
OWSNet: Towards Real-time Offensive Words
Spotting Network for Consumer IoT Devices

Bharath Sudharsan∗, Sweta Malik∗, Peter Corcoran‡, Pankesh Patel∗†, John G. Breslin∗, Muhammad Intizar Ali§
∗Confirm SFI Centre for Smart Manufacturing, Data Science Institute, NUI Galway, Ireland

{bharath.sudharsan, sweta.malik, pankesh.patel, john.breslin}@insight-centre.org
‡School of Engineering and Informatics, NUI Galway, Ireland, peter.corcoran@nuigalway.ie

†Artificial Intelligence Institute, University of South Carolina, Columbia USA, ppankesh@mailbox.sc.edu
§School of Electronic Engineering, Dublin City University, Ireland, ali.intizar@dcu.ie

Abstract— Every modern household owns at least a dozen of
IoT devices like smart speakers, video doorbells, smartwatches,
where most of them are equipped with a Keyword spotting
(KWS) system-based digital voice assistant like Alexa. The state-
of-the-art KWS systems require a large number of operations,
higher computation, memory resources to show top performance.
In this paper, in contrast to existing resource-demanding KWS
systems, we propose a light-weight temporal convolution based
KWS system named OWSNet, that can comfortably execute on a
variety of IoT devices around us and can accurately spot multiple
keywords in real-time without disturbing the device’s routine
functionalities.

When OWSNet is deployed on consumer IoT devices placed in
the workplace, home, etc., in addition to spotting wake/trigger
words like ‘Hey Siri’, ‘Alexa’, it can also accurately spot
offensive words in real-time. If regular wake words are spotted,
it activates the voice assistant; else if offensive words are spotted,
it starts to capture and stream audio data to speech analytics
APIs for autonomous threat and insecurities detection in the
scene. The evaluation results show that the OWSNet is faster
than state-of-the-art models as it produced ≈ 1-74 times faster
inference on Raspberry Pi 4 and ≈ 1-12 times faster inference
on NVIDIA Jetson Nano. In this paper, to optimize IoT use-case
models like OWSNet, we present a generic multi-component
ML model optimization sequence that can reduce the memory
and computation demands of a wide range of ML models thus
enabling their execution on low resource, cost, power IoT devices.

Index Terms—IoT Devices, Edge Intelligence, Keyword Spot-
ting, Temporal Convolutions, Model Optimization.

I. INTRODUCTION

Keyword spotting (KWS) in voice-based digital assistants is
the first and most essential step where pre-defined keywords
are detected from a stream of live audio data captured by
a single microphone or an array of microphones. A high-
performance low latency KWS system/model is essential to
achieve a true hands-free interaction with IoT applications
or AI assistants that control thermostats, projectors, lights,
shades, doors. However, there are multiple challenges when
implementing such a fast and accurate keywords spotting
model on IoT devices that usually have limited hardware
resources [1]. For example, the basic Alexa smart speaker
models roughly have Quad-core, 64-bit ARM Cortex-A35,
8GB Flash, 2GB RAM, which is sufficient to run the top
KWS models. But due to the high computational demands
of top KWS models, the devices face the issue of delayed
detection of keywords (due to higher model execution time),
which impacts the responsiveness of the onboard Alexa Voice

Service (AVS) application, resulting in degraded human-Alexa
interaction quality.

We define Offensive language/words as a part of hate speech
spoken to express hatred on individuals or a targeted group of
people to make them feel humiliated or insulted. In extreme
cases, offensive language is used during threatening or when
inciting violence. Numerous studies have designed central
models that can autonomously detect multilingual hate content
on social media platforms like Twitter, Tumbler, Facebook.
But currently, to the best of our knowledge, there is no system
existing in any of the real human environments such as offices,
residence, factory floors to monitor speech data and detect
offensive words targeted to attack people/co-workers based on
their attributes like race, gender, ethnicity, sexual orientation.
Hence, in order to maintain a healthy verbal environment and
avoid harmful incidents, there is a strong need for a distributed
intelligent system in human environments to police the usage
of language.

