes using a private blockchain. 

Step 4: f n are used to store healthcare data 

Step 5: f n check the availability of free processor available at the f s 
Step 6: A timestamp T S is attached to the block of data. 

Step 7: H _ IoT find the PHD to f n using ledgers 

Step 8: f s allocates the PHD 

Step 9: PHD authentication 

Step 10: Mutual authentication of healthcare IoT devices 

Step 11: Next to perform D A and mining at the individual f n . 

Step 12 : To issue a certificate C t for f n and H _ IoT 

Step 13: H _ IoT sends a key and PHD to the f s . 

Step 14: Start of the verification process 

Step 15: f s verifies the C t and key k 

Step 16: Generate the Has h C 
Step 17: Next, send the Has h C to miners M

Step 18: Send Smart contracts S C to f n 
Step 19: D F checking 

Step 20: M status is checked 

Step 21: Verification of H _ IoT and f n 
Step 22: Patient can use their own Prv t K to retrieve the H _ IoT _ PHD 

Step 23: Use of Cipher identity suit to send the PHD 

Step 24: At last, mutual Authentication at the fog nodes using comparison of the cipher identity key 

Input: Encrypted H _ IoT _ PHD _ F ile _ C, Signers (fog node), and Signed Public key ( S K Pub ) 
1: START 

2: for each H_IoT device a C t is issued 

3: (FC-based blockchain system is created) 
4: Data classification 
5: if ( PHD == Sensiti v e _ Data ) then 
6: get geo-location and send the data for verification to f n using SPARK

7: else if ( PHD == non − sensiti v e ) 
8: then 
9: H _ IoT _ PHD send to f n to C S 
10: f n allocates the PHD to f s . 
11: for each H _ IOT _ PH D do ( H _ IoT < −C t ) 
12: C t + T S < - H _ IoT _ PHD 

( continued on next page ) 
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Algorithm 4 ( continued ) 

13: if f s == Available 
14: allocate the PHD 
15: else no allocation 
16: end if 

17: end 

18: function PH D Authentication ( H _ IoT _ PH D ) 
19: P HD _ Retrie v e ( P rv t k ) 
20: if C t _ H _ IoT == C t _ f n 
21: then 
22: Mutual Authentication ( H _ Io T 1 , H _ Io T 2 , f n , f s , p ax , d y ) 
23: function VERIFICATION (C, S K pub ) 
24: Has h C < - calculate hash of the received encrypted H _ IoT _ PHD _ F ile _ Cto be verified 
25: Using Public Key S K pub of H _ IoT , extract H as h p of H _ IoT PH D file 
26: if hash _ P H _ IoT = = hash _ C f n then 
27: return C 
28: else 

29: return ‘‘Signature incorrect’’ 
30: end if 

31: end function 

 

 

 

 

 

 

 

 

 

 

 

 

 

through IPFS using the hash. Once the data is encrypted; it will be transferred to the blockchain network and from the

blockchain network to patients and doctors. In the proposed system to change the contract of the state, i.e., to modify

the blockchain, a transaction must be published in the network. The transaction is signed by healthcare IoT and must be

accepted by the fog nodes and blockchain network. Every fog node creates a block, and the new fog node must verify the

signature to confirm the ownership again. A ring signature scheme is used to mine the block in the blockchain network, in

which the mined block is only considered as a valid block. 

Signature here guarantees that the PHD information has not been modified and protected by a seal of proof such that

its contents are not altered. The next encryption algorithm is used to encrypt the PHD generated from healthcare IoT using

symmetric key encryption. To exchange the keys securely over cryptographic operations, we have used the Diffie-Hellman 

key exchange technique. The cipher identities are attached with H _ IoT _ P HD _ F ile and sent from healthcare IoT device to fog

nodes. And if the f n at the receiver side possessed the information for cipher identity, then the mutual authentication is 

verified for homogeneous and heterogenous devices; or else it is not verified. Next, the communication channel is closed 

by ending the message with f n identity. However, there are few assumptions have been made while designing the model. 

These assumptions are as first the patient can wear only one healthcare IoT device, next the patient will execute their smart

contracts. 

