
Enrichment of Blockchain Transaction Management
with Semantic Triples

Kosala Yapa Bandara
The Insight Centre for Data Analytics
National University of Ireland Galway

Galway, Ireland

kosala.yapa@nuigalway.ie

Subhasis Thakur
The Insight Centre for Data Analytics
National University of Ireland Galway

Galway, Ireland

Subhasis.thakur@nuigalway.ie

John Breslin
The Insight Centre for Data Analytics
National University of Ireland Galway

Galway, Ireland

john.breslin@nuigalway.ie

Abstract—Enterprise business transactions have both public
and private information; hence blockchain adaptation to an
enterprise business application needs current blockchain plat-
forms to support both public and private information. Public
blockchains (permissionless) are optimized for transparency;
hence the sharing of private and sensitive information is chal-
lenging. On the other hand, private blockchains (permissioned)
separate information about a transaction by generating a pub-
lic transaction and a set of private transactions and treat
them separately. This separation weakens the cohesiveness of
transaction information and develops an extra burden when it
is necessary to connect both public and private information
which is not duly addressed in the literature. For example,
auditing, regulatory activities, certifications, and traceability
need both the public and private information about transactions.
This paper uses semantic triples and introduces the Triples
for Transactions(T4T) model to define blockchain transactions,
improve cohesiveness and resolve the extra burden of connecting
both private and public transactions. This paper presents a
user-driven transaction analysis, transaction modelling using
the T4T model, semantic querying, and REST endpoints to
enrich transaction management. Sets of semantic triples can
define both public and private information about a transaction
while preserving cohesiveness of the information. This approach
supports point-to-point sharing of sensitive information while
preserving implicit relationships between both private and public
information. We have implemented an auditing scenario in the
proposed approach adopting Hyperledger Fabric and compared
for performance with Hyperledger Fabric. The results showed
that the proposed approach reduces the number of transaction
cycles by 66% compared to Hyperledger Fabric and the per-
formance of information retrieval is in O(N). This result is a
significant improvement compared to Hyperledger Fabric.

Index Terms—Blockchain, Traceability, Semantic Triples, Hy-
perledger Fabric

I. INTRODUCTION

Public blockchain platforms create public, immutable and

transparent transactions while protecting the user’s anonymity,

for example, Ethereum [1], Bitcoin [2], and Litecoin [3]. They

are permissionless decentralized blockchains where anyone

can join, read and write transactions but no one has control

over the network. On the other hand, private blockchain

platforms place restrictions on who can participate and in

what transactions, for example, Hyperledger Fabric [4], and

Quorum [5]. They are permissioned blockchains which sepa-

rate transactions as public and private transactions.

In enterprise business applications, a transaction has both

private and public information [6]. For example, informa-

tion shared between wholesale buyers and sellers can have

sensitive pricing details and none-sensitive types of goods

and quantity details. However, decentralised ledgers in a

blockchain maintain the same state by storing a transaction in

all the ledgers. In Hyperledger Fabric, hashes of both private

and public transactions are recorded on the public ledger

while keeping private records on the participants’ private data

stores. Hyperledger Fabric introduces private channels and

private data collections to manage private transactions.

Permissioned blockchain platforms are mainly used for

enterprise business applications [7]–[9]. However, current

permissioned blockchain platforms separate transactions into

private transactions and public transactions, and treat them

separately, for example, Hyperledger Fabric [4] and Quorum

[5]. There is no guarantee that public and private transactions

are placed in blocks preserving cohesiveness of the informa-

tion. The privacy of private transactions is preserved since

hashes of them are kept on the public ledger. However, this

separation destroys the cohesiveness of transaction informa-

tion and adds an extra overhead when searching and querying

of both public and private information of a transaction. This

limitation is not duly addressed in the literature so far, and

that is the main focus of this paper. For example, analytics for

predictions, regulatory activities, auditing, certifications, and

traceability need both private and public information about

transactions hence destroying cohesiveness is adding an extra

overhead for searching and querying transactions in a very

large blockchain ledger.

