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Abstract—In an IoT system, the response time of edge devices
is calculated during the design time. These edge devices con-
tinuously provide data streams to ensure the smooth execution
of a real-time IoT system. However, edge devices are prone to
errors, and very often suffer issues when trying to maintain
a certain level of communication quality in the presence of
external interference. Any loss of communication at the edge
device level can lead to a failure of the entire system or to
misleading information being provided. Due to there being a
large number of heterogeneous devices within the IoT system,
it is not a trivial matter to monitor all of these devices from
a centralised location or to explore system logs to determine
any loss of communication. Hence, in order to maintain the
highest level of of communication quality in as close as possible
to the best theoretical response time, there is a need for a
lightweight intelligent layer on the edge devices which could
adapt depending on changes in the context. In this work, we
propose an adaptive algorithm, which can predict the quality
of communication of WiFi and BLE with an accuracy of 94.14%
and 92.25% respectively. The adaptive layer can recommend the
next best alternative available wireless communication protocol
in case the existing wireless protocol’s quality degrades. Edge
devices within IoT systems can be equipped with our proposed
adaptive layer, which can help them to adapt according to
dynamic context whilst ensuring the highest level of commu-
nication quality, thus, improving the overall resilience of the
entire IoT system.

Index Terms—Adaptive Algorithms, Multiprotocol Switching,
Received Signal Strength, RSS Prediction, WiFi, BLE, Long-Range
RE, Embedded Systems, Edge Intelligence.

I. INTRODUCTION

In recent years, IoT devices have become an integral
part of many real-time systems, and more and more IoT
applications rely on real-time data streams collected from
IoT devices. For example, in many Industry 4.0 scenarios,
“edge” devices (i.e., hardware that controls the data flow at
network boundaries) are fully integrated within collaborative
manufacturing systems and have the ability to respond and
react in real-time to dynamic factory floor conditions instead
of existing in their own standalone ecosystems [1]. For such
a smart manufacturing setup, many devices equipped with
at least one IoT communication protocol have emerged
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over the last decade, and the adoption of such devices is
expected to grow in the future as part of a complete suite of
connected solutions. In critical manufacturing setups, there
is a strong need to ensure and maintain a high quality of
communication among devices. Traditionally, edge devices
are equipped with a single wireless protocol, and any failure
in that protocol can lead to a failure of the entire system.

Multiple state-of-the-art sensor systems with experimental
results have been proposed to effectively monitor and react
to changes in environmental parameters [2] [3]. Also, some
mission-critical systems notify/warn when any given sensor
values go beyond the normal patterns and breach pre-
defined threshold values. Whenever the notification/warning
from these monitoring systems is not real-time, it is often
due to a loss in communication quality for an IoT protocol.
Additionally, if there are no alternative means for communi-
cating the notification/warning, there are increased chances
of compromising the health and safety of industrial workers.

With the latest advancements in technology, it is now
easily possible to equip edge devices with multiple wireless
communication protocols. To ensure complete resilience
and have the ability to switch among the protocols, every
edge device on the factory floor can be equipped with a
light-weight intelligent layer that could facilitate switching
between the protocols by adapting to the changing context.
This layer should be run in the background of the main ap-
plication on the edge device, to constantly monitor wireless
communication quality and predict future communication
quality. This layer should have low computational complexity
without compromising accuracy, and should also be location-
and device-independent. If the current communication
quality is predicted to degrade in the near future, this
layer should recommend the next best alternative wireless
communication protocol available within the device to which
it can switch.

There are a number of cases where industry has empha-
sized the need to have multiple communication protocols
on a single factory floor to improve communication quality,
and there have already been some scenarios implemented
where multiple IoT communication protocols have been
deployed on a single floor. Equipping these edge devices with
algorithms to instruct the devices when to seamlessly switch



will improve communication quality. Our main contributions
in this paper are (i) introducing a resilience property in the
IoT architecture at device level to realize reliable information
distribution, beginning at the edge level; (ii) equipping
embedded devices with multiple communication protocols,
and providing interoperability at scale; (iii) enabling the
edge devices to adapt to dynamically changing contexts
and situations around them, and thereby continuously
evolve; and (iv) providing run-time re-configuration of the
embedded systems in accordance with the context.