9.1. Authentication Method for Healthcare IoT Devices 

The healthcare IoT devices are denoted as H _ Io T 1 , H _ Io T 2 , H _ Io T 3 , H _ Io T n . Where n is the number of IoT devices in the

cluster. Each H _ IoT has been given a number (H _ Io T i ) for communication where 0 < i ≤ m . Now numbers N 1 , N 2 , N 3 ,—-, N n 

are generated as authentication values. The function N(. ) is used to match healthcare IoT with corresponding numbers. The 

probability P H _ Io T a H _ Io T b (H _ Io T a j , H _ Io T b j ) is calculated for two random variables H _ Io T a and H _ Io T b healthcare IoT device

authentication. When H _ Io T a = H _ Io T a j and H _ Io T b = H _ Io T b j . If a and b are matched, then they will become mutually

authenticate. The two cases as described in section 9.1.1 and 9.1.2 . 

9.1.1. Probability for Similar Healthcare IoT Devices 

In this case of similar functioning of healthcare IoT, the combined probability is evaluated in equation (1) and 

equation (2) . 

P H IoT a H IoT b 

(
H Io T a i , H IoT b i 

)
= P H IoT a 

(
H _ Io T a j 

)
P Io T b 

(
H _ Io T b j 

)
(1) 

P H IoT a H IoT b 
( 1 , 1 ) = P H IoT a H IoT b 

( 1 , −1 ) = P H IoT a H IoT b 
( −1 , 1 ) = P H _ Io T a H _ Io T b ( −1 , −1 ) = 

1 / 4 (2) 

Generally, if H _ Io T a and H _ Io T b are n series; n = 1 , 2 , 3 , − − −n then equation (3) exists as 
∑ 

i 

∑ 

j 

P H IoT a H IoT b 

(
H Io T a j 

, H IoT b j 

)
= 1 (3) 

9.1.2. Probability for Different Healthcare IoT Devices 

In the case of different types and functioning of healthcare IoT devices, the combined probability for H _ Io T a and H _ Io T b is

shown in equation (4) 
∑ 

P H _ Io T a /H _ Io T b 

(
H Io T a i / H Io T b i 

)
= 

∑ 

P H Io T b 

(
H Io T b j 

/ H Io T a j 

)
= 1 (4) 
i j H Io T a 
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So, 
∑ 

i P H _ Io T a /H _ Io T b 
( H _ Io T a i /H _ Io T b i ) shows the probability for union, where H _ Io T b = H _ Io T b i holds true. The process 

when applied to its joint event j i.e. 
∑ 

j P H _ Io T b /H _ Io T a ( H _ Io T b j /H _ Io T a i ) that generates equation (5) and equation (6) 

P ( A ∩ B ) = P ( A ) P ( B/A ) (5) 

P H _ Io T a /bH _ Io T b 

(
H Io T a i / H Io T b j 

)
= 

∑ 

i 

P H _ Io T a /H _ Io T b 

(
H Io T a i / H Io T b j 

)
= 

∑ 

j 

P H _ Io T b /H _ Io T a 

(
H _ Io T b j /H _ Io T a i 

)
(6) 

The heterogeneous healthcare IoT devices probability as shown in equation (7) 

∑ 

i 

P H I o T a HI o T b 

(
H Io T a i , H Io T b j 

)
= 

∑ 

i 

P H _ Io T a /H _ Io T b 

(
H Io T a i / H Io T b j 

)
P H Io T b 

(
H Io T b j 

)

= P H Io T b 

(
H Io T b j 

)∑ 

i 

P H Io T a 
H Io T b 

(
H Io T a i / H Io T b i 

)
= P H _ Io T b 

(
H _ Io T b j 

) (7) 

Next, equation (8) , 

P H Io T a 

(
H Io T a i 

)
= 

∑ 

j 

P H I o T a H I o T b 

(
H Io T a i , H Io T b j 

)
(8) 

Equations (7) and (8) are used for recognition during the healthcare IoT authentication process. Hence, healthcare IoT 

devices with different functioning in FC-based environment via probabilities P H _ Io T a ( H _ Io T a i ) & P H _ Io T b ( H _ Io T b j ) of the au- 

thentication information embedded in the smart contract. 

