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A B S T R A C T   

Renewable energy sources are highly unreliable and create unreliable energy surplus and energy demands. These 
energy surpluses and demands can be traded frequently within neighbourhoods. This paper presents a trading 
algorithm to trade unreliable renewable energy frequently within neighbourhoods. We considered the flocking 
behaviour of birds and distributed double auction, and developed a trading algorithm to perform peer-to-peer 
(P2P) energy trading within neighbourhoods. Peers are prosumers which can be energy co-operatives, micro- 
grids, electric vehicles, charging stations, etc. We implemented our flocking-based decentralised double auction 
algorithm in Java and tested using a residential PV data set from California state in the USA. Our mathematical 
analysis shows that the peers are converging to average positions of neighbourhoods while performing P2P 
trading. Our experimental results showed that the proposed algorithm has a higher success rate and faster 
convergence to the success rate than the centralised double auction and distributed double auction presented in 
the literature. Moreover, nodes are converging to neighbourhoods. This guarantees trading within neighbour
hoods. Further, we have observed that successful trading reaches around 80%.   

1. Introduction 

Renewable energy generators are not reliable because they are 
highly affected by changing environmental factors such as the amount of 
sunshine, wind speed, etc. Moreover, they do not naturally have large 
on-site energy storages hence their output is typically referred to as non- 
dispatchable[1]. Prosumers are proactive consumers with distributed 
energy resources, actively managing their consumption, production and 
storage of energy [2,3]. P2P energy trading among local prosumers is 
emerging as a promising method to manage unreliable and distributed 
energy resources[4] while offering three distinct value streams: energy 
matching, uncertainty reduction, and preference satisfaction [2]. 

P2P Energy trading goes from prosumer to prosumer rather than 
large commercial enterprise to consumer, and prosumers can sell their 
excess power for profit[5]. Authors in [5,6] discuss distributed double 
auction for P2P energy trading, and prosumers delegate their energy 
requirements between randomly selected neighbours. This random se
lection improves the anonymity of trading. The unsuccessful energy 
requirements will be further delegated to randomly selected neighbours 

of the current prosumer. Therefore, the energy requirement of a pro
sumer can be traded outside of its neighbourhood. That is trading within 
the neighbourhood is not guaranteed. A review of existing P2P energy 
trading projects and auction mechanisms are presented in [4,7]. A 
Bayesian Equilibrium solution for energy trading is presented in [8]. 
However, the current literature regarding the random request delega
tion for distributed trading does not theoretically describe and imple
ment guaranteed trading within the neighbourhoods, and that is the 
main objective of this research. The Joule effect in the transmission 
cables accounts for energy losses of about 2.5% while the losses in 
transformers range between 1% and 2% [9], hence guaranteed P2P 
trading within a neighbourhood is important. 

The flocking behaviour of birds and the convergence of birds flocking 
are explained using cohesion, separation and alignment properties in 
[10–12]. This paper uses properties of the flocking behaviour of birds 
and defines the behaviour of prosumers to perform anonymous, secure 
and guaranteed P2P energy trading within neighbourhoods. Our 
decentralised double auction uses McAfee’s double auction algorithm 
[13]. The proposed P2P energy trading was implemented and tested for 
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success rates, the amount of traded energy and convergence at decen
tralised neighbourhoods. This paper presents following contributions:  

• Guaranteed P2P trading between prosumers within neighbourhoods.  
• The proposed flocking-based decentralised double auction preserves 

the anonymity of the buyer and seller hence provide improved se
curity and trust for P2P trading.  

• The proposed approach shows better trading outcomes compared to 
distributed double auction and centralised double auction presented 
in the literature. 

In this research, prosumers generate their energy requirements as 
Buying or Selling requests. A Buying request finding a successful Selling 
request is called successful trading. That is, one successful trading has 
two traded requests. 

This paper was organised as follows: We discussed the relevant 
literature in Section 2 and introduced the flocking-based decentralised 
double auction for P2P energy trading in Section 3. In Section 4, we 
discussed the distributed double auction. The implementation, experi
mental evaluation, and results were discussed in Section 5. Finally, in 
Section 6, we presented findings and future research. 

2. Related literature 

Distributed Energy Resources (DERs) are being integrated into the 
energy market by transforming the centralised and unidirectional mar
ket into a decentralised market while transitioning customers into pro
sumers [14]. The direct energy trading between consumers and 
prosumers without the use of an intermediary is called P2P energy 
trading which is usually implemented within a local electricity distri
bution system [15]. A P2P system is a self-organising decentralised 
system for shared usage of resources avoiding central services [16,17]. 
The P2P architecture is emerging as a potential and promising archi
tecture for decentralised energy trading in local energy markets [14,15]. 