On the other hand, semantic triples enable building both

implicit and explicit relationships between subjects and ob-

jects [10]. The semantic triples also support rich seman-

tic queries and semantic reasoning for information retrieval

and validation of relationships [11]. This is a promising

technology to model transactions as semantic triples while

preserving cohesiveness of private and public information.

Moreover, information retrieval and transactions validations

can be further supported by semantic queries and semantic

reasoning, respectively.

We introduced the T4T model to define a transaction as a

188

2020 IEEE International Conference on Blockchain (Blockchain)

978-0-7381-0495-9/20/$31.00 ©2020 IEEE
DOI 10.1109/Blockchain50366.2020.00030

Fig. 1. Private data store in Hyperledger Fabric

collection of semantic triples while preserving cohesiveness

of both public and private information about a transaction.

This approach supports point-to-point sharing of sensitive

information while preserving implicit relationships between

both private and public information. In the proposed approach,

both private and public information about a transaction is

analysed, modelled, encrypted and transferred to public ledger

using blockchain network and private data collections using

gossip protocol as in Hyperledger Fabric [4]. The transport-

level security is governed by public-key cryptography and

security certificates [12]. However, the proposed approach

does not need one organisation to maintain more than one

private data stores as private data collections in Hyperledger

[13].

In the remainder of this paper, Section II discusses state

of the art regarding private and sensitive data management in

blockchains while identifying challenges. Section III presents

our proposed model for transaction modelling while detailing

the realization in subsection A. Section IV illustrates the

transaction flow of the proposed approach, which is near to

Hyperledger Fabric. Section V describes the implementation

and evaluation of the proposed approach for an auditing

scenario. Section VI concludes while discussing contributions

and directions for future research.

II. LITERATURE REVIEW

The public (permissionless) blockchain platforms are opti-

mised for transparency, and transactions are public and trans-

parent. For example, Bitcoin [2], Ethereum [1], and Litecoin

[3]. However, the permissioned blockchain platforms separate

transactions into public transactions and private transactions,

for example, Hyperledger Fabric [4] and Quorum [5]. The

private transactions share private and sensitive data between

participants in a network [14]. The permissioned blockchain

platforms are mainly used for enterprise business applications

[7]–[9].

Ethereum is a secure decentralised ledger which is opti-

mised for transparency; hence it is challenging to share secrets

on the platform [1]. The notion of private transactions and

public transactions are introduced in Quorum [5]. Quorum

extends the transaction model of Ethereum [1] to include an

optional privateFor parameter and a new IsPrivate method to

deal with such transactions. On the other hand, Hyperledger

Fabric introduces private data collections, which allow a

defined subset of organisations on a channel the ability to

endorse, commit, or query the private data [13]. The private

data is sent peer-to-peer via gossip protocol to only the

organisations authorised to see it. The ordering service is not

involved here, and orderer does not see the private data. The

hash of the private data is endorsed, ordered and written to

the ledgers of every peer on the channel as in figure 1 [13].

The hashes of private data go through the orderer to public

ledgers and preserve privacy. The hash can be used for

state validation and audit purposes. In this approach, if a

transaction has both private and public information, it will

be decomposed into a public transaction and a set of private

transactions, which create several records in the public ledger

and private data stores. Moreover, different hashes are created

for each transaction. This leads to complicate transaction-

specific querying from both public ledger and private data

collections because an extra effort is needed to search and

join query related information.

Authors in [15] propose a secure-MPC (multi-party compu-

tation) protocol to support private data on Hyperledger Fabric.

The participants in the network store their private data on the

ledger that are encrypted with their own secret key. When

private data is needed in a smart contract, the party who has

the key decrypts it and uses the decrypted value. However,

private data is stored in the distributed ledger enabling access

if the secret key is stolen.