10. Framework for Proposed Blockchain Model 

Each fog node is assigned with the generated keys in the healthcare IoT model. The authorized PHD generated from the

IoT devices are stored on the fog nodes using algorithm 1 . 

The two healthcare IoT devices H _ Io T A and H _ Io T B perform authentication as follows 

Device H _ Io T A selects a number R nH _ Io T a from a cluster as 

0 ≤ R na , 1 ≤log ( i d max/ 2 ) where i d max is the number length. The number and the healthcare message are encrypted

with H _ Io T B a public key and transmit to H _ Io T B as denoted in step 1. 

Step 1: H _ Io T A − > H _ Io T B : 3 H _ Io T a = ( P u K b ( H _ Io T A H _ Io T a , R nH _ Io T a , 1 ) 

The message 3 a receives at Healthcare IoT device A and decrypts to get the intended message. 

Step 2: 3 H _ Io T a , R nH _ Io T a , 1 < − D E P r K H _ Io T b 
( 3 H _ Io T a ) 

H _ Io T B selects a number R nH _ Io T b 
enclosed as 0 ≤ R nH _ Io T b 

≤ i d max/ 2 

Step 3: 3 H _ Io T b = E P u ( K H _ Io T a ( R nH _ Io T b 
, 1 , H _ Io T B × R nH _ Io T b 

) 

Step 4: H _ Io T A decrypts the response received from H _ Io T B as 

R nH _ Io T b 
, 3 H _ Io T b < − DE P r K H _ Io T a ( 3 H _ Io T b ) 

The acceptance is subjected to equality of 3 H _ Io T b and H _ Io T B × R nH _ Io T b 
. If accepted, then H _ Io T A process the response and

sends it to H _ Io T B . 

Step 5: 3 H _ Io T c = E( P u K H _ Io T b 
( H _ Io T A , R nH _ Io T b 

, 1 , R nH _ Io T a , 2 ) 

Where R nH _ Io T a ,2 is bounded by 0 ≤ R nH _ Io T a < i d max/ 2 . H _ Io T A and H _ Io T B communicate until ( n − 1 ) th message.

H _ Io T A receives ( n − 1 ) th message it decrypts and retrieves the information as follows: 

Step 6: ( R nH _ Io T a , H _ Io T c , 3 H _ Io T a H _ Io T b , H _ Io T c ) < − DE P r K H _ Io T a ( 3( n − 1 ) ) 

If 3 H _ Io T b ,H _ Io T c = H _ Io T B × H _ Io T A , R n,H _ Io T a ,H _ Io T c , So H _ Io T A calculates response 3 n and send to H _ Io T B as 

Step 7: 3 n = E( P u K H _ Io T b 
( H _ Io T A , R nH _ Io T a , H _ Io T c ) ) 

Healthcare IoT device B decrypts the message and obtain information as 

Step 8 : ( 3 H _ Io T a , H _ Io T c + 1 , H _ Io T d ) < −DE P r K H _ Io T b 
( 3 n ) 

Then check for 

Step 9: ( 3 H _ Io T a , H _ Io T c + 1 ) = ( H _ Io T A , R nH _ Io T , H _ Io T c )& H _ Io T d = 0 

b 
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Table 1 

The hardware and software used for the implementation of the pro- 

posed model and algorithm 

Hardware and Software Specifications 

Processor Inter® Cor e TM i9-8750H 

CPU 5.30 GHz 

RAM 32GB 

System Type 64-bit Windows 10 

Platform iFogSim, SimBlock, Spyder, and SPSS 

Language Java and Python 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the above conditions are true then the corresponding healthcare IoT devices are mutually verified, authenticated, and 

identified adequately or else decline. The analytical model is further verified using mathematical equations and implement- 

ing the algorithm. Furthermore, the substitution and elimination method of equation solving, and checking are also used to 

verify the proposed system accuracy. 

The proposed system model is selected with the best skill. That is, the proposed model has the best-estimated skill when

making predictions. 