II. ADAPTIVE STRATEGY BLOCK

We propose an Adaptive Strategy Block (ASB) for edge
devices which is a light-weight intelligent layer capable of
analyzing the context of IoT applications by understanding
the strengths and weaknesses of wireless protocols, appli-
cation requirements and predicting upcoming issues due
to any potential degrade in the quality of communication.
Based on the predictions, the ASB is capable of triggering
a switch between wireless protocols to ensure the highest
level of quality of communication. Fig. 1. gives an overall
architecture of IoT applications on edge devices equipped
with ASB. The three main components of ASB are:

i Context Monitoring: This component continuously
monitors the context of an IoT application by collect-
ing the current state of the wireless communication
protocols, and also requirements of the IoT application
in terms of communication quality.

ii RSS Prediction: This component uses our trained model
to predict any future degrade in communication quality.

iii Adaptation: This component triggers an adaptation

based on the RSS prediction and ensures the application
data flow is maintained using the alternate protocol.

As shown in Fig. 1, we are considering three wireless
protocols, namely BLE, WiFi and RE to adapt to dynamically
changing situations while maintaining the highest quality of
communication. We use Received Signal Strength (RSS) as a
metric to assess wireless connection quality throughout this
work. ASB can be integrated as a light-weight library inside
an IoT application running on the edge device. We consider
that devices are equipped with hardware to facilitate three
types of wireless communication and their protocols are
supported by the ASB.

III. WIRELESS COMMUNICATION PROTOCOLS COMPARISON

In this section, we will briefly discuss the strengths and
weaknesses of the three selected wireless protocols.

A. Situation 1: BLE

The IEEE 802.15.1-based BLE is 30% more energy-efficient
than WiFi, also the energy consumption for sending and
receiving messages is almost the same [4]. According to
[5], the benefits of BLE in terms of power consumption are
impressive since it nearly doubles the run time of devices.
The downsides of BLE are: obstacles and reflecting surfaces
such as doors, walls, etc. affect the signal strength of BLE

more than WiFi [5]; BLE has slow signal scanning speeds;
and finally, BLE signals fade out faster than WiFi. Hence,
BLE is best suited to continuous data streaming within a
close range at lower power.

B. Situation 2: WiFi

The IEEE 802.11 WiFi is the second protocol we used.
WiFi promises higher device-to-device radio signal range,
much higher transfer speeds, and higher bandwidth when
compared with BLE. In scenarios where the devices in use
are battery-powered, BLE is used to transfer data with lower
power costs when devices are close to each other, and when
the device moves away, the data transfer still continues but
using WiFi, resulting in slightly higher power costs. Therefore,
although WiFi covers the entire operating range of BLE and
also has some more benefits when compared to BLE, a
more efficient method for transferring data over a range of
distances is to use both BLE and WiFi.

C. Situation 3: Long-range RF

The final protocol is long-range RE It consumes a relatively
higher power level for data transmission than WiFi, providing
long-range network availability (typically over 1 km), and
has greater resistance to interference than WiFi and BLE.
When a mobile device is predicted to move beyond the
coverage range of WiFi, this third protocol is activated and
data transfer is handed over to this protocol.

IV. RSS PREDICTION

The RSS prediction model of the ASB is fitted as a
light-weight intelligence layer on resource-constrained edge
devices as shown in Fig. 1. Hence, it should have low
computational complexity without compromising accuracy,
and also should be location and device-independent. In
proposing such a model, datasets with increasing and
decreasing patterns of RSS were selected and are outlined in
Section IV-A. The techniques used to process the finalized
datasets are detailed in Section IV-B. A series of raw data
points representing increasing and decreasing RSS trends
are extracted in Section IV-C. and are visualized to assist
with choosing the best model for RSS prediction. The model
built for RSS prediction is detailed in Section IV-D. and
evaluated in Section IV-E.

A. Dataset selection

A dataset with increasing and decreasing patterns of signal
strength is required for both BLE and WiFi. For WiFi, the
kthrss dataset [6] is chosen over other relevant datasets
such as buffalo/phonelab-wifi dataset [7], and cister/rssi
dataset [8] because the kthrss dataset contains the RSS
(Radio Signal Strength) data collected in both indoor and
semi-outdoor environments using a KUKA youBot mobile
robot. The indoor data collected in the KTH Royal Institute
of Technology contains the RSS data from five wireless
receivers in an indoor environment. Four of the wireless
clients used directional antennas while the remaining one
used an omnidirectional antenna. The wireless router to
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Fig. 1. Architecture and components of the Adaptive Strategy Block (ASB).

which the client was connected used a directional antenna.
This traceset contains 12 columns of data, from which only
the timestamp, RSS1 (dBm), RSS2 (dBm), RSS3 (dBm), RSS4
(dBm) and RSS5 (dBm) were extracted for this work. The
semi-outdoor data was collected in Dortmund. This traceset
contains 8 columns of data, from which only the timestamp
with its corresponding RSS(dBm) was extracted for this work.