A set of successful use cases of blockchain implementa-

tions is summarized in [16], for example, Danish shipping

company Maersk – a blockchain application for international

logistics, Provenance – a pilot project in Indonesia to enable

traceability in the fishing industry, Alibaba – a blockchain to

fight for food fraud, Walmart – tracking produce from Latin

America to the USA, and Intel’s solution to track seafood sup-

ply chain. The traceability in a supply chain is a challenging

189

Fig. 2. T4T Model (Triples for Transactions Model)

area to explore [17]. The use of semantics in a blockchain

to improve the scalability of IoT is discussed in [18]. In

current blockchain architecture, distributed ledgers provide

transaction information accessible to all the participants in

a blockchain network providing a greater transparency [19].

However, organizations are reluctant to expose sensitive in-

formation in a public ledger. The privacy, scalability and lack

of governance are still significant concerns for large scale

industrial adaptation of blockchain paradigms [20].

The separation of transactions as private and public trans-

actions weakens cohesiveness of the transaction information

and adds an extra overhead on searching and querying when

both the public and private information about a transaction

is needed. For example, analytics for predictions, regulatory

activities, traceability, and auditing need both the private

and public information about transactions. This separation

of concerns and weakening the cohesiveness are not duly

addressed in the literature, and further research is needed

to resolve these limitations for large enterprise blockchain

applications.

III. TRIPLES FOR TRANSACTIONS (T4T MODEL)

In an enterprise application, a single transaction should be

capable of holding both public and private information. We

combined the concepts separation of concerns [21] in software

engineering, principles of public-key cryptography [12] in

cybersecurity and RDF triples in semantic web [11], and

introduced a T4T model to define transactions in enterprise

blockchain applications.

definition 1: The T4T Model is a collection of triples which

defines public and private information of a transaction. Triples

are made from classes: Transaction, TransactionHash, Private,

PrivateHash and Ledger, and object properties: publicInfo,

privateInfo, privateInfoHash and transactionHash.

As in definition 1, the T4T model has five main classes

connected through four object properties. The classes, domain

and range of object properties are illustrated in figure 2. We

used OWL functional syntax [10] to present the formalization

of the T4T model. The core components of the T4T model

are formalized and presented in OWL syntax as follows:

:Transaction rdf:type owl:Class

:TransactionHash rdf:type owl:Class
:Private rdf:type owl:Class
:PrivateHash rdf:type owl:Class
:Ledger rdf:type owl:Class

The Transaction class instantiates transactions. The Transac-

tionHash class is to define a hash for a transaction. The hash

for a transaction is created using both public information and

hashes of private information. The hash of the transaction,

the hashes of private information and public information are

always stored in the public ledger. The Private class is to

define private information between participants. The Ledger

class is to define public information of a transaction which is

visible to all the participants in a network. The PrivateHash

class contains hashes of private information.

The object properties of the T4T model are formalized and

presented in OWL syntax as follows:

:transactionHash
rdf:type owl:ObjectProperty,

owl:FunctionalProperty;
rdfs:domain :Transaction ;
rdfs:range :TransactionHash .

:publicInfo
rdf:type owl:ObjectProperty ,

owl:FunctionalProperty;
rdfs:domain :Transaction ;
rdfs:range :Ledger .

:privateInfo
rdf:type owl:ObjectProperty,

owl:FunctionalProperty;
rdfs:domain :Transaction;
rdfs:range :Private .

:privateInfoHash
rdf:type owl:ObjectProperty,

owl:FunctionalProperty;
rdfs:domain :Private;
rdfs:range :PrivateHash .

190

Fig. 3. T4T Realization for Transaction T1

The object property, transactionHash connects a transaction

with the hash of the transaction. The object property, pub-

licInfo connects a transaction with the public information of

the transaction. The object property, privateInfo connects a

transaction with the private information of the transaction.

This private information is confidential information of the

transaction between participants in the network. The object

property, privateInfoHash connects instances of Private and

PrivateHash.