To orchestrate the message exchanged between the fog nodes and the healthcare IoT devices, we have proposed an 

application to perform operations and actions through blockchain. Each healthcare IoT device is uniquely identified by a 

“device ID” and the stored healthcare data. The mapping of device ID for healthcare IoT devices is conducted by fog nodes

for device identification using a configured data stored on the blockchain. Let m be the total number of healthcare IoT

devices C k ( 1 ≤ K ≤ m ) be the configuration for the healthcare IoT device k , the transaction for IoT devices requested are

described in Figure 9 . It shows the sequence diagram for the collection of healthcare IoT data. The fog node composes the

configuration requests { con f ig 1 , con f ig 2 . . . . . . , c on f ig n for the healthcare IoT devices and sends the request to patients

and doctors. 

11. Model Implementation 

In our proposed system, the healthcare IoT devices such as blood pressure monitor, ECG monitor are allowed to connect 

with the healthcare IoT network, P HD _ f ile is sent to relevant smart contracts for analysis. If the health condition is abnor-

mal, then the alert sent to the IoT-fog network and the doctors. P HD _ f ile are stored to fog nodes and other distributed

clusters. Healthcare IoT further participates to transfer the hash of the stored PHD to other fog nodes. The H _ IoT adds a

digital signature to the PHD. We have cryptographic techniques and operations from the proposed algorithm. Here H _ IoT is 

treated as a sender and the fog node who is receiving the P HD _ f ile could be treated as a receiver. Once the fog server/fog

node gets information then they can access the full P HD _ f ile as they have authorization over the network. 

12. Experimental Evaluation and Setup 

In this section, the execution of the proposed novel Advanced Signature-based Encryption algorithm (ASE) is evaluated 

and analyzed. The experimental evaluation is conducted in a real-time scenario for healthcare IoT. The performance of the 

FC-based Blockchain model that incorporates the proposed algorithm is analyzed through simulation and experiments. The 

baseline for this simulation is data authentication and healthcare IoT device identification for secure patient healthcare data 

transmission in an IoT-fog environment. To simulate the FC-based model, iFogSim as an open-source software tool, SimBlock 

for blockchain model implementation and the Python-based Spyder editor tool is used [ 40 , 41 ]. The proposed ASE algorithm

will be implemented in the iFogSim simulator [42] . The numerical simulation is conducted for the proposed platform is 

compared with the existing platform. 

See Table 1 for software and hardware specifications 

The algorithm is to be implemented using Netbeans and python with several main packages, modules, and classes. 

12.1. Experimental Results 

The general Healthcare IoT system consists of an IoT device, fog computing nodes, and clients. There are several inbuilt 

sensors in the healthcare IoT layer connected with the internet. The proposed FC-based blockchain analytical model and 

ASE algorithms are used to send the PHD to fog storage for further analysis. The healthcare IoT devices allow the patients

and doctors to collect the PHD at regular intervals for different frequencies. A blockchain model is added for the reliability

of the healthcare IoT-Fog system. At last, a real-time cryptographically secured PHD which is irreversible and immutable 

is retrieved. Patients can share now the PHD data to support medical research and innovations by getting identification of 

H _ IoT devices in the Peer-2-Peer (P2P) network. iFogSim simulator is used for the experimental of the proposed model and 

algorithm. The fog node communication is connected through the Giga ethernet. The incoming PHD are processed at the 

fog nodes. The experimentations are performed for 1200 seconds in simulation. We set the idle CPU power at 100 watt

and maximum power at 150 watts. We developed a PoW implementation for the IoT-Fog system, Ethereum was chosen as 
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Fig. 9. Healthcare IoT data collection sequence 

 

 

the blockchain-based technology for PoW. Next, the Profiler of NetBeans IDE 8.1 act as performance analysis tools for our 

proposed model and algorithm in simulation. We analyze the performance of our algorithms used in Ethereum as PoW in 

terms of CPU time and memory. 

We presented a security analysis of the proposed architecture. Furthermore, this section discusses the details of the 

iFogSim simulator settings for the proposed algorithm implementation. See Figures 10-14 for the graphical user interface 

(GUI) built-in iFogSim [ 42 , 43 ]. The Figures represent physical topology configurations from configuration 1- configuration 

5. These configurations will help in the future to get the preliminary idea of real-world implementation and deployment of 

the healthcare IoT-FC-cloud system. The ECG health data is taken as an input value to the proposed system model [ 44 , 45 ].

