
An Intelligent Doorbell Design Using Federated Deep Learning
Vatsal Patel

vatsal.pce18@sot.pdpu.ac.in
Pandit Deendayal Petroleum

University
Gandhinagar, India

Sarth Kanani
sarth.kce18@sot.pdpu.ac.in
Pandit Deendayal Petroleum

University
Gandhinagar, India

Tapan Pathak
tapan.pce18@sot.pdpu.ac.in
Pandit Deendayal Petroleum

University
Gandhinagar, India

Pankesh Patel
pankesh.patel@insight-centre.org
Confirm SFI Research Centre for

Smart Manufacturing, Data Science
Institute, NUI Galway, Ireland

Muhammad Intizar Ali
ali.intizar@nuigalway.ie

Confirm SFI Research Centre for
Smart Manufacturing, Data Science

Institute, NUI Galway, Ireland

John Breslin
john.breslin@nuigalway.ie

Confirm SFI Research Centre for
Smart Manufacturing, Data Science

Institute, NUI Galway, Ireland

ABSTRACT
Smart doorbells have been playing an important role in protecting
our modern homes. Existing approaches of sending video streams
to a centralized server (or Cloud) for video analytics have been
facing many challenges such as latency, bandwidth cost and more
importantly users’ privacy concerns. To address these challenges,
this paper showcases the ability of an intelligent smart doorbell
based on Federated Deep Learning, which can deploy and manage
video analytics applications such as a smart doorbell across Edge
and Cloud resources. This platform can scale, work with multiple
devices, seamlessly manage online orchestration of the application
components. The proposed framework is implemented using state-
of-the-art technology. We implement the Federated Server using
the Flask framework, containerized using Nginx and Gunicorn,
which is deployed on AWS EC2 and AWS Serverless architecture.

KEYWORDS
Federated Learning, Internet of Things, Video Analytics, Artificial
Intelligence, Deep Learning, Machine Learning, Privacy, Security

ACM Reference Format:
Vatsal Patel, Sarth Kanani, Tapan Pathak, Pankesh Patel, Muhammad Intizar
Ali, and John Breslin. 2021. An Intelligent Doorbell Design Using Federated
Deep Learning. In 8th ACM IKDD CODS and 26th COMAD (CODS COMAD
2021), January 2–4, 2021, Bangalore, India.ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3430984.3430988

1 INTRODUCTION
The smart doorbell has been playing an important role in protecting
our modern homes since they were invented. The recent trend from
big companies [3] is to offer a smart doorbell that integrates all
possible services including face recognition at the door. A common
approach, adopted by these offerings, is to send image streams over
the network to a central server (or Cloud), where all the processing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CODS COMAD 2021, January 2–4, 2021, Bangalore, India
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8817-7/21/01.
https://doi.org/10.1145/3430984.3430988

takes place and appropriate decisions are made. Although this ap-
proach reduces the maintenance cost by keeping the application
logic in one central location, it may not be suitable for applica-
tions relying on video analytics. Some of the reasons are: First,
the central server approach for video analytics may not be suitable
for latency-sensitive applications because of the delay caused by
transferring data to a central server for analysis and back to the
application. Second, the use of the central sever for continuous
data storage, object detection, and analysis is expensive because
these applications generate high volume of image and video data.
Furthermore, the processing and storage of multiple video streams
make the subscription more costly. Secondly, this design requires
a huge amount of reliable bandwidth, which may not always be
had. Third, even if we assume that we could address latency and
bandwidth issue by empowering a sophisticated infrastructure, a
large class of video-based applications may not be suitable because
of regulations and security concerns of sharing data as there is an
involvement of biometric data of residents. For instance, GDPR
restricts the sharing of users’ private data across organizations.

The recent advancements in Federated Learning [8, 16] have
shown the potential to address the aforementioned challenges.
Federated Learning works on model aggregation rather than
data aggregation principle [10]. Building a model using Federated
Learning fits the problem naturally for video analytics applica-
tions: First, it trains the model(s) locally and then uploads the
model parameters to a centralized server for aggregation. Thus, it
prevents data leakage as sensitive data does not leave the smart
doorbell device. Second, it reduces communication cost [4, 8, 9],
as devices upload the trained model parameters to the centralized
server, instead of the images. Federated Learning is not much tested
in practice so far, specifically for video analytics applications [10],
thus some open questions related to implementation details for
video analytics applications (such as a potential architecture when
it is applied to computer vision applications and an implementation
of this approach for resource constrained IoT devices) need to be
addressed.