The P2P trading enables multi-directional trading in local commu
nities[15]. Energy trading platforms such as vandebron1, Piclo2, etc. act 
as an energy supplier who link consumers and DERs, and balance the 
whole market [18]. Consumers can select and prioritize from which 
generators to buy electricity. Moreover, [18] suggests P2P energy 
trading within a micro-grid, within a CELL(multi-micro-grids), and 
among CELLS(multi-cells). A four-layer system architecture is proposed 
for P2P energy trading in [15]. They are two dimensional power grid 
layer, ICT layer, control layer and business layer. A P2P control archi
tecture is detailed in [14] discussing a case study in Nepal. 

The P2P energy trading enables trading locally generated renewable 
energy among local customers[2,3,1,7,18]. A Bayesian Equilibrium so
lution for energy trading considering utility, power loss and Bayesian 
strategic bidding are described in [8]. However, many of the trails have 
focused on the business models and it is still lacking necessary mecha
nisms to ensure energy trading within local prosumers[4]. In [10], 
Reynolds introduced three heuristic rules to explain the flocking 
behaviour of birds however these rules are interpreted broadly because 
they are not theoretically defined. A formalization of Reynolds’s boids is 
presented in [19] while modelling the behaviour of a living being. A 
theoretical framework for the design and analysis of distributed flocking 
algorithms is presented in [12]. The leaderless coordination is theoret
ically defined in [20] where birds update their velocities by averaging 
them out over their nearest neighbours. The repeated averaging of ve
locities enables each bird to eventually converge to a fixed speed and 
heading [11]. 

A double auction mechanism with dominant strategies for both 
buyers are sellers are presented in [13]. Authors in [5,6] have discussed 

distributed double auction and the use of blockchain technology for P2P 
energy trading. Blockchain transactions of energy surplus and deficiency 
are sent to neighbours. However, guaranteed trading within the neigh
bourhood has not yet been addressed in the literature. 

3. Flocking-based decentralisation 

The flocking-based decentralisation enables prosumers to delegate 
their energy requirements only between neighbours during continuous 
auctions. 

3.1. Flocking behaviour of prosumers 

This section defines and explains the flocking behaviour of pro
sumers to assure trading within neighbourhoods, improve anonymity 
and improve the security for P2P energy trading. In [10], Reynolds 
introduced three heuristic rules to explain the flocking behaviour of 
birds. As in [12], Cohesion - attempt to stay close to nearby flockmates, 
Alignment - attempt to match velocity with nearby flockmates, and 
Separation - avoid collisions with nearby flockmates. We discuss the 
cohesion, alignment and separation properties of flocking behaviour and 
their applicability for prosumers to perform P2P energy trading. We 
define a prosumer as a node in a two-dimensional space. The position of 
a prosumer is determined by X and Y coordinates in the Cartesian Co
ordinate System. That is, the internal state of a node consists of at least 
its position p ∈ ℘, where ℘is a position in the Cartesian Coordinate 
System. 

Definition 1. The internal state q ∈ 𝒬 of a prosumer n ∈ 𝒩 is defined 
by (1), where p ∈ ℘ is its position which is defined by X and Y co
ordinates in the Cartesian Coordinate System, l is its label, and r* is a list 
of requests as r ∈ ℛ. 

𝒬 = {qn|qn =< p, l, r* > } (1)  

The position of each node is updated based on the average position of the 
neighbourhood. The neighbours of node i at a given time t, are those 
nodes that are in a circle of pre-defined radius r centred around the 
current position of node i. The position of node i (ni), written in pi 
evolves in discrete-times in accordance with the model defined by (2), 

pi

(

t+ 1
)

=
1
2
(pi(t)+ < pi(t)>r′ ) (2)  

where t is a discrete-time index taking values in the non-negative in
tegers 0,1,2,3,…, and < pi(t)>r′ is the average of the positions of ni’s 
neighbours at time t in radius r′ as defined in (3). 

< pi

(

t

)

>r′ =
1

Mi(t)

(
∑

j∈𝒩 i(t)

pj

(

t

))

(3)  

where 𝒩 i(t) is the set of neighbours and Mi(t) is the number of neigh
bours of node i (ni) at time t. The internal state of node i (ni), that is qni is 
changed at discrete-times. 