The ECG requires real-time monitoring of fewer than 300 milliseconds for one-way real-time data transmission. Whereas a 

certain application may tolerate less than 1 second for end-to-end ECG data transmission. In ECG data loss and error are

intolerant. It is a high priority and sensitive data which needs to be updated every second. 
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Fig. 10. GUI configuration 1 

Fig. 11. GUI configuration 2 

Table 2 

Fog device description 

Device Type CPU (GHz) RAM (GB) 

Fog_device1(Mobile device) 2.6 2 

Fog_device2(Mobile device) 2.6 2 

Master_Fog_Controller 3 3 

Cloud_server1 4 4 

 

 

 

 

 

Figure 10 shows the physical topology for configuration 1 built-in the iFogSim simulator [ 42 , 43 ]. Configuration 1 is solely

based on the concept of a proposed system. Three ECG IoT devices are used in Figure 10 to send the healthcare data to the

fog device. 

Configuration 2 in Figure 11 consists of 4 ECG IoT devices. These ECG devices transmit the classified PHD to Fog_device1

and Fog_device2. 

Configuration 3 in Figure 12 consists of 5 ECG IoT devices. These ECG devices transmit the classified PHD to Fog_device1

and Fog_device2. 

Figure 13 consists of 6 ECG IoT devices. These IoT devices transmit the classified PHD to Fog_device1 and Fog_device2. 

A total of 7 ECG_IoT devices are used in configuration 5 for PHD transmission to fog nodes. The 4 ECG_IoT devices

transmit the data to Fog_device1 and 3 IoT devices transmit the data to Fog_device2. 

See Figures 15 and 16 show the total time of execution and garbage collection along with heap used in fog nodes. 
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Fig. 12. GUI configuration 3 

Fig. 13. GUI configuration 4 

Table 3 

Edge Module description 

Tuple Types CPU Length (MIPS) Network Length(bytes) 

Raw data (ECG) stream 1200 2100 

The patient health data stream 2200 1700 

Time-sensitive data stream (Real-time) 2800 1700 

Table 4 

ECG sensor configuration 

CPU Length Network Length in bytes Data packet average arrival time at different intervals(ms) 

1200 Million instructions 22000 bytes 25 milliseconds 
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Fig. 14. GUI configuration 5 

Fig. 15. The total time of execution for ongoing processes in fog nodes and cloud. 
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Fig. 16. The garbage collection (GC) and heap size in fog nodes 

Table 5 

Network links description for the configuration 1 

Source Destination Latency(ms) 

ECG_IoT1 Fog_device1 40 

ECG_IoT2 Fog_device1 45 

ECG_IoT3 Fog_device1 45 

Fog_device1 Cloud_server1 70 

Table 6 

Network links description for the configuration 2 

Source Destination Latency(ms) 

ECG_IoT1 Fog_device1 40 

ECG_IoT2 Fog_device1 45 

ECG_IoT3 Fog_device2 50 

ECG_IoT4 Fog_device2 50 

Fog_device1 Master_Fog_Controller 55 

Fog_device2 Master_Fog_Controller 60 

Master_Fog_Controller Cloud_server1 70 

 

 

Tables 2–9 show the descriptions of the various devices and network link for the GUI in Figures 10-14 . The data size for

the PHD was defined in terms of megabytes (MB). 