In this paper, we present OWSNet, a resource-friendly
temporal convolutions based KWS system that can comfortably
execute on a wide variety of microphone-based IoT devices
existing around us. The OWSNet, without disturbing their
routine functionalities, can spot multiple keywords (both
offensive words and voice assistant wake words) in real-time
with high accuracy. If regular voice assistant wake words
are spotted, it activates the onboard AVS application; else
if offensive words are spotted, OWSNet will start capturing
audio data from the scene and stream it to APIs that perform
autonomous threat detection and alerting by analyzing the
transmitted speech data. The OWSNet guarantees the user
privacy since it only utilizes that data that IoT devices already
have access to. i.e., devices already have access to audio data
for spotting wake words like ‘Hey Siri’, ‘Alexa’, in order to
wake up/trigger voice assistants. The main contributions of
this paper can be summarized as follows:

• We propose a resource-friendly multiple KWS network
named OWSNet that can comfortably execute on mid-
sized small CPU-based IoT devices. The temporal convo-
lutions in our designed network reduce the computational
strain during execution while showing superior inference
(speedups) performance than the state-of-the-art KWS
models.

• The proposed network can learn using various voice
datasets like the standard Google Speech Commands



Fig. 1. The resource-friendly OWSNet is executable on a broad-spectrum of IoT devices and can accurately spot multiple keywords in real-time. If an utterance
of offensive words is spotted, it starts streaming audio/video data to analytics APIs for autonomous threat and insecurities detection in the scene.

dataset and also hate speech audio datasets that contain
voice recordings of multiple offensive words.

• We provide a multi-component ML model optimization
sequence to optimize various CNNs for making it exe-
cutable on resource-constrained hardware. We apply our
sequence on standard CNNs, also on OWSNet and discuss
how our sequence enables the execution of a wide range
of ML models on tiny embedded systems like IoT devices.

Outline. The rest of the paper is organized as follows. In
Section II, we present the complete OWSNet with its evaluation
results. Then in Section III, we propose an end-to-end multi-
component ML model optimization sequence and use it to
optimize the OWSNet. In Section V, we summarize by providing
greater context for future research.

II. OFFENSIVE WORDS SPOTTING

Although offensive words are not used in most cultured
environments, yet there are ever-increasing reports and social
media posts about the use of hate speech. It is evident from the
recent events [2] that even people from dignifiable positions
utter offensive words to humiliate minor community people
or targetted individuals. Invariable of the environment (work,
home, social gatherings), there are many examples where the
utterance of just one offensive word had ended up in disputes
between people. Also, in many scenarios, offensive language
is spoken during threatening or when inciting violence. Hence,
there is a strong need for a distributed intelligent system to
exist around people to police the language and raise timely
alerts to avoid harmful incidents.

As IoT devices have become ubiquitous in most environ-
ments, every person is close to at least one device such as a
smartphone, smartwatch, smart speaker, etc. Hence, we aim to
deploy our resource-friendly OWSNet on IoT devices (rather
than other platform devices) in order to provide them the
ability to detect various offensive words. After detection, using
the IoT device in the scene, we capture and stream the audio
and/or video data to APIs for performing autonomous detection
of threats and insecurities. For example, as shown in Fig. 1,
after hate words detection by the IoT devices equipped with
OWSNet, the data stream is received by the API. These APIs

that perform the advanced analytics should contain models
or certified skills that can understand and detect offensive
events using the streamed data. For example, in [3], they have
deployed a custom skill on the central Amazon developer
console and interfaced it with their Alexa smart speaker
prototype. Whenever their custom skill spots the command
Alexa, ask Friday what she sees, the skill activates the smart
speaker camera, executes an ML model on the device, and
returns the names of the objects in the device’s field of view.
In Fig. 1, we show a few example scenarios where offensive
words can be spotted and lead to undesired incidents. In the
following, we brief how OWSNet can improve the safety of
people in such scenarios.