Definition 2. The cohesion function f for a node ni is a process which is 
defined by the following steps; step1: select a request r ∈ ℛ from ni, 
step2: find the neighbourhood of ni, step3: delegate the request to a 
randomly selected neighbour, step4: move ni towards the centre of the 
neighbourhood as defined in the Eq. (2), and step5: repeat the above 
steps for all the requests in ni. 

A new < pi(t)>r′ is calculated for each request delegation which we 
defined as, 

f ′

(rk, t) = vk (4)  

where v =< pi(t)>r′ and k > 0 ; k is a positive integer. The average 
1 https://vandebron.nl/  
2 https://piclo.energy/ 
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position V for k number of requests is, 

Vk =
1
k
∑k

m=1
vm (5)  

where m is a positive integer. This further justifies, the node ni converges 
to the average Vk when delegating requests to neighbours as defined in 
6. 

lim
j→k

f
(

ni,j

)

⟶Vk (6)  

where f is the cohesion function as defined in definition 2. Time to 
converge is proportional to the number of requests defined in k. The 
convergence is important because that guarantees requests are dele
gated within neighbouring nodes all the time and that is one of the main 
contributions of this paper. We use radius r to define the neighbourhood, 
and the distance between nodes is calculated to find neighbour nodes. 
The energy loss of electric power systems is more complex and that in
volves transformers, cables, etc. Transmitting electricity over distance 
and via networks involves energy loss. As the Joule effect described in 
the introduction section, transmission cables have a higher energy loss 
than transformers[9]. However, for simplicity, in this research, we as
sume the distance between nodes is proportional to energy loss. This 
convergence promises the minimum energy loss which is an interesting 
feature for P2P energy trading within local communities in low voltage 
networks. 

Here, the Alignment αi(t) is defined as illustrated in Fig. 1. The node 
ni finds its neighbourhood for each request delegation at time t as in step 
2 of definition 2. Then the average position Vavg(t) is calculated as in Eq. 
3. 

Vavg

(

t

)

=
1

Mi(t)

(
∑

j∈𝒩 i(t)

pj

(

t

))

(7)  

As in Fig. 1, node ni(t) move towards Vavg(t) as defined in the Eq. 2 while 
keeping the alignment αi(t) where  

• ni(t) = ((ni.x, t), (ni.y, t))
• Vavg(t) = ((Vavg.x, t), (Vavg.y, t))

Blockchain-based smart contract implementation of 7 and αi(t) align
ment verification can strengthen the security of request delegation 
among neighbours and P2P trading. For example, a prosumer who is 
moving towards the average position of a neighbourhood to delegate a 
request is paying a less fee than other positions. However, secure request 
delegation is not part of objectives here and we will address it in our 
future work. 

We find a collision neighbourhood 𝒩 collision where nodes in this area 
have a risk of collision. Each prosumer should see their own local pro
sumers in 𝒩 collision and steer away from the centre of 𝒩 collision as defined 

in the Algorithm 1. 

Algorithm 1. :Prosumer Separation from Collisions   
Input: n ∈ 𝒩

Output: n ∈ 𝒩 free from collisions  
1: r←collisionRadius()
2: 𝒩 collision←collisionNeighbours(𝒩 , n, r) 3: while (𝒩 collision .isNotEmpty()) do  
4: centre←findCentre(𝒩 collision)

5: n←separate(n, centre)
6: 𝒩 collision←collisionNeighbours(𝒩 ,n, r)
7: end while  

Algorithm 1 can be explained as follows:  

• For node n ∈ 𝒩 , find neighbours in the collision radius r which we 
call 𝒩 collision.  

• Find the centre of all nodes in 𝒩 collision.  
• Node n steer away from the centre recalculating x and y coordinates 

with r distance.  
• Repeat above steps for node n until 𝒩 collision is empty. 

Separation is useful to differentiate prosumers while trading and simu
late trading behaviours. 

3.2. Decentralisation of prosumers for P2P trading 

Reynolds’ rules are not mathematically defined, and it is unclear 
when and how each rule is applied[12]. Here, we use the internal state 
of each node as in Eq. (1), average position as in Eq. (2), cohesion 
function as in Eq. (6), alignment as in Eq. (7), separation as in Algorithm 
1, and defined an Algorithm 2 to run double auctions to trade local 
energy demands and surpluses frequently within dynamically created 
decentralised neighbourhoods. The unsuccessful trading requests 
regarding energy surplus and demand will be addressed using the Utility 
grid which we do not discuss in this paper. 