In this paper, we showcase the ability of an intelligent framework
based on Federated Learning (addressing the challenges as men-
tioned above), which can deploy and manage video analytics appli-
cations such as a smart doorbell across Edge and Cloud resources.
The proposed framework is implemented using state-of-the-art

380

https://doi.org/10.1145/3430984.3430988
https://doi.org/10.1145/3430984.3430988


CODS COMAD 2021, January 2–4, 2021, Bangalore, India Vatsal Patel, et al.

technology. We implement the Federated Server using the Flask
framework, containerized using Nginx and Gunicorn deployed on
AWS EC2 and AWS Serverless architecture. Second, we have built
MobileNet object detection models [14] for different scenarios (such
as face detection, an unsafe content detection, a noteworthy ve-
hicle detection) and deployed them on resource-constrained IoT
devices using TensorFlow Lite to reduce the object detection la-
tency. These models are developed using Federated Learning, as
a novel distributed deep learning approach, on a popular datasets
such as ImageNet, Common Objects in Context (COCO).

2 SYSTEM DESIGN AND IMPLEMENTATION
The proposed system consists of Federated Clients and a Fed-
erated Server. The data flow goes as follows: A real-time video
stream is captured by a camera and pre-processed at the Federated
Client. It implements the video analytics logic to identify objects
and training module to train a local model to be sent to the Feder-
ated Server. The Federated Server receives local models from each
smart doorbell device and generates a global aggregated model.
It distributes the aggregated global model back to the Federated
Clients. The Federated Client uses this aggregated model to de-
tect objects. The video analytics results from the Federated Client
are sent to the Cloud layer for storage. This lets users access the
doorbell anywhere and anytime. In the following, we present the
functionality of each component and its implementation in detail.

2.1 Federated Client
Each smart doorbell is interfaced with a camera module to capture
a video stream and PIR sensor to detect the motion of an object.
We prototype the smart doorbell using WiFi-enabled Raspberry
Pi 3 Model B+. Each smart doorbell hosts the Federated Client. In
the following section, we present the software components of the
Federated Client.

Device Registration andAuthentication. Each Federated Client
implements device registration and authentication, which allows
users to interact with the device anywhere and anytime (Circled 1
in Figure 1) in a secure manner. We implement it using AWS IoT
Core. The device registry keeps a record of all registered devices.
Moreover, it supports X.509 certificate-based authentication so that
data is never exchanged without proven identity.

Frame Sampling. It samples a frame off of a live video stream
from the camera attached with the Federated Client (Circled 2 in
Figure 1). It packages the captured frames and sends raw footage
to the video pre-processing component for further pre-processing.

Video Pre-processing. A considerable part of a video stream con-
tains data that is not useful. This consumes a huge chunk of a
network’s bandwidth and adds to computation cost unnecessar-
ily. We employ spatial and temporal redundancy [1] to remove
redundant and uninteresting parts (Circled 3 in Figure 1):

– Temporal redundancy. It reduces consecutive and similar video
frames, using various filtering techniques such as motion detection.
The motion sensor triggers the camera if there is any motion in
front of the doorbell. The integration of a motion sensor allows the
Federated Client to process data only when there is a motion.

– Spatial redundancy. It is represented by removing the back-
ground of a video frame, which is not always necessary for object
detection. We employ background subtraction technique [13] to
extract the Region of Interest (RoI). It separates out foreground
objects from the background. This technique is quite relevant for
our smart doorbell as the background of an image largely remains
uniform due to static camera. The RoI is sent to the object detection
module for further processing, as discussed in Section 2.2.

2.2 Federated Learning
This component runs the Federated Learning modules to train the
object detection model locally, which are sent to the Federated
Server for aggregation, and the Object Detection module that uses
an aggregated model from the Federated Server to detect objects.