User-driven separation of concerns is applied to separate

public and private information about a transaction. A collec-

tion of triples which define public and private information is

auto-generated based on the transaction specification. Public

key certificates and private keys will be used to manage

transport-level security of sensitive information between par-

ticipants.

A. Realization of T4T Model for Transactions

For the illustration purpose, we realize the T4T model for

transaction T1 in a blockchain network of three participants.

The transaction T1 has both public and private information.

The P1, P2 and P3 are participants in the blockchain network.

In transaction T1, P1 needs to send the commodity C1 to P3

through P2. The P1T1P3 is private information between P1

and P3. The P1T1L is public information shared among all

the participants. The P1T1P2 is private information between

P1 and P2. The P1T1H is the hash value of the transaction T1

having both public and private information. The P1T1P2H is

the hash value of private information between P1 and P2 of

the transaction T1. The P1T1P3H is the hash value of private

information between P1 and P3 of the transaction T1.

The realization of T4T model for transaction T1 is illus-

trated in figure 3. When the transaction T1 is committed,

Triples [T1, P1T1H, P1T1L, P1T1P2H, P1T1P3H] are stored

on the public ledgers of all the participants. The triples [T1,

P1T1H, P1T1P2] are stored on the private data store of P2.

The triples [T1, P1T1H, P1T1P3] are stored on the private

data store of P3. The triples [T1, P1T1H, P1T1P2, P1T1P3]

are stored on the private data store of P1. This approach

supports point to point sharing of sensitive information while

preserving implicit relationships between the private and

public information.

The transport-level security is managed by public-key cryp-

tography on the transaction flow. The triples [T1, P1T1H,

P1T1P2] are encrypted using P2’s security certificate, and

the triples [T1, P1T1H, P1T1P3] are encrypted using P3’s

security certificate. The triples of private information can be

decrypted and stored on private data stores of P2 and P3. We

introduced triple stores to keep private data at participants.

The type Participant defines a member of a blockchain

network. The realisation of T4T model for the transaction

T1 is formalised and presented in OWL functional syntax as

follows:

:P1 rdf:type owl:NamedIndividual,
:Participant.

:P2 rdf:type owl:NamedIndividual,
:Participant.

:P3 rdf:type owl:NamedIndividual,
:Participant.

:P1T1H rdf:type owl:NamedIndividual,
:TransactionHash .

191

Fig. 4. Transactions Flow

:P1T1L rdf:type owl:NamedIndividual,
:Ledger.

:P1T1P2 rdf:type owl:NamedIndividual.
:Private.

:P1T1P3 rdf:type owl:NamedIndividual,
:Private.

:T1 rdf:type owl:NamedIndividual,
:Transaction;

:privateInfo :P1T1P2,
:P1T1P3;

:publicInfo :P1T1L;
:transactionHash :P1T1H.

This proposed approach provides scalability in terms of

sharing private information between participants and sup-

ports semantically rich, efficient querying using collections

of triples. The efficiency was assessed based on the per-

formance. This approach improves the cohesiveness of both

public and private information of a transaction since they are

connected implicitly. Moreover, when the private data needs

verification, the relevant hash can be queried from the public

ledger. Semantic queries can be applied to private data stores

maintained at the participants to query the transaction hash

and private data. The necessary validations can be done on

the hash generated from the private data, and the hash queried

from the public ledger.

IV. TRANSACTION FLOW

We extended the transaction flow of Hyperledger Fabric1

to support our T4T model. In our approach, a transaction

is a collection of triples which defines both private and

public information. A common hash is generated using public

1https://hyperledger-fabric.readthedocs.io/en/release-1.4/arch-deep-
dive.html

information and hashes of private information about the

transaction. The common hash is verified before committing

both public and private information about the transaction.

The triple stores were introduced for private data stores in

Hyperledger Fabric, and the transaction flow was extended to

support triple stores. Hyperledger Fabric is using key-value

data stores to record private and confidential data. Also, the

hash of the private information is stored in the public ledger

as a separate transaction weakening cohesiveness of public

and private information about a single transaction. The main

activities of the extended transaction flow are illustrated in

figure 4.