Algorithm 2. : Flocking-based Decentralised Double Auction (FDDA)   
Input: 𝒩 , Each node n ∈ 𝒩 has a set of ℛ requests  
Output: Traded transactions 

for each t do 
2: while not converged do 

𝒩←nodesWithRequests(N)

4: for eachn ∈ 𝒩 do  
neighbours←findNeighbours(n)

6: ℛ←allRequests(n)
for eachrequest ∈ ℛ do  

8: centre←findCentre(neighbours)
randomNode←select(neighbours)

10: randomNode←delegate(request)
n←moveTowardsCentre(n, centre)

12: neighbours←findNeighbours(n)
end for 

14: n←Algorithm1(𝒩 ,n)
end for 

15: 𝒩←doubleAuction(N)

end while 
end for  

Here in Algorithm 2, we assume prosumers are defined by nodes, and 
prosumers are capable of performing double auction and trading. Nodes 
generate two types of requests which are Buying and Selling requests. 
These requests are delegating to randomly selected neighbouring nodes 
for double auction as defined in the Algorithm 2. At a discrete-time t, a 
node can have no requests, a single request or a set of requests. For 
example, a node defines a home that is connected to a wind farm, the 
utility grid and provides an electric vehicle charging facility. 

Input data is a set of 𝒩 nodes. Each node n ∈ 𝒩 has a set of ℛ re
quests. These requests can be either Buying requests or Selling requests 
which will be processed at double auctions. The output is records of 
successfully traded transactions. Algorithm 2 can be explained as 
follows: 

Fig. 1. Alignment behaviour.  
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• In a given discrete-time t, nodes which have requests are in a set of 
𝒩 .  

• Select a node n ∈ 𝒩 and find the neighbourhood. If there are no 
neighbours exist, then go to the next node. If there are neighbours, 
then go to the next step.  

• Find all the requests of node n and for each request r ∈ ℛ, calculate 
the average position of the neighbourhood, select a neighbour node, 
delegate r to the selected neighbour node, move n towards the 
calculated average position of the neighbourhood, and find the new 
neighbourhood for n after its move. Repeat this process for all the 
requests in 𝒩 .  

• Avoid collision using Algorithm 1 and repeat this process for all the 
nodes n ∈ 𝒩

• Apply double auction for all the nodes. Successful trading trans
actions are executed and recorded in a blockchain. Nodes having 
unsuccessful trading transactions are returned. Repeat above steps 
for number of auctions until find the convergence before going to 
next discrete-time t.  

• Repeat the process for next discrete-time t. 

This algorithm generates converged decentralised nodes. This 
convergence is important because that guarantees the requests are 
delegated only within neighbour nodes and that enables the minimum 
energy loss at energy transmission. The energy losses are mainly due to 
transformers and cables [9]. In a general P2P scheme, households 
interact directly with other households [21]. In this work, we assume 
prosumers interact directly with other prosumers, the energy loss is 
propositional to the distance between prosumers and energy requests 
are generated by prosumers considering the energy losses within 
neighbourhoods. Our future work will address prosumers in proper 
infrastructure networks considering network constraints[21] and 
calculate energy losses between prosumers to decide potential 
neighbourhoods. 

In the above algorithm, requests delegation among randomly 
selected neighbours increases the anonymity of trading nodes for re
quests. This is important to improve the security of trading nodes from 
potential planned attacks. If there are ℳ nodes in the neighbourhood, 
the probability of finding the trading node for a particular request is 1

ℳ
. 

That is if ℳ increases then probability goes down and difficulty of 
finding the trading node goes high. Moreover, ℳ is changing dynami
cally for each request delegation and that further increases the ano
nymity of trading nodes. 

4. Double auction and trading 

This section discusses double auction for energy trading at each node 
which has both Buying and Selling requests. In this research, we used the 
double auction defined in [13] with a trade-reduction mechanism for 
P2P energy trading. 

δta (Ni) < 0 indicates that Ni needs δta amount of energy at the next 
time instance. Similarly δta (Ni) > 0 indicates that Ni has a surplus of δta 

amount of energy to sell at the next time instance. Both Buying and 
Selling requests are generated accordingly.  

