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A B S T R A C T

Industry 4.0 is considered to be the fourth industrial revolution introducing a new paradigm of digital, auton-
omous, and decentralized control for manufacturing systems. Two key objectives for Industry 4.0 applications
are to guarantee maximum uptime throughout the production chain and to increase productivity while reducing
production cost. As the data-driven economy evolves, enterprises have started to utilize big data techniques to
achieve these objectives. Big data and IoT technologies are playing a pivotal role in building data-oriented
applications such as predictive maintenance.

In this paper, we use a systematic methodology to review the strengths and weaknesses of existing open-
source technologies for big data and stream processing to establish their usage for Industry 4.0 use cases. We
identified a set of requirements for the two selected use cases of predictive maintenance in the areas of rail
transportation and wind energy. We conducted a breadth-first mapping of predictive maintenance use-case
requirements to the capabilities of big data streaming technologies focusing on open-source tools. Based on our
research, we propose some optimal combinations of open-source big data technologies for our selected use cases.

1. Introduction

Industry 4.0 is relatively a new term being hailed as the fourth
generation of the industrial revolution. It covers a broad range of
technologies, processes, and systems mainly related to the digitalization
of industry. In terms of data-related technologies, the main areas of
Industry 4.0 are (i) Cyber Physical Systems (CPS), (ii) Industrial Internet of
Things (IIoT), (iii) Cloud Solutions & Decentralized Services, and (iv) Big
Data & Stream Processing technologies for processing large amounts of
production data in real time [1,2]. In terms of use case scenarios, In-
dustry 4.0 use cases are mainly categorized into the following three
areas, namely; (i) intelligent products, (ii) intelligent processes, and (iii)
intelligent machines. For intelligent products, Industry 4.0 applications
manage all necessary information about the products and the produc-
tion processes conducted on them. Intelligent processes focus on the
results and consequences of product creation, including asset informa-
tion management, etc. [3]. Intelligent machine scenarios focus on in-
dustrial machinery performance and applications such as predicting
breakdowns, detecting any quality issues, and the need for conducting
preemptive maintenance. However, the most prominent use case for
intelligent machines is predictive maintenance (often referred to as PM
or PM 4.0).

PM applications predict failure sufficiently ahead of time so that

decision makers can take appropriate actions such as maintenance,
replacement or even a planned shutdown. These applications facilitate
savings on machine maintenance and increase productivity by ensuring
the maximum uptime of machines. Mostly, the manufacturing processes
follow assembly line production, thus any failure in the assembly line
results in a domino effect, making it crucial to avoid any point of failure
within the assembly line. By deploying predictive maintenance solu-
tions, these failures can be avoided or at least reduced. However, for the
most accurate and optimal prediction, it is of the utmost necessity to
collect and analyze large amounts of relevant data within a reasonable
time frame [4,5]. Consequently, big data analytics and stream proces-
sing technologies are a key requirement for predictive maintenance
solutions [6,7].

Predictive maintenance applications are considered one of the cru-
cial data-driven analytical applications for large-scale manufacturing
industries. Considering use cases in the area of predictive maintenance,
we identify the requirements for a big data processing pipeline in the
different phases of data processing such as data collection, analytics,
querying, and storage. We mapped these requirements to the cap-
abilities of open-source technologies for big data and stream processing
such as distributed queuing management, big data stream processing
platforms, big data storage technologies and streaming SQL engines
(see Fig. 1). Distributed queuing management technologies (e.g. Apache
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Kafka, RabbitMQ, Amazon Kinesis, Microsoft Event Hubs and Google
Pub/Sub) allow producers (i.e., data producers such as sensors) to push
a high volume of messages to a queue and allow consumers (i.e., In-
dustry 4.0 applications) to pull messages from the queue in real time
with scalability and fault tolerance capabilities. The main big data
stream processing platforms (e.g., Apache Storm, Apache Samza, and
Apache Flink) handle distributed streams and batch data processing.
Big data storage technologies including column-based storage (e.g.,
Cassandra and HBase), document stores (e.g., MongoDB) and Hadoop-
based frameworks (e.g., Hive) are open-source technologies for storing,
querying and analyzing large data sets. Streaming SQL engines are
query languages that extend SQL with the ability to process real-time
data streams (e.g., Spark SQL, Flink Table API, KSQL, SamzaSQL,
StormSQL, and StormCQL, etc.).

In our study we produce a practical literature review combined with
the functional requirements of predictive maintenance use cases. The
main contributions in this paper are as follows:

• Explore open-source big data technologies, including big data
streaming processing platforms, distributed message queue man-
agement systems, big data storage platforms, and streaming SQL
engines.
• Identify big data technology related requirements for the PM use
case to reduce operation and maintenance (O&M) costs.
• Identify functional requirements and operational characteristics for
two Industry 4.0 sample use cases related to the railway transpor-
tation and wind turbine energy industries.
• Provide a mapping between the use cases’ requirements and avail-
able technologies by combining different big data and stream pro-
cessing technologies to design and deploy the selected use case.