DL-based Object Detection. It is dedicated to running various ob-
ject detection models. It takes the image as input from the video pre-
processing module and runs various models to detect objects (Cir-
cled 4 in Figure 1). The current version implements four models:
face detection and recognition, animal detection, unsafe content
detection (such as violence, gun etc.) and a noteworthy vehicle de-
tection such as a fire truck and a courier service (e.g., FedEx, USPS)
van. For object detection, we adopt On-Device DL-approach. This
approach employs various model reduction techniques [2] (e.g.,
model compression, parameter pruning, parameter quantization,
model design) to enable its deployment on IoT devices, while main-
taining a reasonably good object detection accuracy. The current
implementation uses MobileNets [7], which is a family of computer
vision models for TensorFlow, designed for resource-constrained
devices such as mobile phones and embedded devices.

Depending on the detection results, the object detection module
decides whether data needs to be sent to the Cloud layer or it is to
be kept in local memory of the doorbell. For instance, if an object
is identified by this module, the video analysis meta-data is sent to
Cloud (Circled 5 in Figure 1). The image is stored in local memory
in case the object is identified as new or unknown. The stored
images are processed further by the training module (Circled 6 in
Figure 1), as discussed in the next section.

Federated Learning. This component is responsible for two tasks:
first, image annotations to label locally stored images; second, the
Federated Learning module uses these annotated images to build lo-
cal models, typically contains model parameters and corresponding
weights (Circled 9 in Figure 1). The image annotation module (Cir-
cled 7 in Figure 1) provides an interface that lets the smart doorbell
owners specify a bounding box and the corresponding label infor-
mation, similar to the work [10]. This image annotation process
requires the smart doorbell user to be able to visually identify where
the objects of interest are located in a given image file and draw
the bounding box and assign it to a category. We integrate Labe-
lImg tool [15] to implement this functionality. This tool generates
annotations as an XML file, which is automatically mapped to an
appropriate system directory for model training.

2.3 Federated Server at Cloud
It receives model updates learned at Client. It performs model
aggregation on them to produce a global aggregated model and

381



An Intelligent Doorbell Design Using Federated Deep Learning CODS COMAD 2021, January 2–4, 2021, Bangalore, India

Figure 1: Logical Flow of Federated Learning for Video Analytics at Federated Client.

Figure 2: Logical Flow of Federated Server hosted on AWS EC2 (Upper part). AWS Serverless Architecture (Lower Part).

distributes back it in the federation to be used for inference in object
detection operations (Circled 10 in Figure 1).

Themodel aggregation algorithm leverages Horizontal Federated
Learning (HFL) [16]. It can be applied in collaborative learning
scenarios in which the device shares the same feature space but
it is collected from different devices. HFL is suitable for our smart
doorbell application scenario as it aims to helpmultiple devices with
data from the same feature space (i.e., labelled image data) to train a
global aggregated object detection model. The algorithm performs
component-wise parameter averaging which are weighed based
on the proportion of data points contributed by each participating
doorbell device. The following is federated averaging equation [11]:

f (w) =

K∑
k=1

nk
n
Fk (w) where Fk (w) =

1
nk

∑
i ∈Pk

fi (w).

The right-hand side of the above equation estimates the weight
parameters for each smart doorbell device based on the loss values
recorded across every data point (i.e., images) they trained with.
The left side of the above equation scales each of those parameters
and sums them all component-wise.

We have implemented the Federated Server using the Flask
framework [5] and hosted it on Amazon EC2. The Flask framework
comes with an inbuilt web server. However, it is a single-threaded

382



CODS COMAD 2021, January 2–4, 2021, Bangalore, India Vatsal Patel, et al.

server, which is not ideal for our scenarios as the Federated Server
has to handle multiple requests from Federated Clients. Therefore,
we containerize the FlaskApp with Nginx [12] and Gunicorn [6].
The Gunicorn can handle multiple requests simultaneously. As a
developer, you can configure Gunicorn with a number of workers
and a number of threads it can run. These two parameters deter-
mine how much transactions you can handle at one point of time.
The objective of using Nginx is to isolate the Federated Server logic
from the Federated Clients. Second, it can act as a load balancer.
Moreover, it can buffer multiple requests from clients and pass them
to Gunicorn for further processing. This web application receives
local model parameters from each client using HTTP POST request
and distributes the global aggregated model back to each client.