The flow of transactions is nearly similar to Hyperledger

Fabric. However, Hyperledger fabric separates public and

private information about a transaction as a public transaction

and private transactions and stores them on the public ledger.

The hash of the private transaction is stored on the leader

while private data is stored on private data stores.

We used the transaction defined in figure 3 to illustrate the

extended transaction flow in figure 4. The main activities of

the extended transaction flow are as follows:

1). The participant P1 sends public triples of the transaction

to all the peers. Peers simulate and endorse the transaction as

in Hyperledger Fabric.

2). The endorsed transactions are sent to the client. The

client verifies the endorsement with the agreed endorsement

policy as in Hyperledger Fabric.

3). The endorsed transaction (public triples of the trans-

action) is broadcasted to ordering service. The private data

(private triples of the transaction) is shared with authorized

peers upon endorsement and stored in a transient store of

each peer. The private triples will not go through the ordering

service as in Hyperledger Fabric. The private triples have the

transactions ID, transaction hash and private data so that it

can connect with ledger information when it is needed for

192

verification and querying. The transaction hash maintains the

integrity of both public and private information.

4). The ordering service verifies endorsement, orders trans-

actions into a block and delivers the block to all the com-

mitting peers. The ordering service, which is made up of a

cluster of orderers, does not process transactions or maintain

the shared ledger. It only accepts the endorsed transactions

and specifies the order in which those transactions will be

committed to the ledger. The committing peer validates the

transaction by checking the current world state. That is

endorsers’ simulated state is identical to the current world

state. After the committing peer validates the transaction, the

transaction is written to the ledger, and the world state is

updated.

5). While committing a transaction, private records will

be committed to private data stores of authorized members

from the transient stores. The transaction hash, private hashes

and private triples can be verified before committing private

information to triple stores. There is no need for a separate

transaction on the public ledger to record the hash of private

data as in Hyperledger Fabric. This is one of the crucial

contributions of this proposed work.

The private transactions in the Hyperledger Fabric execute

through the transaction flow to record hashes of the private

information. However, our approach does not need extra

transactions for private information and reduces unnecessary

cycles in the transaction flow, for example, the transaction T1

defined in subsection III-A needs two private transactions in

Hyperledger Fabric costing two extra cycles in the transaction

flow to record hashes of private information. That is, the

proposed approach reduces 66% of transaction cycles for the

T1 type transactions. T1 is a simple and the most common

type of transactions in enterprise applications; hence this is a

significant improvement.

V. IMPLEMENTATION AND EVALUATION

A. Transaction Flow

We implemented the transaction flow for T1 type transac-

tions, as explained in section 4 and simulated our proposed

approach for advanced transactions while increasing the num-

ber of participants. For advanced transactions, we used the

binomial coefficient to find the distinct combinations of a

group of two members for private transactions. The binomial

coefficient (
n

k

)
=

n!

k!(n− k)!

where n is number of participants and k is 2. We simulated

our proposed approach and Hyperledger Fabric for advanced

transactions and compared the results in figure 5. Hyperledger

Fabric separates public information and private information

of a transaction and creates separate transactions. The re-

sult shows that for one business transaction, the proposed

approach has only one blockchain transaction processing

through the transaction flow. However, Hyperledger Fabric

needs more than one blockchain transactions (one transaction

Fig. 5. Compare the number of transactions in the Transaction Flow

for public information and a set of transactions for private

information between participants connected through channels

and collections) processing through the transaction flow, and

that is proportional to the binomial coefficient where n is the

number of participants, and k is 2. The result shows that the

proposed approach reduces at least 66% of transaction cycles,

and that is a significant improvement.

B. Querying Transactions for Traceability

We implemented traceability using an auditing scenario that

needs both public and private information of transactions. We

implemented the scenario using our proposed approach and

Hyperledger Fabric and compared them for performance.