Figure 17 shows the throughput for FC nodes and cloud servers in Megabits per second (Mbps) for different physical

topology configurations. The figure shows the throughput values for FC nodes is much greater when compared to the cloud 

servers. The throughput here is calculated by measuring the success rate of data packet transmission from fog nodes to 

end-user. Similarly, throughput values are also measured from one cloud server to end-users over a period at different 

configurations. The throughput increases with an increase in the number of healthcare IoT devices from Config.1-Config.5. 
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Table 7 

Network links description for the configuration 3 

Source Destination Latency(ms) 

ECG_IoT1 Fog_device1 40 

ECG_IoT2 Fog_device1 45 

ECG_IoT3 Fog_device1 45 

ECG_IoT4 Fog_device2 50 

ECG_IoT5 Fog_device2 50 

Fog_device1 Master_Fog_Controller 55 

Fog_device2 Master_Fog_Controller 60 

Master_Fog_Controller Cloud_server1 70 

Table 8 

Network links description for the configuration 4 

Source Destination Latency(ms) 

ECG_IoT1 Fog_device1 40 

ECG_IoT2 Fog_device1 45 

ECG_IoT3 Fog_device1 45 

ECG_IoT4 Fog_device2 50 

ECG_IoT5 Fog_device2 50 

ECG_IoT6 Fog_device2 50 

Fog_device1 Master_Fog_Controller 55 

Fog_device2 Master_Fog_Controller 60 

Master_Fog_Controller Cloud_server1 70 

Table 9 

Network links description for the configuration 5 

Source Destination Latency(ms) 

ECG_IoT1 Fog_device1 40 

ECG_IoT2 Fog_device1 45 

ECG_IoT3 Fog_device1 45 

ECG_IoT4 Fog_device2 50 

ECG_IoT5 Fog_device2 50 

ECG_IoT6 Fog_device2 50 

ECG_IoT7 Fog_device2 50 

Fog_device1 Master_Fog_Controller 55 

Fog_device2 Master_Fog_Controller 60 

Master_Fog_Controller Cloud_server1 70 

Fig. 17. Throughput for FC and cloud computing 
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Fig. 18. Energy consumption (KJ) in FC and cloud computing 

Fig. 19. Response time for FC and cloud computing 

 

 

 

 

Figure 18 shows the energy consumption in FC and cloud execution for different physical topology configurations. By 

analyzing the figure, a conclusion can be drawn that the energy consumption in fog nodes is much lower than the energy

consumption in cloud servers. The fast and excessive switching of processor speed due to a large amount of data generated

by the healthcare IoT devices leads to inefficient utilization of data packet at the cloud and further increases the energy

consumption. Here the high speed of processors in cloud servers causes larger values of energy consumption. The energy 

consumption increases with an increase in the number of healthcare IoT devices from Config.1-Config.5. 

Figure 19 shows the response time of FC and cloud servers in milliseconds (ms) for different physical topology configu- 

rations. The figure shows the response time of fog nodes is much lesser when compared to the cloud. The response time

increases with an increase in the number of IoT devices from ConfIg.1-Config.5. The IoT devices in the Config.1, Config.2, 
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Fig. 20. Execution time of simulation comparison between FC and cloud 

Fig. 21. Comparison of packet error 

 

 

 

 

 

 

 

 

Config.3, Config.4, and Config.5 are increased from 3-7. The response time is calculated by considering the total amount of 

time taken by a fog node and cloud server to respond to a request for service by end-users or IoT devices. While calculating

the response time, the transmission time for a moment can be ignored, the response time is the sum of service time and

wait time. The wait time is the time spent by a data packet in the queue before being served. 

Figure 20 shows the execution time of simulation comparison in milliseconds between fog nodes and cloud servers in 

different physical topology configurations. The figure shows the execution time for fog nodes is much lesser when compared 

to the cloud. The execution time of simulation increases with an increase in the number of IoT devices from ConfIg.1-

Config.5. The IoT devices in the Config.1, Config.2, Config.3, Config.4, and Config.5 are increased from 3-7 

Software and simulator like SimBlock and iFogSim are used for verification of healthcare IoTs. We have designed five 

different configurations set up in the iFogSim simulator to check the number of PHD successfully sent to patients and 

doctors after authentication and verification. 

Figure 21 shows the comparisons of packet error using the ASE algorithm between fog nodes and cloud servers at differ-

ent time intervals. The figure shows the packet error in fog nodes is much lesser when compared to the cloud. The simula-

tion of the ASE algorithm is conducted in iFogSim to record the number of packet error during real-time data transmission

between healthcare IoT, FC nodes, end-users, and cloud servers. 