Smart speakers with OWSNet. In today’s modern house-
holds, multiple devices are distributedly located across the
house, and devices with AI assistants are usually placed within
5 meters distance from the people to capture speech commands
with greater audio detail. When household IoT devices are
equipped with OWSNet, during the occurrence of undesirable
events such as domestic violence or physical abuse, at least one
device in the home would spot the offensive words, then stream
the speech data to API skills for offensive events detection
and alerting.

Smartwatches with OWSNet. Usually in casual meetings
and outdoor gatherings there would be less presence of IoT
devices. In such cases, smartwatches with OWSNet, can spot
the utterance of offensive words on race, gender, diversity,
etc., then stream speech data to API for detection of offensive
events by performing advanced speech analytics.

Security cameras with OWSNet. Wide landscape infrastruc-
tures such as parking spaces, factory assembly lines, etc.,
contain blind spots since the few installed cameras cannot
cover the entire area due to their limited field of view. When
camera-based devices such as video doorbells, IP cameras, etc.,
are equipped with OWSNet, they can detect offensive words.
Then, based on the estimated Direction of Arrival (DOA) of
the detected words, the camera can steer or change its focus
point facing the incident. Such DOA-based camera steering
enables the provision of visual data after detection of hate



words from the scene, thus enabling API skills to identify
offensive events with greater accuracy.

There are various other scenarios where the alerts raised by
OWSNet equipped devices can save people who are about to
fall prey for theft, racial discrimination, get caught in public
clashes, etc. Since the devices with OWSNet start to stream
audio and/or video data to APIs, the users can enable the
option of storing the conversation or visual scene that can later
be used as evidence to prove the offense caused to the victim.
Also, such autonomous detection, analytics, and recording
are critical in emergencies where the victim does not get
the chance to record the audio or video when attacked. For
example, in Fig. 1, in the scenario where a burglar is trying
to enter the house or when the man is getting robbed in the
parking spot, the victims might not instantly think and act
to start the recording/streaming. In such cases, the offender
would have had used offensive words, which OWSNet model
can spot and stream the data from the offense scene to its
interlinked API.

A. Offensive Words Spotting Network (OWSNet) Design

Here we describe and compare 2D convolutions with
temporal convolutions, then present the OWSNet architecture.

1) 2D vs Temporal Convolutions: In a typical 2D convolu-
tion based network design, for the given input X ∈ Rw×h×c

and network weights W ∈ Rkw×kh×c×c′ , the standard 2D
convolution outputs Y ∈ Rw×h×c′ . Most such CNN-based
KWS models are fed with a 2D Mel-Frequency Cepstral
Coefficients (MFCC) as the input using which the raw audio
is transformed into a time-frequency representation I ∈ Rt×f

where, t is the time and f is the extracted feature from
frequency domain. Most existing studies [4,5] use input tensor
X ∈ Rw×h×c where c = 1, t = w, f = h and since thier
model design is based on 2D convolution, their input tensor
becomes X2 d ∈ Rt×f×1.

Since we intend to design a model that is fast executing (for
real-time KWS results) and also accurate, we reshape the input
from X2 d into X1 d. Next, instead of using an intensity or
grayscale image as an input (a widely used method to interpret
audio data), we consider the MFCC of each frame as time-
series data. We next consider I as a 1D sequence with its data
features represented as f . In this step, instead of converting I
to X2 d, we set h = 1 and c = f which results in producing
X1 d ∈ Rt×1×f and feed it to the temporal convolution.

When applying this method during the KWS network
design, the resultant model will be smaller in size. When
the 2D convolutions with W2 d ∈ R3×3×1×c and temporal
convolutions with weights W1d ∈ R3×1×f×c′ have the same
parameters count, the temporal convolutions can execute faster
on IoT devices since it has a smaller number of computations
than the traditional 2D convolutions. Similarly, the output
Y1 d ∈ Rt×1×c′ from the first layer of a temporal convolutions-
based network is smaller than Y2 d ∈ Rt×f×c which is the
output of a 2D convolutional layer. This size reduction also
reduces the model’s computational complexity and memory

TABLE I
COMPARING THE PERFORMANCE OF TOP MODELS WITH OWSNet. THE BEST

RESULT IN EACH COLUMN IS IN BOLD.