Scenario: An auditor needs both public and private in-

formation of the transaction T1. Transaction T1 is initiated

by P1 to send goods to P3 through P2. T1 has public

information, private information between P1 and P2, and

private information between P1 and P3.

In our application, a user-driven analysis of the transaction

T1 generates a specification and a collection of triples are

auto-generated. The underlying implementation uses Ontol-

ogy Web Language (OWL)2.

The transaction model has 6 main classes (:Transaction,

:TransactionHash, :Ledger, :Private, :PrivateHash, :Participant

of rdf:type owl:Class) and 4 object properties (:transaction-

Hash, :privateInfoHash, :privateInfo, :publicInfo of rdf:type

owl:ObjectProperty).

The necessary instances for the transaction T1 are

created based on the user-driven analysis of transaction

T1. For example, (:T1 rdf:type owl:Transaction,

:P1,P2,P3 rdf:type owl:Participant, :P1T1P2, P1T1P3

rdf:type owl:Private :P1T1L rdf:type owl:Ledger,:P1T1H

rdf:type owl:TransactionHash, :P1T1P2H, P1T1P3H

rdf:type owl:PrivateHash). Then instances are

connected using object properties. For example,

(:T1 rdf:type owl:Transaction;:privateInfo :P1T1P2,

P1T1P3;:publicInfo :P1T1L;:transactionHash :P1T1H).

Similarly, private information has private hashes.

P1T1P2 has private hash P1T1P2H (:P1T1P2 rdf:type

owl:Private; :privateInfoHash:P1T1P2H) and P1T1P3 has

2https://www.w3.org/OWL/

193

Fig. 6. Ledger and private data stores in Hyperledger Fabric

private hash P1T1P3H (:P1T1P3 rdf:type owl:Private;

:privateInfoHash:P1T1P3H).

The private data store of p2 has the record [T1, P1T1H,

P1T1P2] and p3 has the record [T1, P1T1H, P1T1P3]. Audi-

tors can use semantic queries on private data stores to retrieve

necessary information. We implemented SPARQL3 queries to

retrieve T1 related private information from P2 as follows:

PREFIX ab: <http://www.semanticweb.org/
c5282513/ontologies/2019/4/CoTOntology#>
SELECT ?privateInfomation ?TransHash
WHERE {
ab:T1 ab:privateInfo ?privateInfomation.
ab:T1 ab:transactionHash ?TransHash
}
Results:
PrivateInformation | TransHash
P1T1P2 P1T1H

The same query was applied to P3 to retrieve T1 related

private information as follows:

Results:
PrivateInformation | TransHash
P1T1P3 P1T1H

Now auditors have private information about the transaction

T1 as P1T1P2 and P1T1P3. Since there is a common hash

for public information and private information, it is a single

direct call to query transaction-specific public information

from the public ledger. For example, the REST end-point

to P1T1H is a single invocation on the public ledger to

retrieve P1T1L, P1T1P2H, and P1T1P3H. The performance is

in O(1). Now the auditor can verify private information using

private hashes - for example, P1T1P2H to verify P1T1P2 and

P1T1P3H to verify P1T1P3. This ensures the immutability

of private information. Moreover, private information is not

exposed to other participants. Auditing Transaction T1 needs

the following tasks in the proposed approach:

1) Query private information from a triple store using a

semantic query. For P2, private information is [P1T1P2,

3https://www.w3.org/TR/rdf-sparql-query/

P1T1H].

2) Retrieve transaction-specific information from the

ledger using the REST end-point of P1T1H. Informa-

tion is [T1: P1T1H, P1T1L, P1T1P2H, P1T1P3H] and

performance is in O(1).

3) Verify private information using hashes [P1T1P2-

P1T1P2H, P1T1P3-P1T1P3H].

4) All the transaction-specific verified information is ready

for auditing [P1T1L, P1T1P2, P1T1P3].

We compared our approach with Hyperledger Fabric [4].

