
Abstract—Renewable energy sources are highly unreliable;
hence prosumers connected to renewable energy sources find
unreliable energy surplus and demands which should be man-
aged frequently within neighbourhoods. Peer-to-peer(P2P) energy
trading has emerged as the next-generation energy management
mechanism to manage unreliability concerns within local com-
munities. This process needs a prosumer with energy demand to
join with a set of prosumers with energy surpluses to fulfil the
energy need. Finding the optimal set of prosumers with energy
surpluses is a challenge that is not yet duly addressed in literature
considering the unreliability of energy sources and constraints
in local communities. This paper presents a game-theoretic
approach, applies coalition formation game theory supported by
a clustering-based approach and solves an optimisation problem
to find optimal coalitions. The optimal coalitions are the winning
coalitions found from our coalition formation game. This game
considers frequent change of energy surpluses and demands,
distance to prosumers, the quantity of energy sale, and dynamic
clustering on potential coalitions. The payoff will calculate the
quantity of energy sale. We used a multi-threading and parallel
computing approach to find the optimal size of the cluster
that gives winning coalitions. We implemented our clustering-
based coalition formation algorithm in Java. We tested for
the efficiency and success rate using a residential PV energy
production and consumption data set from California state in the
USA. We compared the number of successful coalitions resulted
from our algorithm with the hierarchical coalition formation
algorithm(HCF) in literature. Our experimental results showed
that both the sizes of the neighbourhood and sizes of the cluster
have a significant impact on the number of successful coalitions
and the proposed algorithm has a higher success rate compared
to the HCF algorithm.

I. INTRODUCTION

Renewable energy generators are not reliable because they
are profoundly affected by changing environmental factors;
for example, the amount of sunshine and wind speed. The
unreliable energy sources create unreliable energy surplus and
energy demands. The P2P energy trading has emerged as the
next-generation energy management mechanism to manage
unreliable energy surplus and demands within local commu-
nities. This process needs a prosumer with energy demand to

join with a set of prosumers with energy surpluses to fulfil
the energy need. Prosumers consume and produce renewable
energy.

The P2P energy trading among local prosumers and users
is an exciting concept to manage unreliable distributed en-
ergy resources[1], [2]. The energy transfer in conventional
micro-grid architecture is between micro-grids and the Utility
Grid(UG), which involves energy transfer through substations
and voltage transformers, resulting in a power loss. P2P
Energy trading goes from prosumer to prosumer rather than
large commercial enterprise to consumer, and prosumers can
sell their excess power for profit. In this approach, there is
no middle man making deals on own terms, everyone saves
money, the size of the generator or prosumer is not essential,
and deals are direct and transparent.

Cooperative game theory involves three stages of coop-
erative action, coalition formation(i.e., agreement of who
will work together), team formation (i.e., agreement of who
does which task with which resources), and coordinated,
cooperative action (i.e., agreement on how to dynamically
coordinate)[3]. We have explored the literature in detail es-
sentially HCF in [4], P2P energy trading using a game-
theoretic approach in [5], robust coalition structure generation
in [6], coalitional games to fulfill group efficient solutions
in [7], cooperative strategy-based coalition formation in [8],
and generic approach to coalition formation in [9]. However,
finding the optimal set of prosumers with energy surplus for
a prosumer with energy need is a challenge which is not
yet duly addressed in literature considering the unreliability
of energy sources and constraints in the local community.
We have observed, at least the following concerns should be
addressed when creating coalitions:

• Coalition formation needs to find optimal coalitions. This
process may need to look into all the possible distinct
combinations of potential prosumers. However, a large
number of prosumers can create an exponential number
of coalitions and could be relatively unrealistic.

• Coalition formation and energy trading should be done
frequently within small intervals because energy sources
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are unreliable.
• Coalition formation needs to consider the distance be-

tween prosumers to minimise energy loss at transmission
in low-voltage networks.