Network FLOPs Total
Params

Inference Time
(ms) Accuracy

(%)D1 D2
CNN-stride4 [6] 1.5M 148K 1.9 1.1 84.6
CNN-fpool3 [6] 76.1M 524K 39.1 2.7 90.7
DS-CNN-S [5] 5.4M 24K 2.3 1.3 94.4
DS-CNN-M [5] 19.8M 140K 9.2 0.5 94.9
Res8-Narrow [4] 143.2M 20K 57.6 4.4 90.1

Res15-Narrow [4] 348.7M 43K 112.4 9.7 94.0
OWSNet (ours) 3.0M 66K 1.5 0.8 93.7

footprint, resulting in faster model execution (i.e., spots
keywords in real-time).

2) OWSNet Model Architecture: We adopt the ResNet
architecture and make the following modifications: (i) we
use m × 1 kernels instead of the 3 × 3 kernels. (ii) Use
m = 3 for the first network layer and m = 9 for the
remaining layers. (iii) We remove the bias from all existing
fully connected and convolution layers. (iv) All the existing
Batch Normalization (BN) layers have trainable parameters for
scaling and shifting. (v) We directly use the identity shortcuts
whenever the dimensions of input and output are of matching
dimensions. If not matching, similar to [4], we use an extra
conv-BN-ReLU layer for dimensions matching, but in a setting
with temporal convolutions instead of their conventional 3× 3
kernel. (vi) For other network layers, we follow the original
ResNet implementation but exclude dilated convolutions and
adopt strided convolutions.

B. Experimentation: Training OWSNet

We train OWSNet using the Google Speech Commands
dataset, which contains 64,727 one-second-long recorded and
labeled audio files. Out of the existing 30 categories of
recordings, we train the network to distinguish 10 classes
that are: yes, no, up, down, on, off, stop, go, silence, and
unknown. We split the dataset and use 80% for training, 10%
for validation, and 10% for testing. For data augmentation and
preprocessing, we apply random shift and inject noise into
the training data. We generate background noise by cropping
random background noises from the selected dataset, then
sample a random co-efficient from the uniform distribution
U(0, 0.1) and multiply it with the background noise. The audio
file from the dataset is decoded to a float tensor and shifted
by s seconds (sampled from U (-0.1, 0.1)) with zero padding
and blended with the background noise.

We next follow the procedure from [4] and decomposed the
audio files into a sequence of frames with the window of 30
ms and the stride of 10 ms for feature extraction. For each
frame, we use 40 MFCC features and stack the features over
the time axis. We now perform the training in TensorFLow,
with a 0.001 weight decay and a 0.5 probability dropout to
avoid overfitting. We use SGD on a mini-batch of 100 samples,
and OWSNet was trained from scratch for 27k iterations.



Fig. 2. Multi-component model optimization sequence: sequence to follow for optimizing any ML model to enable its execution on tiny MCUs and small
CPUs based IoT devices. We apply this optimization sequence on the designed KWS network to enable its execution on consumer IoT devices.

C. OWSNet Evaluation and Results Comparison

We trained OWSNet 6 times, then average and report the
model performance in this section (we use accuracy metric
for evaluation). To ensure that OWSNet is friendly enough
to execute on real-world resource-constrained devices, we
quantify and report the OWSNet’s computation performance
in terms of FLOPs and the number of all parameters (instead
of reporting only trainable parameters). We also measure and
report the inference time consumed by the trained OWSNet
during execution on small CPUs and edge GPUs based devices,
where device one (D1) is a Raspberry Pi 4 CPU, and device 2
(D2) is an NVIDIA Jetson Nano. For statistical validation, we
measure the inference time for 50 runs and report the average.