The rest of this paper is organized as follows; The research moti-
vation and methodology are presented in Section 2. The big data stream
analytics technologies are described in Section 3. The predictive
maintenance use cases and their requirements are presented in Section
4. The mapping between the functionalities of big data and stream
processing technologies and the requirements of the selected predictive
maintenance use cases is presented in Section 5. We further discuss
existing work on big data and its suitability for Industry 4.0 by vali-
dating our proposed technologies in Section 6, and then we conclude
our work in Section 7.

2. Research motivation and methodology

In this section, we provide our motivation for this work and present
a set of research questions used to define our research methodology.

2.1. Research motivation

Our main motivation for conducting this research work is to bridge
the gap between industry use case developers and open-source big data
streaming technologies. We believe this work will act as a guideline for
Industry 4.0 use case developers to make better decisions when

choosing relevant open-source technologies before designing a pre-
dictive maintenance use case based on their requirements.

During our recent experience of working for a large research centre
focused on the topic on smart manufacturing,1 having over 42 industry
partners including multinational corporations as well as SMEs, it was
quickly realized that there is a strong need to provide a set of guidelines
to decision-makers before selecting the most suitable technologies to
address their requirements. Each industry partner has a different set of
requirements, even for the same use case. Hence, this study provides a
set of guidelines for our industry partners to help them choose the
correct underlying technology before implementing any use case.

2.2. Research questions

Identifying a set of predictive maintenance requirements for a set of
use cases can provide guidelines on how to use existing big data and
streaming technologies for designing predictive maintenance use cases.
Accordingly, this research explores the capabilities of open-source big
data technologies that can improve the performance of decision-making
processes within manufacturing. These open-source big data technolo-
gies provide an opportunity to fully explain the state of a manufacturing
process and utilize the intelligence of data processing and predictive
maintenance analytics algorithms.

In particular the goal of this paper is to assist data engineers in
designing big data analysis pipelines for Industry 4.0. This is achieved
by investigating the following research questions:

RQ1: What are the
strengths and weaknesses of the available open-source big data
and streaming data analysis technologies?

The purpose of this
question is to explore the commonly used open-source big data and
streaming data analysis technologies that are focusing on Industry 4.0.
To address this question, a systematic methodology is provided to re-
view the strengths and weaknesses of the existing technologies with a
view to establish their usage for Industry 4.0 (see Section 3).

RQ2:
What are the requirements for building a data analytics pipeline
focusing on predictive maintenance use cases?

The purpose of this
question is to identify the technical requirements for big data techniques,
to understand how data is currently being generated from the factory
floor, and then to find out how to process and analyze this data to produce
insightful knowledge for decision making. To address this question, we
categorize the requirements according to the typical data analysis pipeline
application phases including data transmission (publishing and subscrip-
tion), data processing, data querying, and data storage (see Section 4).

RQ3: How can the technical requirements for the use cases be
mapped onto existing open-source big data technologies?

The

Fig. 1. Open-source big data pipeline analysis technologies.

1 http://confirm.ie/.
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purpose of this question is to elaborate on the matchmaking between the
requirements of the use cases and the capabilities of open-source big data
technologies. This mapping will help us to recommend a concrete design/
implementation for predictive maintenance applications. We conducted a
breadth-first mapping of predictive maintenance requirements for two real-
world use cases (i.e., railways and wind turbines) to the strengths and
weaknesses of open-source big data streaming technologies (see Section 5).

3. Open source big data technologies and their suitability for
Industry 4.0

In this section, the first research question, RQ1, is addressed.

RQ1: What are the strengths and weaknesses of the available open-
source big data and streaming data analysis technologies?

Technological developments in automation systems for Industry 4.0
have brought many advantages and opportunities in terms of flexibility,
economic production, and the optimization of production processes
[8,9]. In particular, manufacturers have started to combine data from
different collaborative systems to drive productivity in the design,
production, and delivery of products [10]. For example, manufacturing
firms such as Raytheon Corp. have developed smart factories which are
based on the powerful capacity of handling big data from different
sources, e.g., instruments, sensors, Internet transactions, CAD models,
and digital records to enable the real-time control of multiple elements
within the production process [11].

Indeed, handling manufacturing data is a big data handling problem
[1]. Consequently, a deeper understanding of the strengths and weak-
nesses of the state-of-the-art big data processing technologies is neces-
sary to truly realize fully automated large-scale manufacturing systems.
In this paper, a technical overview of the state-of-the-art in big data
processing technologies is given under four main headings: distributed
queuing management technologies; big data stream processing plat-
forms; big data storage technologies; and streaming SQL engines.