Our methodology directed towards clustering-based coali-
tion formation, solving an optimisation problem using multi-
threading and parallel computing approach to find the optimal
coalitions, and P2P energy trading using the optimal coalitions.
We modelled coalition formation using cooperative game
theory[6], [10] to create coalitions of prosumers to fulfil energy
requirements of them. Prosumer with excess energy at time t is
called PGt and prosumer with energy need at time t is called
NGt. A set of MGs at time t within neighbouring distance
d from an NG is called coalition members. A large number
of coalition members can create an exponential number of
coalitions and could be relatively unrealistic. We propose a
clustering-based approach that creates clusters from coalition
members and creates all the possible distinct combinations
of prosumers in each cluster. These distinct combinations in
different clusters join together to form potential coalitions
which can fulfil the energy need of an NG. The optimal
coalition can fulfil the energy need of an NG with minimum
excess energy. We further vary the size of the cluster, consider
the maximum time for coalition formation, and solve an
optimisation problem to find the optimal coalitions. In other
words, the optimal coalition is the winning coalition found
from our coalition formation game. We implemented our
algorithm in Java and tested using a data set in the California
state. We compared our coalition formation results with HCF
in [4] that creates coalitions among microgrids.

We organised this paper as follows: In section II, we
discussed the relevant literature. Section III described the
proposed clustering-based coalition formation game. In section
IV, we discussed the implementation, experimental evaluation,
and results. Finally, in section V; we presented findings and
future research.

II. LITERATURE REVIEW

Game theory is the study of mathematical models of strate-
gic interaction among rational decision-makers[11]. Game
theory attempts to abstract out elements that are common to
many conflicting and(or) cooperative encounters and analyse
them mathematically[12]. A cooperative game focuses on how
one can provide incentives to independent decision-makers so
that they act together as one entity to improve their position
(or utility) in the game[5].

We have explored HCF in [4], P2P energy trading using
game theory in ([5], [13]), robust coalition structure generation
in [6], coalitional games to fulfill group efficient solutions in
[7], cooperative strategy-based coalition formation in [8] and
generic approach to coalition formation in [9] to review and
advance state of the art of coalition formation.

The primary task of managing prosumers is dynamically
balancing energy requirements (local supply and power de-
mands) due to the unreliable nature of renewable energy
resources and the variability of load demand during the day.

In [8], agents associated with each micro-grid implement a
cooperative strategy and generate coalitions to fulfil the energy
requirements of them having a minimum power loss. A TU
game (N , v) was defined to have a cost function proportional
to the power loss[8]. Coalitional games fulfil group-efficient
solutions to problems involving strategic actions. In coalition
formation games, forming coalitions bring advantages to its
members, but the cost for forming coalitions limit the gains[7].
Authors in [6] have discussed a robust coalition structure
generation that partitions a set of agents into coalitions and
maximises the social surplus (i.e., the sum of the rewards
obtained by each coalition). Collaborative spectrum sensing
as a coalitional game is presented in [14]. The typical op-
timal coalition formation method requires exhaustive search
over all possible combinations, which is computationally very
expensive[9]. This paper advances the state of the art by intro-
ducing a clustering-based game-theoretical coalition formation
supported by an optimisation problem.

III. CLUSTERING-BASED COALITION FORMATION GAME

This section explains how do the prosumers with energy
surplus find their positions in optimal coalitions to trade energy
to prosumers with energy needs. In a coalition formation
game for P2P energy trading, prosumers form coalitions to
improve their respective utilities. The strategic interaction
among prosumers is needed to identify the distance between
them, find energy requirements, find all the possible distinct
coalitions and find the optimal coalitions. The optimal coali-
tions contribute to P2P energy trading.

Let A = {a1, a2, ..., an} be a set of prosumers including
PGs and NGs. The quantity of energy need is defined as
Q(NG). For an NG, potential coalition members should be
found based on the neighbourhood distance. The neighbour-
hood distance can be varied based on the geographical and
network constraints [15]. Coalition members consist of PGs
from A within a neighbourhood of an NG. The distinct
combinations of coalition members will form coalitions. The
winning coalition is the optimal coalition (s∗) for an NG found
from all the coalitions.