In Table I, we report the FLOPs, total parameters, inference
time on selected devices, and accuracy of OWSNet next to
the results from the papers of top KWS models. The CNN-
stride4 and CNN-fpool3 represents the cnn-one-fstride4 and
cnn-trad-fpool3 models from [6] respectively. The results of
the next DS-CNN-S and DS-CNN-M that contains depthwise
convolutions are imported from [5]. The next, Res8-Narrow
(contains 8 layers) and Res15-Narrow (contains 15 layers)
imported from [4] employs a residual architecture to spot
keywords. In these networks, the suffix Narrow indicates that
it contains a reduced number of channels. In the remainder,
based on Table I, we analyze and compare the results.

DS-CNN-M showed the top accuracy of 94.9% (1.2%
higher than OWSNet), CNN-stride4 has the lowest FLOPs
(1.5M FLOPs lower than OWSNet), and Res8-Narrow contains
the least number of parameters (46K lesser than OWSNet).
Although other networks show better results, the OWSNet is
the fastest as it produces 1.26-74.9 times faster inference on
D1 and 1.37-12.12 times faster inference on D2. We were able
to achieve such inference speedups due to the incorporation
of temporal convolutions into the network design.

III. MULTI-COMPONENT MODEL OPTIMIZER DESIGN

We propose an end-to-end multi-component optimization
sequence to enable the execution of high memory and com-
putation demanding ML models on the low resource, cost,

power IoT devices1. Fig. 2, shows how to optimize ML
models in multiple aspects to obtain resource-friendly models
that can readily be deployed on devices like smart speakers,
security cams, video doorbells, etc. The presented generic
optimization sequence is applicable for OWSNet and also for
ML models trained to solve problems in use-cases such as
anomaly detection, predictive maintenance, machine vision.

A. Model Optimization Components

As shown in Fig. 2, we initiate the optimization sequence by
providing methods to perform quantization-aware training or
pruning. Next, the model should undergo any one of the post-
training quantization schemes to obtain a quantized version of
the actual model. Then we apply the operations optimization
techniques on the models to keep the operational cost low
without impacting the model architecture. Next, we reduce the
computational workloads of CNNs, by realizing our workload
optimization components. Finally, to maximize the performance
while minimizing the memory footprint of CNNs, we utilize
lighter kernels. After optimization, the users need to follow the
steps from the RCE-NN pipeline [7] to convert and execute
the optimized models on resource-constrained devices.

B. Optimizing standard CNNs

Before optimizing the OWSNet, we implement each of the
optimizer components on standard CNNs and present the
experimental results in our repository. For the experiments, we
use the standard MNIST Fashion and MNIST Digits datasets
to train a basic CNN whose architecture consists of a reshape
layer, Convolution 2D layer, MaxPooling2D layer, Flatten layer,
and finally a Dense layer. In the repository, we first import
both the datasets via the tf.keras.dataset.name function with its
default train and test sets. We then apply all suitable optimizers
before, during, and after the training of CNNs and show the
memory conservation and inference speedups achieved after
realizing each optimizer component. In the following, we brief
each optimization component.

1The implementation of the optimizer components are freely available at
https://github.com/bharathsudharsan/CNN_on_MCU