The minimum number of packet errors in fog and cloud are 7 and 16. Whereas, the maximum packet error in fog

and cloud are 35 and 58. The obtained results indicated the better performance of the proposed ASE algorithm in the
25 
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Fig. 22. CPU time comparison of Fog-PoW and Cloud-PoW 

Fig. 23. Comparison of reliability in Fog-ASE and Cloud-ASE 

 

 

 

 

 

 

 

 

 

FC environment. The algorithm for packet error comparison is tested on five different physical topology configurations at 

different time intervals. The packet error for the ASE algorithm increases with an increase in time. 

Figure 22 shows the CPU time comparison of fog-PoW and cloud-PoW using the ASE algorithm in different miners. The 

figure shows the CPU time consumption in fog nodes is much lesser when compared to the cloud. The minimum values of

CPU time for PoW in FC and cloud using iFogSim simulator are 9 seconds and 18 seconds at Miner 1. Whereas the maximum

values of CPU time for PoW in FC and cloud environment are 28 seconds and 57 seconds at Miner 5. The obtained results

indicated the better CPU performance of the proposed ASE algorithm in the FC environment. The algorithm for CPU time 

comparison is tested on five different physical topology configurations at different miners. 

Figure 23 shows the comparison of reliability in fog-ASE and cloud-ASE at different time intervals. The figure shows the 

comparison of reliability in fog nodes is much greater when compared to the cloud. The classified ECG healthcare data is

taken as an input value to the proposed system [ 44 , 45 ]. The minimum percentage values of the ASE algorithm for reliability

in FC and cloud using iFogSim simulator are 86% and 82%. Whereas the maximum percentage values of the ASE algorithm

for reliability in FC and cloud environment are 95% and 87%. 

The obtained reliability results indicated the better performance of the proposed ASE algorithm in the FC environment. 

The algorithm for reliability percentage is tested on five different physical topology configurations at different time intervals 

in minutes. 

Figure 24 shows the number of blocks processed in fog and cloud along with the time required to process the blocks. The

figure shows that the processing time for blocks in fog nodes is much lesser when compared to the cloud. The minimum

processing time of the ASE algorithm for healthcare IoT in FC and cloud using the iFogSim simulator is 223 milliseconds
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Fig. 24. Number of blocks in fog and cloud vs processing time 

Fig. 25. Running time of ASE algorithm for PoW with the difficulty level 

 

 

 

 

 

 

 

 

 

and 331 milliseconds with 10 blocks. Whereas the maximum processing time of the ASE algorithm for healthcare IoT in FC

and cloud environment is 579 milliseconds and 833 milliseconds with 50 blocks. The obtained results for processing time 

indicated the better performance of the proposed ASE algorithm in the FC environment. The processing time of the ASE 

algorithm increases with an increase in the number of blocks. 

Figure 25 shows the running time of the ASE algorithm for Proof-of-Work (PoW) with varying difficulty level in fog and

cloud. The figure shows that the difficulty level in fog nodes is much lesser when compared to the cloud. The minimum

running time of the ASE algorithm for PoW with difficulty level 2 in FC and cloud using the iFogSim simulator is 113 seconds

and 207 seconds. Whereas the maximum running time of the ASE algorithm for PoW with difficulty level 10 in FC and cloud

environment is 571 seconds and 723 seconds. The running time of the algorithm for PoW is tested on five different physical

topology configurations at different difficulty levels. The running time of the ASE algorithm increases with an increase in 

the difficulty levels. 

Figure 26 shows the malicious node percentage in fog and cloud along with the detection accuracy in percentage. The 

figure shows that the detection accuracy in fog nodes is much greater when compared to the cloud. The minimum detec-

tion accuracy of the ASE algorithm for malicious node percentage 5 in FC and cloud using iFogSim simulator is 61% and

59%. Whereas the maximum detection accuracy of the ASE algorithm for malicious node percentage 25 in FC and cloud en-

vironment is 91% and 83%. The ASE algorithm for detection accuracy percentage is tested on five different physical topology 

configurations at different malicious node percentage. The detection accuracy increases with an increase in malicious node 

percentage. 