Definition 1 - Coalition Formation Game.
The coalition formation game can be defined by a pair
CFGNGi

= 〈N, v〉 where N = {PGk, PGk+1, ..., PGn} is
a finite set of prosumers (the set of players), and v is a real-
valued function on s ⊂ N (s is a coalition) with v(∅) = 0.
v : 2|N | → N and i,k and n are positive integers. A mutually
disjoint coalition s ∈ S where S is the total number of
coalitions (distinct combinations of PGs).

The function v is called a game or a game on N . GN

denotes the set of all games on N ; GN is a Euclidean space
of dimension 2|N | − 1, where |N | is the cardinality of N .
This process excludes the empty set. The value (or utility)
of a coalition s, denoted by v(s) is given by the real-valued
function v. v(s) finds the total energy of coalition s when
its members act together. If s =MGi,MGi+3, ...,MGj then
v(s) = Q(MGi)+Q(MGi+3)+ ...+Q(MGj) where i, j are
positive integers.
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Definition 2 - the Optimal Coalition for a NG.
The optimal coalition s∗ is the coalition where (v(s) −
|Q(NG)|) >= 0 and (v(s) − |Q(NG)|) = Qdiff

min for s ∈ S.
Qdiff is a quantity of energy measured in a given unit. The
Qdiff = v(s)−|Q(NG)| for s ∈ S and Qdiff

min is the minimum
quantity. That is, the optimal coalition s∗ finds when v(s) is
higher than and the nearest to |Q(NG)|. The optimal coalition
is the winning coalition for the NG.

In a coalition formation game, it is crucial to distinguish
the real-valued function v and the payoff function φ. In this
work, we assume the unit price of energy is equal to all the
prosumers in the neighbourhood, and the payoff is proportional
to the quantity of energy sale in the optimal coalition. When
v(s∗) = Q(MGi+1) + Q(MGi+4) + ... + Q(MGj+4) then
the payoff function φ(MGi) = η ∗Q(MGi) can be described
as follows:

• φMGi+1
= η ∗Q(MGi+1)

• φMGi+4
= η ∗Q(MGi+4)

• φMGj+4 = η ∗ Q(MGj+4) where η is the unit price of
energy.
η(s∗) = φMGi+1

+ φMGi+4
+ ...+ φMGj+4

Definition 3 - the Optimal ζ ∀ NG ∈ A.
Let ψ(A, ζ) → Map(NG, s∗) ∀ NG ∈ A during the time
τ < τmax then ζ has the optimal value. The optimal ζ fulfil
energy needs of most of the NGs from PGs in A.

In this work, we use τmax = 4Minutes because coalition
formation is happening every 5 minutes based on the energy
requirement of prosumers. However, τmax can have various
values based on the application and various other constraints
(for example, distribution system operator constraints, infras-
tructure constraints, and policy constraints)[15]. The transac-
tion monitoring and testing at the real deployment of P2P
trading system enable deciding the most appropriate τmax.

This coalition formation game will play until most of the
NGs find optimal coalitions from PGs. If an NG cannot find
a coalition, then connectivity to the utility grid is needed to
fulfil its energy need.

Using above definitions, we define algorithm1 to find the
optimal coalitions for NGs in a set of prosumers A =
{a1, a2, ..., an}. Here we explain the algorithm 1 as follows:

1) Find prosumers with energy surplus for trading (PGs)
2) Find and Sort prosumers with energy need for buying

in the ascending order (NGs)
3) Find coalitions for NGs. for each NG :

a) Find the energy load from NG, that is Q(NG)
b) Find a set of PGs from the neighbourhood of NG.