Pruning. We implemented the magnitude-based weight prun-
ing, where the model’s weights are gradually zeroed out
during the training process in order to achieve model sparsity.
Thus obtained sparse models are easier to compress, and the
zeroes can be skipped during inference, resulting in latency
improvements. With a minimal accuracy loss, we experienced
up to 5x compression as a result of training CNNs with pruning.
Quantization-aware training (QAT). When quantizing a
CNN, the parameters and computations go from a higher to
lower precision, resulting in improved execution efficiency at a
cost of information loss. This loss is because the model weights
can only take a small set of values, thus losing the minute
differences between them. To reduce the loss and maintain
the model accuracy, we implement the QAT scheme from
[8]. Here, the quantization error is introduced as noise during
the model training and as part of the overall loss, which the
optimization algorithm in use tries to minimize.
Post-training Quantization. Here, we quantize the models
by reducing the precision of their weights to save memory and
simplify calculations often without much impact on accuracy.
Recently in [7], we quantized WiFi and BLE RSS (Received
Signal Strength) predicting CNNs and executed them on
multiple MCU-based boards with almost no loss on their
Mean Absolute Error (performance).
Operations Optimization. When designing a model aimed to
execute on IoT devices, only a limited subset of operations
can be used to keep the operational cost low. We notice that
more than 90% arithmetic operations are used by convolu-
tional (CONV) layers, so we perform depthwise separation of
the 2-D CONVs to reduce parameters and operations count,
thus enabling the fitting of larger networks on tiny IoT devices.
Workload and Kernels Optimization. The complexity and
size of the model impact the workload. Models with dense
architectures lead to increased processor workload and result
in a higher duty cycle, resulting in IoT devices spending
more time working (elevates power consumption and heat
output) and less time idle. To reduce workloads without much
engineering/implementation efforts, we recommend users to
follow the list of methods from [7]. When further reduction
is required, we recommend offloading the bulk of CNN
workloads (convolutional layers) to nearby accelerators like
co-MCUs/processors. Then, the exported plain C code of the
ML model to be executed needs to be stored in a shared
memory location (EEPROM) that can be accessed via common
load/store ports. Also, the parallel offloading approach needs
to be practiced during the programming phase since it leads to
internal data reuse and improvement of inference performance.

Since the quantized model weights are stored and re-used
during inference, we found that reordering the matrix weights
can reduce the pointer accesses. We recommend users inherit
any weight interleaving method to implement the weights
reordering tasks. Then, we recommend replacing the default
ReLU with its optimized version from [9].
RCE-NN Pipeline. Here, in four steps, we outline how
to deploy and execute any ML model on the MCUs and

small CPUs of IoT devices. As shown in Fig. 2, the Model
conversion is Step 1, where the given model is converted into
a FlatBuffer file containing its direct data structures such
as the information arrays of graphs, subgraphs, lists of tensors,
operators, etc. Next, in Step 2 which is Model translation,
since MCUs lack native file-system support, we cannot load
and run models directly on such devices, so here we convert
the model’s FlatBuffer file into a c-byte array (the model in a
char array) using the xxd UNIX command. Step 3 is Model
integration, where the c-byte array of the OWSNet model is
fused with the main IoT program/application, for which the
devices’ executable binaries are built. Finally, in the Model
deployment (Step 4), the generated binaries are flashed onto
the program memory of the IoT devices.

C. Optimizing the OWSNet

Here, similar to how we optimized a basic CNN in the
previous section, we take the trained OWSNet model from
Section II and apply the optimization sequence from Fig.
2. But since we already had trained the network using the
Google Speech Commands dataset, we skip the Pre-training
optimization and directly quantize the model. The original
OWSNet model was 981 kB in size, after Post-training model
optimization; the Int with float fallback quantized version
is 96.4 kB, the Float 16 quantized version is 169.4 kB in
size, the Integer-only quantized version is 97.2 kB in size.
As shown in the RCE-NN pipeline in Fig. 2, any of the
quantized .tflite OWSNet model need to be converted into
a c-byte array with the .cc format. After the conversion, it
is common for the .cc model to be 5-7 times larger in size
than its .tflite version. This model size expansion cannot
be addressed since most MCU-based tiny IoT devices do not
have native filesystem support. Hence as mentioned, the only
way is to convert, include the quantized model as a c-array,
then compile it along with the IoT application and flash it
together on the device. In the case of better-resourced devices
such as Alexa smart speaker, which roughly has Quad-core,
64-bit ARM Cortex-A35 8GB Flash, 2GB RAM, or a video
doorbell which roughly has ARM Cortex-A9 CPU, 2GB RAM,
2GB Flash, the TensorFlow Light framework can be highly
altered to remove the parts that are not needed to run the user’s
ML model, then installed on the device and perform inference
directly using the quantized tflite use-case model.