For BLE, the BLE RSS measurements database and
supporting materials [9] were chosen over the BLEBeacon
Dataset [10] because the selected dataset contains over 4,700
fingerprints of measurements from BLE beacons and also the
RSS measurements were taken in two zones from Universitat
Jaume I in Spain. One zone is in an area with bookshelves
that belongs to the university library, and the other zone is
an office space area. From the dataset, two files that contain
the RSS (dBm) measurements along with a timestamp from
each zone were extracted for analysis.

B. Data processing

The real world is far from noise-free. The deterministic
relationship between RSS and distance is negatively affected
by noise that is due to environmental propagation conditions
and also by peculiarities of the wireless equipment used
to collect the measurements [11]. Also, the received power
is typically affected by random noise terms due to signal
propagation phenomena [11]. Due to these reasons, in
both datasets, RSS & distance are not always linear, and
temporal fluctuations are present in the RSS measurements.
The noise and fluctuations from both datasets have to be
removed without altering the pattern of the recorded signal.
To perform this, LOESS (locally estimated/weighted scatter-
plot smoothing) [12] was chosen since it adapts well to bias
problems at boundaries and in regions of high curvature.
The datasets used to train the model to predict RSS for BLE
and WiFi are described in Section IV-A. Segments of the
original/raw data for both WiFi and BLE are shown in Fig.
2.a. and Fig. 3.a, with LOESS-smoothed versions in Fig. 2.b.
and Fig. 3.b. respectively.

LOESS is carried out using local linear estimates. Initially,
the x and y values for n raw data points are computed.
For each value of x, the value of f(x) is estimated using its
neighboring sampled (known) values. Two new variables x’

and y’ are introduced, where x’ is the value of x for which
y’ has to be estimated. The LOESS algorithm is fed with x,
and using the sampled x and y values, the estimate y’ is
obtained. Next, the x’ values are fed to Euclidean distance
formulae to find the k nearest neighbors for the estimate y.
The resulting ordered set (x, y’ & k) is called D. The final
step converts the set D of k distances into an ordered set W
containing weights. These weights are calculated using Eqn.
1, which is a tri-cubic weight function. This function assigns
an importance to each of the k neighbors of x according to
its distance from x. In the tri-cubic weight function, d(x, x’)
is the distance between x, one of the k nearest neighbors,
and x. The point at the extreme will have a weight of zero,
whereas the point at zero distance will have the highest
possible weight of one.
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C. Data extraction

The goal of data extraction in this work is to extract
multiple series of raw data points representing signal
strength with increasing and decreasing trends. The extracted
trends are then visualized to assist in choosing the best
regression model for predicting the RSS of the WiFi and
BLE signals. To extract the trends, initially, the peak and
trough points have to be found and plotted on the LOESS
smoothed data. Here, the raw data cannot be directly used
for finding peaks and troughs since some fluctuations in
the raw data may have a higher amplitude than the peaks
or troughs, and are distributed evenly throughout the time
series. If peaks and troughs are plotted using raw data,
there will be multiple peaks and troughs throughout the
time series, and the data points between two plotted points
will be less resulting in trends with short sizes, making the
model choosing process laborious. Let us use maxima and
minima as the plurals of maximum and minimum. In Fig.
2.c. and Fig. 3.c, the maxima are the peak points plotted in
green and the minima are the trough points plotted in red.
To find and plot the peaks (maxima) and trough (minima)
points, initially, all data points from the time-series were
iterated through. A A value is defined, which controls how
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Fig. 2. WiFi dataset [6]: Raw data, Smoothed data, Peak and trough points,
Increasing and decreasing RSS trend extraction, Predicted RSS.
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much difference between values in the time series defines
an extremum point. We iterate over the data points of the
time series and consider a point to be a local maxima if it
has the maximal value, and is preceded (to the left) by a

value lower by A. Similar logic applies to find local minima.

The local minima and maxima were thus obtained and

plotted on the LOESS smoothed curve as shown in Fig. 2.b.

and Fig. 3.b. for WiFi and BLE respectively. The coordinates
of the local minima and maxima points were used to extract
the increasing and decreasing trends for signal strength from
the raw dataset. For visualization purposes, three increasing
and decreasing trends for signal strength were extracted and

plotted as shown in Fig. 2.d. for WiFi and Fig. 3.d. for BLE.