PGs are organised in clusters of size ζ ∈ Z
+. The

value of ζ should provide a reasonable number of
distinct PG combinations. However, A relatively
large ζ can make an exponential number of coali-
tions and could be relatively unrealistic. Therefore
we solve an optimisation problem to find ζ for
different settings.

c) Find energy surpluses based on all the pos-
sible combinations of PGs in clusters. For a

Algorithm 1 : Clustering-based Coalition Formation (CBCF)
Input : A = {a1, a2, ..., an}
Output: S∗; a set of optimal coalitions

1: PGs← energyExcessProsumers(A)
2: NGs← energyRequiredProsumers(A)
3: NGs← sortAscOrder(NGs)
4: for each NG ∈ NGs do
5: QNG ← energyLoad(NG)
6: CMPGs← findCoalitionMembers(PGs,NG)
7: CCs← allCoalitionCombinations(CMPGs, ζ)
8: BC ← bestCoalitionCombination(CCs,QNG)
9: end for

10: B∗
ζ ← bestCoalitionsForNGs()

11: S∗ ← optimalCoalitionsForNGs(B∗,Z+, τmax)

cluster, {{Q(PG1)}, {Q(PG2)}, ..., {Q(PG1) +
Q(PG2)},
..., {Q(PG1) +Q(PG2) +Q(PG3)}, ...}

d) Find a PG or a set of PGs where the total energy
surplus is the nearest and greater than Q(NG).
When connecting clusters, firstly we check the first
cluster if it can fulfil Q(NG) (i.e. if |Q(NG)| <=
Qtotal

1stCluster). If NG needs further consideration,
we check the next cluster to fulfil the remain-
ing balance (i.e. (|Q(NG)| − Qtotal

1stCluster) <=
Qtotal

2ndCluster)). If we can fulfil the remaining bal-
ance from the 2nd cluster, then we find the best
coalition from the 2nd cluster for the remaining
balance. This process repeats until finding the
energy need for the NG.

4) Return a set of best coalitions of MGs for NGs. In the
best coalition, the total energy surplus of the coalition
is the nearest and higher than Q(NG).

5) Return optimal coalitions for NGs. All the previous steps
will run for various ζ ∈ Z

+ within τmax on parallel
threads and select the optimal coalitions for NGs. The
optimal ζ provides optimal coalitions that are the best
coalitions for the highest number of NGs. We solve the
optimisation problem here to find optimal coalitions.

The optimal coalitions decide energy transfer and transac-
tions between NGs and PGs. If the optimal coalition of an
NG is empty, the NG needs a connection to the utility grid
(UG) for the energy need. The algorithm 1 executes at every 5
minutes throughout 24 hours to fulfil the energy requirements
of prosumers.

A. P2P Trading
Our clustering-based coalition formation algorithm finds

optimal coalitions for NGs at frequent time intervals through-
out the day considering neighbourhood distance, size of the
cluster ζ, and τmax. Let NGj find an optimal coalition
s∗ = {PGi, PGi+1, PGi+2} where i and j is a positive
integer. NGj needs a set of transactions between PGs to
fulfill its energy need. Our payoff function φ will calculate
the payoff of each transaction between NG and PGs.
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Fig. 1. Total Energy Requirement for 100 prosumers

• φ(NGj ,PGi) = η ∗Q(PGi)
• φ(NGj ,PGi+1) = η ∗Q(PGi+1)
• φ(NGj ,PGi+2) = η ∗Q(PGi+2) where η is the unit price

of energy.
Our future work will record these transactions in a blockchain
as decentralised, secure, immutable and transparent records.

IV. EVALUATION AND TESTING

A. Data Processing

We used road network data from the California state from
[16] and processed locations, demand profiles(energy needs
for houses) and PV profiles(energy generation information) of
houses fitted with PVs using data sources in [17], [18]. We
have selected 100 houses in the range of latitudes between
33 and 34, and longitudes between -119 and -118. Then we
created demand profiles and PV production profiles for each
house every 5 minutes for 24 hours. Using this information,
we created an excess energy profile for each house in every 5
minutes for 24 hours. We created two types of energy requests
(Buying request, Selling request) for each house based on the
excess energy profile. We consider these houses as prosumers.
Prosumers with energy surplus create Selling requests and
prosumers with energy demand create Buying requests.