IV. RELATED WORK

Since we designed OWSNet KWS system, and also a multi-
component ML model optimization sequence, the review
consists of the two following subsections:

A. Keyword Spotting Networks

After the release of TensorFlow Lite and Micro frameworks,
many studies have adopted CNNs for KWS use-cases. In
[6], low parameters network was designed for KWS. In [5],
CNN architecture exploration and evaluation for running KWS
on resource-constrained devices was performed. Article [4],
explored the popular ResNet architecture and varied the depth



and width of the model to improve its compactness while
also outperforming other KWS networks. In all such studies,
their network contains a 2D convolutional layer that is more
expensive to run in a limited RAM budget. To provide a more
resource-friendly solution, study [10] have used 1D kernels in
the network designed for their music feature extraction use-case.
Similarly, study [11] presented a rare sound event detection
network, which is a combination of 1D convolutional neural
network and recurrent neural network. We take inspiration
from these studies and apply 1D convolution to design a
network for the offensive words spotting use-case. But unlike
them, we apply the convolutions on the temporal axis of the
time–frequency signal representation rather than focusing on
the frequency axis of the input audio signals.

B. ML Model Optimization Techniques

In the category of algorithms for model optimization, there
is a set of articles proposing compression techniques to reduce
the size of the model’s weights using quantization and pruning.
Condensa [12], a system for users to compose simple operators
to build complex model compression strategies. Two new
compression methods jointly leverage weight quantization and
the distillation of larger networks was proposed in [13]. Authors
in [14] have implemented a tree-based algorithm for efficient
prediction in milliseconds even on slow MCUs. Similarly,
ProtoNN [15], k-NN inspired algorithm with several orders
lower storage and prediction complexity addresses the problem
of real-time and accurate prediction on resource-scarce devices.
In both [12,13] and other similar articles proposing compress-
ing [16,17] and optimization [9,18] methods, the models are
trained in high resource setups, then a multi-stage MCU-aware
optimization (tailored) is performed before deployment. In
[19]–[22], SRAM optimized porting of Decision Trees (DT)
and Random Forest (RF) is performed, and the ported models
are efficiently executed on MCU boards. The popular sklearn-
porter, m2cgen, emlearn libraries can be used to generate
optimized C code, using which use-case based ML models
like the ‘Adaptive Strategy’ SVR [23], ‘Edge2Guard’ [24],
‘Covid-away’ [25] can be ported and deployed on a range of
IoT devices.

V. CONCLUSION

In this paper, we presented OWSNet, a resource-friendly
temporal convolutions-based network design that can perform
real-time spotting of multiple keywords on consumer IoT
devices. Although a few models have lesser FLOPs, lesser
total parameters, and slightly higher accuracy, our OWSNet is
faster than them and other state-of-the-art models as it produced
≈ 1-74 times faster inference on Raspberry Pi 4 and ≈ 1-
12 times faster inference on NVIDIA Jetson Nano. We also
presented a generic multi-component ML model optimization
sequence that can optimize any high memory and computation
demanding ML model and enable its execution on the low
resource, cost, and power IoT devices. We applied a few
optimization components on OWSNet, which reduced the model
size by 10 times with almost no loss of accuracy.

In the future, we plan to build a hate speech audio dataset
that contains voice recordings of multiple offensive words, then
train OWSNet using this dataset and benchmark the offensive
words spotting performance. We then plan to deploy and
execute the resultant model on the microphone-array based
Alexa smart speaker prototypes [3,26] and perform real-world
evaluations.

ACKNOWLEDGEMENT

This publication has emanated from research supported in
part by a research grant from Science Foundation Ireland (SFI)
under Grant Number SFI/16/RC/3918 (Confirm) and also by
a research grant from Science Foundation Ireland (SFI) under
Grant Number SFI/12/RC/2289_P2 (Insight), with both grants
co-funded by the European Regional Development Fund.

REFERENCES

[1] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Edge2train: A framework to
train machine learning models (svms) on resource-constrained iot edge
devices,” in 10th International Conference on the Internet of Things, ser.
IoT ’20, 2020.

