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Introduction
Smart manufacturing or Industry 4.0, a trend initiated a decade ago, aims to revolutionize
traditional manufacturing using technology-driven approaches. Modern digital technologies such
as the Industrial Internet of Things (IIoT), Big Data Analytics, Augmented/Virtual Reality, and
Artificial Intelligence (AI) are the key enablers of new smart manufacturing approaches.

The digital twin is an emerging concept whereby a digital replica can be built of any physical
object. Digital twins are becoming mainstream; many organizations have started to rely on
digital twins to monitor, analyze, and simulate physical assets and processes [1]. The current
use of digital twins for smart manufacturing is largely limited to (i) status monitoring, (ii)
simulation, and (iii) visualization. For status monitoring, digital replicas of physical assets
(e.g., machines) are created, machines are continuously monitored using IIoTs, and the latest
status of a machine can be assessed by querying its digital twin. For simulation, digital twins of
machines, processes, and products are created to mimic real settings. Simulation allows the
design, development, and testing of new products and processes using their digital twins before
applying them to actual physical assets, this is presented in [5]. For visualization, digital twins
can include real-time dashboards and alert systems to monitor and debug an operational
environment [2]. However, in contemporary cases, digital twins are simply considered to be an
exact replica of the physical assets, without any value-added services built on top of them which
could convert physical assets into autonomous intelligent agents. A major advantage of this
enhanced design of digital twins is that they can offer much more than just an exact replica to
support value-added services on top of digital twins, which are not possible on the physical
assets.

Cognitive Digital Twins
Cognitive digital twins are an extension of existing digital twins with additional capabilities of
communication, analytics, and intelligence in three layers: (i) access, (ii) analytics, and (iii)
cognition.

The access layer is responsible for communication with the machine and gets access to data
regarding the status of a physical asset to update the status of the digital twin. The analytics
layer provides edge analytics capabilities at the device level. Similar to the edge analytics at the
edge, this layer of the digital twin can perform additional analytical tasks on top of real-time
collected data to help with the process of decision making by converting the raw sensory input



into actionable knowledge [3]. The cognitive layer enables cognition by the digital twins. It is
capable of performing complex decision making using edge analytics, domain expertise, and
global knowledge bases. It is also responsible for communication among digital twins, allowing
them to build their own networks and perform autonomous decision making. Cognitive digital
twins will convert traditional digital twins into smart and intelligent agents that can access,
analyze, understand, and react to their current status. In case of anomalies, rather than
resorting to a simple alert system, the cognitive digital twin can interact with the operational
environment and digital twins of products, running processes to further analyze and intelligently
understand the anomalies. The cognitive digital twin can draw conclusions of situations locally
and then also interact with other digital twins of physical assets operating in similar operational
conditions to better understand shared local anomalies. Once identified, cognitive digital twins
can interact socially with other peers and share knowledge and generate alerts in advance of
any future potential unexpected situations. Insights from the analytics performed by cognitive
digital twins will eventually help to build enterprise-level knowledge graph extraction, capture,
and storage of domain knowledge.

Cognitive digital twins will disrupt existing technologies and applications used for digital twins by
making them intelligent as well as social. The emerging concept of self-healing, self-configuring,
and self-orchestrating systems is made possible using this approach. The team at the Confirm
SFI Research Centre for Smart Manufacturing has implemented an initial prototype of cognitive
digital twins using a benchmark dataset for production line performance monitoring [6] and
intend to fully test the implemented prototype on the actual production lines of a smart factory in
collaboration with an industry partner. An initial factory of the future to assess and implement
this emerging concept is also being constructed at the University of South Carolina (Figure 1,
see [7] for details). Having a social and interactive network of digital twins and a shared
knowledge space will allow analytics and intelligence to go beyond the physical walls of a
factory where digital twins can share their experience and lessons learned across the board.



Figure 1: Proposed CPS-enabled control for future factories: control network administers
physical cell and digital twin to synchronize process signals and intelligently actuate field
devices by system smart layers. System smart layers consist of business intelligence from cloud
services and semantic integration of visual signals from the edge ends.