Starting in v 1.2, Hyperledger Fabric offers private data

collections. A collection offers two elements, the actual

private data, and the hash of that data. Hyperledger Fabric

creates three transactions for T1 (P1T1L, P1T1P2, P1T1P3)

as illustrated in figure 6 while weakening cohesiveness of the

transaction information. There is no guarantee that transac-

tions are in a predefined order in the public ledger.

[P1T1L] needs a public transaction. Similarly, [P1T1P2]

and [P1T1P3] need two separate private transactions to record

hashes of them. The private store of P2 keeps [P1T1P2] and

the hash of [P1T1P2] will be in the public ledger. Similarly,

the private store of P3 keeps [P1T1P3] and the hash of

[P1T1P3] will be in the public ledger. Auditing Transaction

T1 needs the following tasks in Hyperledger Fabric:

1) Querying private information from private data stores

[T1: P1T1P2, P1T1P3].

2) Retrieve transaction-specific information from the

ledger using the REST end-point of T1 [T1: P1T1L].

3) Generate hashes for private information [P1T1P2,

P1T1P3].

4) Retrieve hashes of private information from the public

ledger [P1T1P2H, P1T1P3H] and do the necessary

verification. A separate invocation is needed for each

private data record. The performance is O(N).

5) All the transaction-specific verified information is ready

for auditing.

The proposed approach has cohesive information and a

common hash. A semantic query can extract the common

hash and private information from triples stores. Since the

common has is extracted, it is a single REST end-point call

194

to extract all public information from the ledger. However,

in Hyperledger Fabric, each private transaction maintains a

different hash hence a separate call on the public ledger is

needed for each private information as in step 4. Auditing

involves thousands of transactions hence making several calls

on the public ledger for one transaction is a costly process

that can lead to a performance hit of O(N)2.

Similarly, Quorum separates transactions into two cate-

gories, called public and private transactions. In enterprise

business applications, most of the transactions have both pub-

lic and private information. Separating transactions makes the

information retrieval and auditing process expensive. Several

searching, querying and joining are hitting the performance.

VI. DISCUSSION AND FUTURE WORK

The private blockchains separate information about a trans-

action by generating a public transaction and a set of private

transactions and treat them separately. This separation of

concerns weakens the cohesiveness of transaction information

and adds an extra overhead for enterprise applications when

necessary to consider both public and private transactions. On

the other hand, semantic triples enable building both implicit

and explicit relationships between subjects and objects and

also support rich semantic queries and semantic reasoning

for validations.

We used the semantic triples and introduced the T4T

model to define blockchain transactions. The T4T model and

triple stores for private data persistence enrich cohesiveness

of the private and public information about a transaction

stored in private data stores and the public ledger and further

supports information retrieval and traceability for enterprise

blockchains. This approach supports point-to-point sharing of

sensitive information while preserving implicit relationships

between the private and public information. The privacy and

transparency of transactions are preserved while providing

scalability for private transactions.

The proposed approach reduces unnecessary cycles in the

transaction flow compared to Hyperledger Fabric. The pro-

posed approach reduces at least 66% of transaction cycles

which is a significant improvement. Moreover, the proposed

approach shows better performance [O(N)] on information

retrieval compared to Hyperledger Fabric [O(N)2] which

is a significant improvement for much-needed traceability

applications.

The proposed approach can be adapted to other blockchain

frameworks since the transaction modelling, and private data

stores stay outside the blockchain framework. We are working

in extending the proposed approach for traceability and item

recall in supply chain systems and modelling tokens in token-

based blockchains to yield improved performance, scalability

and semantically enriched features.

VII. ACKNOWLEDGEMENT

This publication has emanated from research supported

by Science Foundation Ireland (SFI) under Grant Number

SFI/12/RC/2289 P2 (Insight).