2.4 Serverless Architecture
One of our design goals is to minimize video data transmissions to
the Cloud to reduce cost. However, we still need to store important
video data to access data remotely. Therefore, we use the cloud to
store detection results. For the sake of completeness, we briefly
present the functionality of a doorbell hosted on the serverless
infrastructure of Cloud. For the detailed description, we recommend
the readers to refer our work [14]:
Real-time Push Notification. It sends a real-time alert notifica-
tion to the user when a motion is detected in the proximity of
the doorbell. We implement AWS Lambda functions that process
the metadata in response to data ingestion from Kinesis and trig-
gers the push notification (Circled 1 – 3 in Figure 2), which is
implemented using Amazon Simple Notification Service.
Persistent Data Storage and Access. It receives video analytics
metadata from a doorbell and provides a scalable storage to access
data anywhere and anytime. We implement the storage services
using Amazon DynamoDB and Amazon S3 (Circled 4 in Figure 2),
which are exposed by Amazon API Gateway (Circled 5 in Figure 2),
which accommodates the requests from MobileApp.
Conversational User Interface. The voice assistant system lever-
ages the logged video analytics results to provide a meaningful
response. We implement an Alexa skill that can be triggered using
the various voice commands (such as “Alexa, tell me what is hap-
pening at the door?”, “Alexa, send me a snapshot of all activities at
my door today”). Our custom Alexa skill triggers a set of lambda
functions, which queries the video analytics metadata stored in Dy-
namoDB (Circled 6 in Figure 2). Once the query result is computed,
the results are sent back through Alexa Voice.

3 DEMONSTRATION
At the conference, we plan to demonstrate the following use cases:
Use case 1: End-to-End Federated Learning Process for Video
Analytics. It demonstrates an end-to-end Federated Learning pro-
cess, implemented for the smart doorbell case study. It consists of
transmitting the model parameters from each smart doorbell device
after local model training. The updated model parameters are stored
at the Federated Server as files. The federated Server combines these
local model parameters and generates a global aggregated model,
which is eventually distributed to each smart doorbell in the feder-
ation to be used for inference in object detection.

Use case 2: Object Detection using Global Federated Model.
It demonstrates the live object detections by the doorbell. The sys-
tem is initially at rest. An object entering the proximity of the
doorbell enables the smart doorbell to start. This activity automati-
cally triggers the object detection and recognition. We implement
a MobileApp dashboard that provides the detailed activities at the
doorbell. The notification messages include face recognition (in-
cluding known and unknown persons) and object detection (e.g.,
noteworthy car, animal, etc.).
Use case 3: Real-time Notifications using Global Federated
Model. It demonstrates the ability of sending real-time alerts to
the user when a motion is detected in the proximity of the doorbell.
We implement an interface for real-time push notification. The user
receives alerts on his mobile application when a visitor is detected at
the door. The user can respond to the notification or just "ignore" it.
Moreover, it implements the video library interface. This interface
of the MobileApp lets the users review activities and events at the
door at a later time in case the user misses the real-time alert.
Attendee Interactions. To demonstrate the Federated Learning
based Smart doorbell design, we will carry three smart doorbell
devices with us. The smart doorbell devices will be used to demon-
strate the functionality of Federated Clients. Moreover, they will be
used to present the smart doorbell hardware and software design
and to explain how different components of the system interact with
each other. Moreover, we will demo our work to explain the overall
functionality of the doorbell. We will invite conference participants
who are willing to try our MobileApp that lets them interact with
the intelligent doorbell. We will keep a QR code at the booth to
help install our MobileApp. To create an efficient flow of people at
the time of demonstration, we will have a video played in loop on
a laptop that we will bring along with us.
Technical Requirements. For demonstration at the conference,
we will carry the required set of Raspberry Pi kit with sensors to
demonstrate the FL-based smart doorbell functionality, an iPhone
to interact with the smart doorbell, and a laptop to demo a web
smart doorbell interface. From the conference organizers, we would
only require a reliable WiFi/Ethernet internet to connect the smart
doorbell to the software components running on AWS.

4 CONCLUSION
Through this paper, we demonstrate an intelligent smart doorbell
design using Federated Learning across edge and cloud resources.
The proposed smart doorbell design reduces communication cost,
as smart doorbell uploads a trained model parameters to the central-
ized server, instead of images. Second, the smart doorbell deploys
On-Device Federated model (aggregated by the Federated Server)
to reduce the object detection latency. Finally, it exchanges model
instead of exchanging images, which provide with a sense of pre-
serving privacy.