N = (N1,…,Nk) a set of k nodes where k ∈ Z and k > 0  

G = (N, E) An undirected graph with a set of nodes  
and a set of edges. G represents the  
energy distribution network. 

t = (t1, t2,…) Discrete-time instances 
δta (Ni) Energy requirement for the node Ni   

at time ta   

In our double auction market, each node Ni will have a set of Buying 
requests from buyers (B1,B2,…,Bp) and a set of Selling requests from 
sellers (S1, S2,…, Sq) at a given time t where p and q are positive integers 
which are greater than or equal to 0. Each node solves the double auc

tion as follows:  

• Sort the Selling requests in the increasing order as SR1⩽SR2⩽…⩽SRq. 
The list of sorted Selling requests contributes to the seller curve.  

• Sort the Buying requests in the decreasing order as 
BR1⩾BR2⩾…⩾BRp. The list of sorted Buying requests contributes to 
the buyer curve.  

• Let curves of Buying requests and Selling requests to cross at index β 
so that BRk⩾SRk and k⩽β. The break-even index is k. Calculate p so 
that, p = (SRk+1 + BRk+1)/2.  

• If BRk⩾p⩾SRk, then all the k requests of both types trade for price p.  
• Otherwise, the Selling requests SR1⩽SR2⩽…⩽SRk− 1 trade for SRkand 

the Buying requests BR1⩽BR2⩽…⩽BRk− 1 trade for BRkas in the trade 
reduction mechanism. 

The buyers and sellers curves are illustrated in Fig. 2. In our trading 
platform, double auction is processing as defined in Algorithm 2. Nodes 
to perform double auctions should have both buying and selling 
requests. 

5. Experimental evaluation 

5.1. Data processing 

We used road networks data from the California state from [22] and 
processed locations, demand profiles(energy needs for houses) and PV 
profiles(energy generation information) of houses fitted with PVs using 
data sources from [23,24,5]. We created clusters of houses in close 
proximity. In each cluster, the maximum difference in house locations 
(difference in latitude or longitude) is.1 which corresponds to 11 km. We 
created 5000 clusters of houses where each cluster has at most 50 
houses. Fig. 3 shows the locations of houses with fitted PVs and houses in 

Fig. 2. Process of double auction: Curves of Buyer and Seller intersect at β.  

Fig. 3. Road network and houses with PVs in the US state California.  
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each cluster is coloured with the same colour. This presents a high-level 
view regarding the density of the number of PVs and their locations. 
From this PV locations, we have selected 100 houses in the range of 
latitudes between 33 and 34, and longitudes between − 119 and − 118. 
Then we created demand profiles and PV production profiles for each 
house every 5 min for 24 h. Using this information, we created an excess 
energy profile for each house in every 5 min for 24 h. We created two 
types of energy requests (Buying request, Selling request) for each house 
based on the excess energy profile. 

5.2. Experimental evaluation 

We created 100 nodes for 100 houses having buying/selling requests 
for each house based on the excess energy profiles in every 5 min for 24 
h. Our flocking algorithm considers houses within a radius of 2 km as a 
neighbourhood. That is, the difference between the two latitudes or two 
longitudes is 0.02 for 2 km. We compare the number of buying requests 
(NGs) and selling requests(PGs) throughout the day for 24 h as in Fig. 4. 
We implemented centralised double auction [13], distributed double 
auction [5] and the proposed flocking-based decentralised double auc
tion using java, tested with the above data set, and compared their re
sults as in Fig. 5. Here, one successful trading has one buying request and 
one selling request that is two traded requests. The results showed that 
both the FDDA and DDA in [5] have a higher success rate than CDA in 
[13]. However, the proposed FDDA showed the highest success rate 

throughout the day as shown in Fig. 5. When comparing Fig. 5 and 
Fig. 4, we can observe that a higher number of requests show higher 
success rates in all three algorithms. Moreover, we compared success 
rates in various auctions at various discrete-times. Here we present a 
comparison of successful trading percentages when t = 210 (t is an 
integer in the range 0 to 287 for 24 h) in Fig. 6. As in Fig. 6, at the first 
auction, we have observed the number of successful tradings given by 
the CDA is higher than that of FDDA and DDA. However, both FDDA and 
DDA enable several distributed auctions at a discrete-time and 
contribute to overall higher success rates than CDA. In a centralised 

Fig. 4. Compare buying and selling requests for 24 h.  

Fig. 5. Trading Comparisons: Flocking-based decentralised double auction (FDDA), distributed double (DDA) and centralised double auction(CDA) for 24 h.  