The total energy requirement for 100 prosumers from 6 am
to 6 pm is illustrated in figure 1. The total energy requirement
is calculated for each prosumer by summing energy demand
and energy needs every 5 minutes from 6 am to 6 pm. The
results show that most of the prosumers have up to 4 kW of
energy surplus during the day time, and this energy surplus
can contribute to creating coalitions to fulfil the energy needs
of NGs.

B. Experimental Evaluation

We implemented our proposed clustering-based coalition
formation algorithm in Java and tested for various scenarios
using the above data set of 100 prosumers for 24 hours.
This process creates coalitions for NGs using PGs every
5 minutes for 24 hours. Coalition formation considers the
distance to the neighbouring PGs and the energy requirement
of NGs. If there is (n) number of coalition members available,
then there is 2n − 1 number of potential distinct coalitions
available. As defined in definition 3, finding the Optimal
ζ ∀ NG ∈ A needs to solve a cluster-based optimisation
problem. For a selected neighbourhood distance, We run our

Fig. 2. Coalition Generation for neighbourhoods and clusters

Fig. 3. CBCF: Number of PGs, NGs and NGs found coalitions

algorithm in parallel threads considering ζ ∈ Z
+ and τmax

and select the optimal ζ that gives the best coalitions for the
highest number of NGs. We created a set of neighbourhood
distances as {2, 4, 6, 8, 10, 12} in km and clusters of various
sizes as {2, 4, 8, 12, 16, 20}. We tested our algorithm using
these variations, and the above sample data set for 24 hours
in 5 minutes intervals, counted all the successful coalitions.
We could observe that the neighbourhood distance and ζ has
a significant impact when creating successful coalitions as
illustrated in figure 2 hence finding optimal ζ is essential.

In testing, we had observed that the optimal ζ was 8
when neighbourhood distance was 8 km. We monitored the
behaviour(number of NGs, number of PGs and number of
the best coalitions) of our algorithm every 5 minutes for 24
hours when ζ = 8 and neighbourhood distance is 8 km and
illustrated in figure 3. A successful NG creates a coalition
joining with a set of PGs mostly during the day time from 6
am to 6 pm.

We tested and compared the HCF and the proposed CBCF
for successful coalitions using the above data set throughout
the day when ζ = 8 and neighbourhood distance is 8 km. The
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Fig. 4. Compare the Number of NGs with Successful Coalitions

Fig. 5. Total energy of PGs did not participate for coalitions

results are illustrated in figure 4. This result shows that our
clustering-based coalition formation algorithm has a higher
success rate than the HCF throughout the day.

Not all PGs can participate in coalitions because of several
reasons. For example, when there is no NG available within the
neighbourhood distance at time t, and when the total energy
available in the neighbouring PGs is not enough to fulfil the
energy need of the NG at time t. We implemented our CBCF
algorithm and HCF algorithm to compare the total energy
of PGs which did not participate in coalitions. The figure 5
illustrates the results for 24 hours. This result shows that the
proposed CBCF algorithm has a higher success rate than the
HCF algorithm throughout the day. In other words, the total
energy resulted from unsuccessful trading using HCF is higher
than that of CBCF trading throughout the day.

V. CONCLUSION

This paper presents a game-theoretic approach, applies
coalition formation game theory supported by a clustering-
based approach, and solves an optimisation problem to find
optimal coalitions. We modelled a coalition formation game
and developed an algorithm for NGs to find optimal coalitions.
This work monitors the frequent change of energy surpluses
and demands of prosumers to address unreliability concerns
and assesses the neighbourhood distance to minimise energy
loss at the transmission. We perform P2P energy trading
based on the optimal coalitions. We implemented our coalition
formation algorithm and tested for efficiency and success rate
using a real PV energy production and consumption data set

from California state. We compared the successful coalition
generation of our algorithm with the HCF algorithm. Our
experimental results showed that the proposed algorithm has a
higher success rate compared to the HCF algorithm. Moreover,
we have observed that the optimal ζ and the size of the
neighbourhood have a significant impact on the successful
coalition generation. Our future work will consider network
constraints in the neighbourhoods and use blockchain technol-
ogy to improve the security and trust of winning coalitions.
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