REFERENCES
[1] A. Ben Sada, M. A. Bouras, J. Ma, H. Runhe, and H. Ning. 2019. A Dis-

tributed Video Analytics Architecture Based on Edge-Computing and Federated
Learning. In 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Com-
puting, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud
and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). 215–220.

383



An Intelligent Doorbell Design Using Federated Deep Learning CODS COMAD 2021, January 2–4, 2021, Bangalore, India

[2] J. Chen and X. Ran. 2019. Deep Learning With Edge Computing: A Review. Proc.
IEEE 107, 8 (2019), 1655–1674.

[3] John R. Delaney. 2020. The Best Video Doorbells for 2020. PC Magazine Article,
https://in.pcmag.com/home-security/118816/the-best-video-doorbells-for-2020.

[4] Tarek Elgamal, Shu Shi, Varun Gupta, Rittwik Jana, and Klara Nahrstedt.
2020. SiEVE: Semantically Encoded Video Analytics on Edge and Cloud.
arXiv:2006.01318 [cs.DC]

[5] Flask. 2020. Flask – Web Develoment one drop at a time. Flask url
https://flask.palletsprojects.com/en/1.1.x/.

[6] Gunicorn. 2020. Gunicorn - Python WSGI HTTP Server for UNIX. Nginx url
https://gunicorn.org/.

[7] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-
jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mo-
bileNets: Efficient Convolutional Neural Networks forMobile Vision Applications.
arXiv:1704.04861 [cs.CV]

[8] Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strate-
gies for Improving Communication Efficiency. CoRR abs/1610.05492 (2016).
arXiv:1610.05492 http://arxiv.org/abs/1610.05492

[9] Peng Liu, Bozhao Qi, and Suman Banerjee. 2018. EdgeEye: An Edge Service
Framework for Real-Time Intelligent Video Analytics. In Proceedings of the 1st
International Workshop on Edge Systems, Analytics and Networking (Munich,
Germany) (EdgeSys’18). Association for Computing Machinery, New York, NY,

USA, 1–6. https://doi.org/10.1145/3213344.3213345
[10] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen,

Lican Feng, Tianjian Chen, Han Yu, and Qiang Yang. 2020. FedVision: An
Online Visual Object Detection Platform Powered by Federated Learning.
arXiv:2001.06202 [cs.LG]

[11] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.
2016. Federated Learning of Deep Networks using Model Averaging. CoRR
abs/1602.05629 (2016). arXiv:1602.05629 http://arxiv.org/abs/1602.05629

[12] Nginx. 2020. Nginx – Part of F5. Nginx url https://www.nginx.com/.
[13] Ashwin Pajankar. 2015. Raspberry Pi Computer Vision Programming. Packt

Publishing.
[14] Tapan Pathak, Vatsal Patel, Sarth Kanani, Shailesh Arya, Pankesh Patel, and

Muhammad Intizar Ali. 2020. A Distributed Framework to Orchestrate Video
Analytics Across Edge and Cloud: A Use Case of Smart Doorbell (To be appeared).
In Proceedings of the 10th International Conference on the Internet of Things (Malmo,
Sweden) (IoT 2020). Association for Computing Machinery, New York, NY, USA,
Article 1, 8 pages.

[15] Darrenl Tzutalin. 2020. LabelImg – LabelImg is a graphical image annotation
tool. Github Repository, https://github.com/tzutalin/labelImg.

[16] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated
Machine Learning: Concept and Applications. CoRR abs/1902.04885 (2019).
arXiv:1902.04885 http://arxiv.org/abs/1902.04885

384

https://arxiv.org/abs/2006.01318
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
https://doi.org/10.1145/3213344.3213345
https://arxiv.org/abs/2001.06202
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1902.04885
http://arxiv.org/abs/1902.04885

	Abstract
	1 Introduction
	2 System Design and Implementation
	2.1 Federated Client
	2.2 Federated Learning
	2.3 Federated Server at Cloud
	2.4 Serverless Architecture

	3 Demonstration
	4 Conclusion
	References