Fig. 6. Trading Comparisons when t = 210: FDDA, DDA and CDA.  
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auction, bids from all the peers are used to determine the price for en
ergy trade, but in distributed auctions, each local auction uses bids from 
a subset of peers. Hence the price for energy trade can differ for these 
local auctions. Moreover, if a prosumer fails to find a winner for an 
energy requirement, it will forward that energy requirement to a 
neighbouring prosumer. The energy requirements are processed in 
several distributed auctions with various trading prices at a discrete- 
time. As in Fig. 2 and experimental results in Fig. 6, the CDA shows 

around 38% of success. However, at a discrete-time, both DDA and 
FDDA enable distributed auctions on prosumers, various trading prices, 
and several iterations showing a higher success rate than CDA. We have 
observed around 80% of energy requirements were traded in DDA and 
FDDA using 5 distributed auctions at a discrete-time. The results showed 
that the FDDA converges to 80% successful trading quicker than DDA in 
[5] having a higher success rate. 

We have observed that the flocking-based decentralised double 

Fig. 7. Behaviour of Nodes: flocking-based decentralised double auction.  

Fig. 8. Behaviour of Nodes: distributed double auction.  

Fig. 9. Compare convergence times of DDA and FDDA.  
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auction guarantees trading within neighbourhoods because of the 
flocking behaviour of neighbour nodes. In [5], when a request does not 
achieve successful trading, it is forwarded to a neighbour. However, it is 
not guaranteed that the 3rd neighbour is a neighbour of the request 
generator. That is, distributed double auction in [5] does not guarantee 
to trade within the neighbourhoods. Here we present the behaviour of 
nodes in the 2nd auction at a discrete-time, t = 210. The behaviour of 
nodes using the proposed flocking-based algorithm is illustrated in Fig. 7 
and distributed double auction in [5] is illustrated in Fig. 8. The 
flocking-based algorithm creates decentralised flocks considering en
ergy demands and distance between PV locations while nodes in 
distributed double auction in [5] are not flocking around the 
neighbourhoods. 

As defined in lines 7 to 13 in Algorithm 2, prosumers are moving 
towards the centre of the neighbourhood while delegating requests until 
all the requests are delegated. This process will be repeated for all the 
prosumers which have energy requirements. The double auction will be 
applied at prosumers after delegating requests. The unsuccessful re
quests will be processed again following the above procedures as defined 
in lines 2 to 17 of Algorithm 2. Our experimental results showed that 
both FDDA and DDA converged in 5 distributed auctions hence we 
repeated the above processes for 5 times. At convergence, most of the 
trading possible requests have been traded as illustrated in Fig. 5. 
Moreover, we have compared the convergence times of DDA and FDDA 
throughout the day and illustrated in Fig. 9. The results show that FDDA 
has a better performance than DDA at most of the discrete-times. 

DERs can trade the excess energy. We have observed that the energy 
trading is successful mostly during the day time when the DERs generate 
energy. We have analysed the amount of energy traded using FDDA, 
DDA and CDA within the day time from 6 am to 6 pm using a sum
mertime dataset. We have observed that FDDA has the highest amount 
of energy traded and that is 70.60461% of the total energy requirement. 
DDA and CDA can satisfy 69.64921% and 58.58982% of the total energy 
requirement. Fig. 10 illustrates the amount of energy traded using 
FDDA, DDA and CDA compared to the amount of energy needed from 
6am to 6 pm. 

6. Discussion 

Renewable energy sources are highly unreliable hence unreliable 
energy surplus and demands should be addressed frequently within 
neighbourhoods. In this research, we used the flocking behaviour of 
birds to define the dynamic behaviour of prosumers for P2P trading. We 
defined, implemented and tested a flocking-based decentralised double 
auction algorithm(FDDA) to perform P2P trading within neighbour
hoods. We compared our algorithm with the centralised double auction 
(CDA) and the distributed double auction algorithm(DDA) defined in the 
literature. We used a PV data set from California state and tested algo
rithms for successful tradings, trading percentages and trading within 

neighbourhoods at every 5 min for 24 h. We have observed that anon
ymous trading nodes are delegating requests to neighbours and 
converging to average positions of neighbourhoods at discrete-times. 
This guarantee that both Buying and Selling requests are delegated 
and traded within the neighbourhoods. The random request delegation 
preserves the anonymity of trading nodes. Further, the test results 
showed that FDDA has the highest success rate, faster convergence than 
DDA, and around 80% successful trading is achieved in five distributed 
auctions. In this work, we assumed the distance between two nodes was 
proportional to energy loss. Our future work will enrich a flocking-based 
distributed double auction to consider energy transmission loss based on 
the energy infrastructure network. 
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