D. Model building

Recurrent Neural Networks (RNN) are used in cases where
patterns, combinations of trends, seasonality or cycles in
data can be observed. Although abundant data is available in
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Fig. 3. BLE dataset [9]: Raw data, Smoothed data, Peak and trough points,
Increasing and decreasing RSS trend extraction, Predicted RSS.

the finalized WiFi and BLE datasets, it cannot be used to train
RNNs for predicting future signal strength. Chaotic time-
series data such as tornadoes, stock markets, turbulence,
and weather are ubiquitous in real-world signals. The
most striking feature of such data is its unpredictability in
terms of future values. Also, as mentioned previously, signal
strength data will have fluctuations that vary due to changing
propagation conditions in the surrounding environment.
Since the proposed model to predict RSS will be fitted
as a light-weight intelligence layer on resource-constrained
edge devices, it should have low computational complexity
without compromising accuracy, and also should be location-
and device-independent. Before proposing this method, a
literature review was performed, and the review findings are
outlined here. RSS prediction has been well-studied in the
temporal [13] [14] and spatial domains [15]. Existing offline
RSS prediction algorithms involve Kriging interpolation (geo-



statistics), a dedicated offline training phase with supervised

learning methods, or a dedicated fingerprinting method.

Existing online methods use Linear Regression or Gaussian
Process Regression. Both online and offline methods produce
excellent prediction performance but only for short-range
applications since their primary focus is on radio signal
mapping, localization applications, active motion control,
and path planning. In this work, we are proposing RSS
prediction for both BLE and WiFi, from short- to long-range
applications (from tens to hundreds of meters), so as to be
of practical use in IoT edge devices.

The goal of the model to be trained using the finalized
dataset is to predict future RSSI levels for BLE and WiFi
in dBm. As mentioned, to perform this, the traditional
Neural Network based approach cannot be used. Increasing
and decreasing trends for the target parameter RSS are
extracted from datasets using the methods described in
Sections IV-B. and IV-C. Time-trend RSS curves are obtained
using matplotlib to visualize increasing and decreasing
signal strength patterns. After visualizing the trends, it can
be observed that the signal strength decreases, but not
smoothly, and there are spikes (fluctuations), but the overall
trend remains undisturbed. A trend similar to the extracted
trends in Fig. 2.d. and Fig. 3.d. will often be followed when
the signal strength of edge devices increases or decreases.
As a result of this visualization, the best-suited approach
to predict future RSS is a Radial Basis Function (RBF)
kernel-based Support Vector Regression (SVR) [16]. The
usage of kernel functions in SVR improves the flexibility
of SVR because it implicitly maps the data to a higher
dimensional feature space [16]. In our case, the extracted
signal strength trends follow nonlinear patterns. This pattern
is mapped to a higher dimensional feature space, hence
the non-linearity in the original dimension corresponds to
a linear solution in the higher dimensional feature space.
RBF yields a more compressed and widely-supported kernel
when compared with other kernels. This makes it suitable in
terms of restricting the computational training process and
improving the generalization efficiency of the SVR. Therefore,
RBF is adopted in this study and defined as K(x, x;), with
a kernel parameter o as shown in Eqn. 2. and substituted
into Eqn. 3. In Eqn. 3, b is the bias term, a@ contains the
support values, and y contains the training labels [16].

1
K(x,x;) = exp(—;”x—xiﬂz) @)
N
SVR=f(x)=) a;iK(x,x;)+b 3)

i=1
When a series of data points underlying a trend or function
is fed as an input to the RBF kernel-based SVR from Eqn.
3, the underlying trend is approximated. In Fig. 2.e. and
Fig. 3.e, the predicted RSS is sketched in red. Here, the
trend/slope of the predicted lines in red are very close to
the extracted trends from the raw/original series shown in
Fig. 2.d. and Fig. 3.d. So far, we have explained the method

by which ASB performs predictions to classify whether the
RSS will increase or decrease in the future. A simple equation
to estimate the percentage future increase or decrease in
RSS is given in Eqn. 4. The variables from Eqn. 4. are the
RSS values in dBm from the y-axis of the predicted signal
strength in Fig. 2.e. and Fig. 3.e. If the prediction is that
the RSS will decrease in the future, then the value x; is the
starting point of the signal, which is the first point on the
top left. The value x; is the point at 70% of the smoothed
curve for the extracted trend, and this is also the point from
which the RSS prediction starts (sketched in red). The value
x, is the final point which is on the bottom right of the
RSS prediction graph, and this is also the ending point for
RSS prediction. However, if the RSS is predicted to increase
in the future, value xy is the starting point of the signal,
which is the first point on the bottom left. x; is the point
from which the RSS prediction starts (sketched in red). The
endpoint x; is the final point which is on the top right of
the RSS prediction graph.