[2] B. O’Brien, “White police officer cleared of charges in wisconsin
shooting of black man,” Reuters, 01 2021.

[3] B. Sudharsan, S. P. Kumar, and R. Dhakshinamurthy, “Ai vision: Smart
speaker design and implementation with object detection custom skill
and advanced voice interaction capability,” in ICoAC, 2019.

[4] R. Tang and J. Lin, “Deep residual learning for small-footprint keyword
spotting,” in IEEE ICASSP, 2018.

[5] Y. Zhang, V. Chandra et al., “Hello edge: Keyword spotting on
microcontrollers,” arXiv preprint, 2017.

[6] T. N. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” in INTERSPEECH, 2015.

[7] B. Sudharsan, J. G. Breslin, and M. I. Ali, “RCE-NN: a five-stage
pipeline to execute neural networks (cnns) on resource-constrained iot
edge devices,” in International Conference on Internet of Things, 2020.

[8] B. Jacob, D. Kalenichenko et al., “Quantization and training of neural
networks for efficient integer-arithmetic-only inference.”

[9] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv Preprint, 2018.

[10] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional recurrent
neural networks for music classification,” in IEEE ICASSP, 2017.

[11] H. Lim, J. Park, and Y. Han, “Rare sound event detection using 1d
convolutional recurrent neural networks,” in DCASE Workshop, 2017.

[12] V. Joseph, S. Muralidharan, A. Garg, M. Garland, and G. Gopalakrishnan,
“A programmable approach to model compression.”

[13] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” arXiv Preprint, 2018.

[14] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learning
in 2 KB RAM for the internet of things,” in ICML, 2017.

[15] C. Gupta, P. Jain et al., “Protonn: Compressed and accurate knn for
resource-scarce devices,” in ICML, 2017.

[16] W. J, “Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding,” arXiv preprint, 2015.

[17] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation
of convolutional neural networks,” arXiv preprint, 2016.

[18] S. Bhattacharya, “Sparsification and separation of deep learning layers
for constrained resource inference on wearables,” in SenSys, 2016.

[19] B. Sudharsan, P. Patel, J. G. Breslin, and M. I. Ali, “Ultra-fast machine
learning classifier execution on iot devices without sram consumption,”
in IEEE PerCom Workshops, 2021.

[20] B. Sudharsan, P. Patel, J. G. Breslin, and M. I. Ali, “Sram optimized
porting and execution of machine learning classifiers on mcu-based
iot devices: demo abstract,” in Proceedings of the ACM/IEEE 12th
International Conference on Cyber-Physical Systems (ICCPS), 2021.

[21] B. Sudharsan, M. I. Ali et al., “Demo abstract: Porting and execution of
anomalies detection models on embedded systems in iot,” IoTDI, 2021.



[22] B. Sudharsan and P. Patel, “Machine learning meets internet of things:
From theory to practice,” The European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), 2021.

[23] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Adaptive strategy to improve
the quality of communication for iot edge devices,” in World Forum on
Internet of Things (WF-IoT), 2020.

[24] B. Sudharsan, D. Sundaram, P. Patel, J. Breslin, and M. Intizar Ali,
“Edge2guard: Botnet attacks detecting offline models for resource-

constrained iot devices,” IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), 2021.

[25] B. Sudharsan, D. Sundaram, J. G. Breslin, and M. I. Ali, “Avoid touching
your face: A hand-to-face 3d motion dataset (covid-away) and trained
models for smartwatches,” in 10th International Conference on the
Internet of Things Companion, ser. IoT ’20 Companion, 2020.

[26] B. Sudharsan, P. Corcoran, and M. I. Ali, “Smart speaker design
and implementation with biometric authentication and advanced voice
interaction capability,” in Proceedings for the 27th AIAI AICS, 2019.


	OWSNet: Towards Real-time Offensive Words Spotting Network for Consumer IoT Devices
	Publication Info
	Author(s)

	tmp.1620321194.pdf.MzZZC