An Ecosystem of Cognitive Digital Twins
We envision that once the cognitive digital twins are in place, they can build a network among
themselves, having fully automated machine-to-machine interaction and decision making
resulting in an ecosystem of cognitive digital twins. The knowledge gained by edge analytics,
communication among digital twins and domain knowledge including user experiences will be
captured as a unified knowledge graph. This knowledge graph will gradually evolve and will
become a major source of information within the ecosystem of cognitive digital twins. Figure 2
presents a generic overview of cognitive digital twins ecosystems. We further elaborate our
vision with an example use case of a manufacturing plant producing orthopedic implants, e.g.
knee, hip and elbow joint replacements. On the shop floor, various machines are placed in an
assembly line performing different operations, e.g. cutting, grinding, and polishing, etc. Each
machine is equipped with different sensors to monitor its functional state, e.g. temperature,
voltage, vibration, and rotation. A cognitive digital twin is created for all machines, products and
processes. Collaboration and communication among the digital twins during decision making is
conducted in four stages as follows.



Figure 2: A Cognitive Ecosystem of Digital Twins

At the first stage, the cognitive digital twin of an industrial machine (e.g., a grinding machine)
equipped with edge analytics is continuously monitoring values against predefined thresholds.
An alert is created whenever a threshold is breached (e.g. the temperature of a motor inside the
grinding machine goes beyond an acceptable threshold) [4]. At the second stage, the cognitive
digital twin starts the sensemaking process by collecting contextual information including
product characteristics (e.g. to check the rigidity of a metal alloy being used for a product),
configurations of the processes being applied by the machine (e.g. pressure and speed of a
grinding process), and operational conditions on the factory shop floor such as temperature,
humidity, etc. The cognitive digital twins are capable of correlating all acquired information and
initiating a sensemaking process to understand whether the current spike in temperature is due
to a fault in the machine, characteristics of the product being manufactured, the manufacturing
process being applied, or conditions on the shop floor. A factory level knowledge base is
gradually created for all previous anomalies detected and their remedial actions. If a preexisting
similar cause is identified, and its remedial action is available in the knowledge base, the
cognitive digital twin will adjust its configuration, request a process adjustment, and/or adjust
operational conditions accordingly. In the third stage, if a cognitive digital twin is unable to make
sense of local information, it seeks further assistance from the social network of its peers and



requests information from similar machines with similar operational conditions, e.g. a grinding
machine of the same make and brand being used in a different plant. If an anomaly in
temperature is only being observed locally, the digital twin of the machine adjusts itself to the
configuration of machines running optimally without any issues. If the anomaly is observed
across the board, a network-wide alert is broadcasted to request remedial actions. In the fourth
stage, a record of captured events, interactions, the outcome of analytics, and the sensemaking
process together with domain expertise is stored in a shared knowledge base in the shape of an
enterprise-level knowledge graph. This knowledge graph will act as a central information portal
for any future occurrences of similar events. We foresee that in the future, this knowledge graph
will act as a central hub for all operational machines to post questions and get immediate
answers. When necessary, a human expert may also be consulted.

Research Challenges

To realize the vision of cognitive digital twins, we envision a design and implementation of a
distributed cross-domain autonomous system for smart manufacturing. The goal of this system
is to enhance autonomous manufacturing by empowering manufacturing resources to think,
learn and understand the dynamics of industrial environments by effectively integrating human
cognition through AI and Semantic Web technologies into the design of autonomous
manufacturing, respecting the Industry 4.0 system design principles. The approach can be
cross-disciplinary, involving AI, semantic-empowered techniques, as well as semantic data
integration in autonomous manufacturing scenarios. To achieve the above-mentioned vision, the
following intertwined Research Questions (RQs) need to be addressed:

RQ1: How to create an autonomous distributed system conjoining the bottom-level
manufacturing resources to enhance responsiveness and intelligence? This research
question is further divided into the following research areas:

● A Collaborative Network of Intelligent Agents: This research investigates the design
of an autonomous system that can discover and detect faults and disturbances
autonomously as well as collaboratively. In addition to this, it can attempt to go
beyond the existing knowledge of known problems to mitigate new problems and
anomalies, thus capable of operating in unknown environments. Furthermore, they can
build a collaborative network of intelligent agents locally to improve the
responsiveness of the system.

● Automated Analytics for Resource-constrained Manufacturing Resources[8]: This
research requires the investigation of the suitability of existing interoperability standards
(e.g., Web of Things, RAMI 4.0, Semantic Web) and the suitability of existing
architecture patterns (e.g., fog, Intelligent edge [3], and smart agent) for
resource-constrained manufacturing resources as it demands quick response and
automatic analytics with enhanced intelligent capabilities.