- X1

RSSfuture(%) = iz 100 @)
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To summarise, ASB’s first step was to use SVR with an
RBF kernel to predict the future RSS trend, and sketch it in
red as shown in Fig. 2.e. and Fig. 3.e. The second step is
to classify whether the RSS will increase or decrease in the
future. The third step is to estimate the percentage future
increase or decrease in the RSS based on the results from
steps one and two.

E. Model Evaluation

To measure the prediction performance, Mean Absolute
Error (MAE) is used as an evaluation metric. MAE is more
robust for this use case since it is less sensitive to fluctuations
(outliers). MAE was calculated using Eqn. 5. Here, ziyp is
the true measured percentage of increase or decrease in
future RSS values, and 2% p is the mean of the predicted
percentage future increase or decrease in RSS. From MAE,
the Mean Prediction Accuracy (MPA) is obtained using Eqn.
6. MPA normalizes the prediction error with respect to the
true RSS values. The proposed SVR with an RBF kernel, used
to predict the RSS of WiFi and BLE, was tested on unused
columns of data from the finalized datasets and was also
validated using new datasets (phonelab-wifi [7] for WiFi and
BLEBeacon [10] for BLE). The proposed method was able
to achieve an MAE of less than 3.91 dBm for WiFi and 5.33
dBm for BLE as shown in Table I.

MAE = AE* = |2§+p — Zk4pl (5)

MPA=100{1-)

12, = @il

Zk+p

V. RELATED WORK

The Semantic Gateway as a Service (SGS) proposed in
[17] allows translation between messaging protocols such



TABLE 1
EVALUATION OF SVR WITH RBF KERNEL
Protocol Dataset MAE (dBm) | MPA (%)
S kthrss [6] 3.91 94.14
WIFL | ) onelab-wifi (7] 3.41 94.95
BLE BLE RSS [9] 4.12 93.83
BLEBeacon [10] 5.33 92.25

as XMPP, CoAP and MQTT via a multi-protocol proxy archi-
tecture to provide seamless integration and interoperability
between various protocols. This multi-protocol proxy-based
protocol translation is performed at the gateway level, which
is not a resource-constrained device and is not at a network’s
edge. Also, this proposed work does not involve switching
or deciding when to switch between protocols, rather the
gateway just translates the data so that the server and client
(following different protocols) can understand.

A middleware framework to improve data delivery and
resilience to failures & traffic spikes was proposed in [18].
This conceptual data exchange middleware is envisioned
as an open communications hub for IoT, containing mid-
dleware abstractions for enabling hosts to connect via
multiple protocols. This middleware can understand data
from its connected hosts which communicate using different
protocols such as XMPP, MQTT & HTTP. But this work
has not mentioned the possibility of using the same host,
communicating with the middleware using different IoT
protocols. Again, it is implemented on a separate middleware
and not on resource-constrained devices.

The benefits of wireless connectivity with multiple proto-
cols on the same device are many and varied [19]. Nordic
Semiconductor’s hardware lineup supports multiple wireless
connectivity protocols to add flexibility in product design.
They have stressed the concept of “creat[ing] one device
that can connect to multiple protocols”, which means that
the same device can be configured to use different IoT
communication protocols. For example, in an industrial
use case, when the network type is unknown during the
hardware development phase, it could be Bluetooth Mesh,
Thread or Zigbee. With Nordic Semiconductor’s switched
multiprotocol concept, it is possible to develop a generic
application, and during deployment, the user can select the
appropriate protocol to use which connects to a network
that already exists. Hence, it is clear that adding multiple
protocols on the same IoT hardware is a much-needed
methodology to improve device interoperability. However,
their multiprotocol feature requires the user too manually
select the appropriate protocol for their application, and
does not involve an algorithm to seamlessly switch and
decide when to switch between protocols.

VI. CONCLUSION

The ASB proposed in this work uses SVR with an RBF
kernel to predict the RSS of WiFi and BLE with an accuracy
of 94.14% and 92.25% respectively and has the advantage

of being location and device-independent. Our proposed
ASB can fit as a lightweight intelligence layer on IoT edge
devices, with the aim of monitoring communication quality
and recommending the next best alternative to switch to
for maintaining a high level of communication quality, so
that the system can keep communicating in real-time. In
future work, our proposed ASB will be evaluated using more
real-world experimental data to be gathered.
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