Figure 27 shows the comparison of reliability percentage for performance evaluation of the proposed ASE algorithm with 

the other existing state-of-the-art techniques such as FogBus, Femto cloud, BFAN, and BeeKeeper. Different existing algo- 
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Fig. 26. Malicious node percentage vs detection accuracy 

Fig. 27. Comparison of reliability for performance evaluation 

Fig. 28. Malicious node percentage vs detection accuracy performance evaluation 
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rithms are considered for benchmarking using the iFogSim simulator in five different physical topology configurations. The 

minimum reliability percentage is 69% for BeeKeeper. Whereas the minimum reliability percentage for the ASE algorithm is 

86%. Similarly, the maximum reliability percentage is 87% for both FogBus and BeeKeeper. Whereas the maximum reliability 

percentage for the proposed ASE algorithm is 95%. The ASE algorithm easily outperforms the other techniques. The proposed 

algorithm yields marked improvement over the other techniques. 

Figure 28 shows the comparison of malicious node percentage vs detection accuracy for performance evaluation of the 

proposed ASE algorithm with the other existing state-of-the-art techniques. Different existing algorithms are considered for 

benchmarking using the iFogSim simulator in five different physical topology configurations. The minimum detection accu- 

racy is 52% for BFAN at malicious node percentage 5. Whereas the minimum detection accuracy for the ASE algorithm is 61%

at malicious node percentage 5. Similarly, the maximum detection accuracy is 74% for BFAN at malicious node percentage 

25. Whereas the maximum detection accuracy for the proposed ASE algorithm is 91% at malicious node percentage 25. The 

ASE algorithm easily outperforms the other techniques. From Figure 28 for the detection accuracy percentage, the proposed 

algorithm yields marked improvement over the other techniques. 

13. Conclusion 

The current trend of healthcare is mostly found in the digitization of data. Where smart contracts will play a major role.

The IoT data need to be processed and monitored steadily. Healthcare IoT generates a large variety and veracity of PHD.

Processing this amount of data leads to insecure transmission between IoT devices and users. Therefore, in this paper, we 

address the issue of healthcare IoT data authentication and IoT device identification. Next, we present a novel solution to 

process the PHD with improved security. 

Traditional cloud servers work in a centralized manner to filter the PHD. These centralized servers are prone to a single

point of failures. Moreover, healthcare IoT devices can be attacked by outside intruders, hackers, and malicious agents. This 

leads to the tampering of data. A large number of heterogeneous IoT devices leads to unreliable and unauthenticated PHD. 

Therefore, to overcome this above-mentioned problem we have proposed a three-tier FC-based blockchain architecture, a 

mathematical framework, an Advanced Signature-Based Encryption Algorithm (ASE), and an analytical model for healthcare 

IoT device identification and PHD authentication for secure healthcare IoT data transmission. The solution and implementa- 

tion of the proposed work are conducted in iFogSim, SimBlock, and Python Editor tool. 

The proposed algorithm improves the detection accuracy for malicious node along with reliability. Furthermore, the ASE 

algorithm reduces the packet error for PHD transmission between healthcare IoT and end-users. When compared for perfor- 

mance evaluation and analysis of results the proposed algorithm easily outperforms the existing state-of-the-art techniques 

and approaches such as Fog Bus, BeeKeeper, Femto cloud, and FBAN. 

It has been established that the application of the proposed model and algorithm addresses a problem for PHD authenti- 

cation and healthcare IoT device identification by minimizing the packet error and malicious node percentage. The proposed 

approach has a deeper impact on healthcare IoT and FC for throughput and execution time as the time-sensitive PHD can

be transferred to patients and doctors in a single hop-count with minimum service delay. The processing of the healthcare 

data at the edge of IoT networks is secured in a decentralized manner using the blockchain technique. The future work

includes testing the algorithm to reduce the complexity of the healthcare IoT-FC system with the increase in the number of

IoT and fog devices. The proposed approach is also useful for telesurgery and Augmented Reality (AR). Moreover, the pro- 

posed technique in future can also be used for other IoT applications like onshore and offshore oil and gas monitoring. In

future research, we will be testing the ASE algorithm to overcome the scalability limitation of blockchain when used with 

healthcare IoT and FC. 
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