● Autonomous Models on top of Knowledge Graph: This research requires
investigation of incorporating several autonomous models on top of
semantic-empowered technologies as we do not want to limit our vision of cognitive
digital twins only for a specific autonomous model. For instance, an integration of
self-comparison models, where a single machine can be compared with a fleet of similar
machines. This capability can be extended further by leveraging historical information to
predict its suitability for autonomous resource allocation.

RQ2: How to enable an autonomous cross-domain reasoning over distributed Industry 4.0
applications?

Industry 4.0 applications are currently designed while keeping a single application domain in
view. Most of these applications target a domain-specific problem. Cross-domain collaborations
allow to deduce additional events from a silo and can be turned into useful actuation, e.g.,
before allocating manufacturing resources, a system considers external electricity rates and
supply chain data (e.g., weather and traffic conditions) in order to achieve the goal of reducing
the factory’s energy consumption and carbon footprint.

To address this research question, we need to investigate an autonomous cross-domain
system, which can leverage semantic reasoning to derive new knowledge and AI
techniques to monitor and process events from totally independent applications. It can
integrate the techniques of knowledge discovery and inference that is not possible from data
generated by a single application. Moreover, it can use algorithms for autonomous
decision-making with uncertain, dynamic and incomplete information. Having a framework
among industrial machines and shared collaborative intelligence identified in RQ1 can prepare
the necessary ground to achieve RQ2, synthesizing analytics and intelligence of factories with
other external knowledge and services for decision-making.

ACKNOWLEDGMENTS
This publication has emanated from research supported by grants from the European Union’s
Horizon 2020 research and innovation programme under grant agreement number 847577
(SMART 4.0 Marie Sklodowska-Curie actions COFUND) and from Science Foundation Ireland
(SFI) under grant number SFI/16/RC/3918 (Confirm) co-funded by the European Regional
Development Fund, and support from SCRA (South Carolina Research Authority).

References
[1] Shiva Sander Tavallaey and Christopher Ganz, "Automation to Autonomy", 24th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), 2019.
[2] Muhammad Intizar Ali, Pankesh Patel, Soumiya Kanti Datta, and Amelie Gyrard, “Multi-Layer
Cross Domain Reasoning over Distributed Autonomous IoT Applications,” the International
Workshop on Very Large Internet of Things (VLIoT 2017) in conjunction with the VLDB, 2017.
[3] Pankesh Patel, Muhammad Intizar Ali, and Amit Sheth, "From Raw Data to Smart



Manufacturing: AI and Semantic Web of Things for Industry 4.0”, IEEE Intelligent Systems,
2018.
[4] Vignesh Kamath, Jeff Morgan, and Muhammad Intizar Ali, “Industrial IoT and Digital Twins
for a Smart Factory: An open source toolkit for application design and benchmarking,” IEEE
Global Internet of Things Summit (GIoTS), 2020.
[5] Kaishu Xia, Christopher Sacco, Max Kirkpatrick, Clint Saidy, Lam Nguyen, Anil Kircaliali and
Ramy Harik, “A digital twin to train deep reinforcement learning agent for smart manufacturing
plants: Environment, interfaces and intelligence”, Journal of Manufacturing Systems, 2020.
[6] Pankesh Patel and Muhammad Intizar Ali, “Developing Real-time Smart Industrial Analytics
for Industry 4.0 Applications,” Smart Service Management - Design Guidelines and Best
Practices, Springer, 2020.
[7] Kaishu Xia, Clint Saidy, Max Kirkpatrick, Noble Anumbe, Amit Sheth and Ramy Harik,
“Semantic integration of machine vision systems to aid manufacturing event understanding”,
Journal of Manufacturing Systems, Submitted, 2020.
[8] Bararath Sudarsan, Pankesh Patel, Muhammad Intizar Ali, John Breslin, and Rajiv Ranjan,
“Towards Executing Neural Networks-based Video Analytics Models on Resource-Constrained
IoT Devices”, IEEE Internet Computing, Submitted, 2020.


	Cognitive Digital Twins for Smart Manufacturing
	Publication Info

	IEEE IS 2020 - Cognitive Digital Twin