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” [Online; Accessed: 2019-05-23]. [Online]. Available:
https://gavwood.com/paper.pdf

[2] bitcoin.org, “Open source p2p money,” [Online; Accessed: 2019-05-
23]. [Online]. Available: https://bitcoin.org/en/

[3] litecoin.org, “Open source p2p digital currency,” [Online; Accessed:
2019-05-23]. [Online]. Available: https://litecoin.org/

[4] Hyperledger.org, “Hyperledger fabric,” 2019, [Online; Ac-
cessed: 2019-05-15]. [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/latest/index.html

[5] J. P. Morgan, “Quorum - transaction processing,”
2018, [Online; Accessed: 2019-04-23]. [Online]. Available:
https://github.com/jpmorganchase/quorum/wiki/Transaction-Processing

[6] J. Holbrook, Architecting Enterprise Blockchain Solutions. WILEY,
2020.

[7] F. Yiannas, “A new era of food transparency powered by blockchain,”
Innovations: Technology, Governance, Globalization, vol. 12, no. 1-2,
pp. 46–56, 2018.

[8] B. Tan, J. Yan, S. Chen, and X. Liu, “The impact of blockchain on food
supply chain: The case of walmart,” in Smart Blockchain, M. Qiu, Ed.
Springer International Publishing, 2018, pp. 167–177.

[9] N. Emmadi, R. Vigneswaran, S. Kanchanapalli, L. Maddali, and
H. Narumanchi, “Practical deployability of permissioned blockchains,”
in Business Information Systems Workshops, W. Abramowicz and
A. Paschke, Eds. Springer International Publishing, 2019, pp. 229–243.

[10] B. Motik, P. Patel-Schneider, and B. Parsia”, “Owl 2 web ontology
language: Structural specification and functional-style syntax (second
edition),” 2012, [Online; Accessed: 2019-05-14]. [Online]. Available:
https://www.w3.org/TR/owl2-syntax/#Functional-Style Syntax

[11] M. Sintek and S. Decker, “Triple - a query, inference, and transfor-
mation language for the semantic web,” in Proceedings of the First
International Semantic Web Conference on The Semantic Web, ser.
ISWC ’02. Berlin, Heidelberg: Springer-Verlag, 2002, pp. 364–378.

[12] S. Halevi and H. Krawczyk, “Public-key cryptography and password
protocols,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 3, pp. 230–268,
Aug. 1999.

[13] Hyperledger.org, “Private data – hyperledger fabric,” 2019, [Online;
Accessed: 2019-04-23]. [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/release-1.4/private-data/private-data.html

[14] E. Androulaki, S. Cocco, and C. Ferris, “Pri-
vate and confidential transactions with hyper-
ledger fabric,” [Online; Accessed: 2019-05-22]. [Online].
Available: https://developer.ibm.com/tutorials/cl-blockchain-private-
confidential-transactions-hyperledger-fabric-zero-knowledge-proof/

[15] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting private data on
hyperledger fabric with secure multiparty computation,” in 2018 IEEE
International Conference on Cloud Engineering (IC2E), April 2018,
pp. 357–363.

[16] N. Kshetri, “Blockchain’s roles in meeting key supply chain manage-
ment objectives,” International Journal of Information Management,
vol. 39, pp. 80–89, apr 2018.

[17] W. Martin, V. Friedhelm, and K. Axel, “Blockchain-based supply
chain traceability: Token recipes model manufacturing processes,” in
Proceedings of 2018 IEEE International Conference on Blockchain.
IEEE, 2018.

[18] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, and E. D. Sciascio, “Semantic
blockchain to improve scalability in the internet of things,” Open
Journal of Internet Of Things (OJIOT), vol. 3, pp. 46–61, 2017.

[19] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
2017 IEEE International Congress on Big Data (BigData Congress),
2017, pp. 557–564.

[20] W. Li, A. Sforzin, S. Fedorov, and G. O. Karame, “Towards scalable and
private industrial blockchains,” in Proceedings of the ACM Workshop on
Blockchain, Cryptocurrencies and Contracts. ACM, 2017, pp. 9–14.

[21] H. S. Hamza, “Separation of concerns for evolving systems: A stability-
driven approach,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5,
May 2005.

195