3.1. Distributed queuing management technologies

Distributed queuing management technologies such as Kafka,2

RabbitMQ,3 Amazon Kinesis,4 Microsoft Event Hubs5 and Google Pub/

Sub 6 have matured in the last few years to support publish/subscribe
messaging. These technologies have added some useful new forms of
solutions when moving large-scale data around for real-time applica-
tions. While distributed queuing management technologies may seem
very similar to traditional message queuing technologies, they differ
significantly in their architecture and therefore have very different
performance and behavioral characteristics. For example, traditional
queuing systems remove processed messages from the queue and
cannot scale out with multiple consumers taking multiple independent
actions on the same event. In contrast, distributed queuing technologies
are suitable for both offline and online message consumption by sup-
porting a group of consumers and preventing data loss by using per-
sistent disks over replicated clusters. The messages are persisted im-
mediately to the distributed queues to guarantee the delivery of
messages for a period of time. In particular, each distributed queuing
management technology shards its topics (i.e., a topic is where data
(messages) gets published by a producer and will be pulled by con-
sumer(s)) into one or more partitions. Then, each consumer group
consumes the messages of a given topic (its partitions) where each
partition cannot be consumed by more than one consumer of the same
consumer group. The consumer groups feature is very important to
perform re-balancing whenever partitions and/or consumers change.

Table 1 shows a number of features that should be considered when
choosing a distributed queuing technology including messaging guar-
antee, ordering guarantee, consumer groups, disaster recovery, re-
plication, federated queues (i.e., providing a way of balancing the load
of a single queue across nodes or clusters), and a list of supported query
languages. For the messaging delivering guarantee feature, three types of
configurations are defined:

1 At most once: some messages may be lost, and no message is de-
livered more than once.

2 Precisely once: each message is guaranteed to be delivered once
only, not more or less.

3 At least once: each message is guaranteed to be delivered, but may
in some cases be delivered multiple times.

The ordering guarantee feature defines five possible options in-
cluding:

Table 1
List of distributed queuing management technologies.

Feature Technology

Apache Kafka RabbitMQ Amazon Kinesis Ms Azure Event Hub Google pub/sub

Delivering guarantees Yes
At least once

Yes
At least once

Yes
At least once

Yes
At least once

Yes
At least once

Ordering guarantees Guaranteed within a partition Guaranteed using AMQP
channel

Guaranteed within a
partition

Guaranteed within a
partition

No order guarantees

Consumer groups Yes Yes Yes Yes Yes

Disaster recovery Yes Yes Yes Yes Yes

Replication Configurable replicas Configurable replicas Hidden (across three zones) Configurable replicas Hidden

Federated queues No Yes No No No

Language supported Java, Go, C++, Python,
.NET, Node.js, PHP, Ruby

Java, Go, C/C++, Python,
.NET, Node.js, PHP, Ruby

Java, Go, C++, Python,
.NET, Node.js, PHP, Ruby

Java, C++, Python, .NET,
Node.js, PHP, Ruby

Java, C++, Python,
.NET, Node.js, PHP, Ruby

2 http://kafka.apache.org.
3 http://www.rabbitmq.com.
4 http://aws.amazon.com/kinesis.
5 http://azure.microsoft.com/en-us/services/event-hubs. 6 http://cloud.google.com/pubsub.
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1 None: no guarantee of any incoming message.
2 Within a partition: guarantee order within any given partition, but
across partitions, the messages may be out of order.

3 Across partitions: guarantee order across all partitions which slows
things down and is expensive to scale.

4 Within AMQP channel: guarantee order by using the Advanced
Message Queuing Protocol (AMQP) channel which is used for mes-
sage-oriented middleware to support sending and receiving mes-
sages between distributed systems.

5 Within a shard: guarantee order within a shard, where sharding is a
method to distribute data/messages across multiple different servers
to increase the scalability of distributed queuing systems.

The federated queues feature provides a mechanism for balancing the
load of a single queue across several nodes or clusters to support mi-
gration among clusters without stopping all producers and consumers.
The federation features are of the utmost necessity for most data ap-
plications, particularly, for applications that aggregate data from dis-
parate data sources and make it accessible to data consumers as one
integrated data store. Also, many data sources within big data appli-
cations in different companies, including finance, healthcare and
manufacturing, are producing a large sequence of events. Such data
needs to be captured and analyzed in real time to give insights for
decision making without any delay. Consequently, distributed queuing
management technologies have been adopted to collect large amounts
of streaming data, feeding it to real-time systems.

3.2. Big data stream processing platforms

Over the years, traditional relational database management systems
and more recently batch processing technologies, such as Hadoop7 and
Spark,8 have been used to manage and analyze data. These technologies
are now well matured and well-suited for a broad range of applications,
but are not an ideal choice for building real-time applications. Conse-

quently, a new set of technologies are introduced which are capable of
handling large amounts of streaming data, processing and analyzing it
on the fly to meet the needs of real-time applications such as Apache
Storm,9 Apache Samza10 and Apache Flink.11 . These technologies
target the essence of time for real-time analytics, streaming analytics,
and Complex Event Processing. They allow organizations to build real-
time solutions using IoT and extract information from their big data
sources to derive insights from millions of events in minimal time.

Starting with the state-of-art big data platforms, Apache Hadoop is
inspired by Google's MapReduce design which is based on batch pro-
cessing [12]. The current Apache Hadoop ecosystem consists of a Ha-
doop kernel, MapReduce, Hadoop Distributed File System (HDFS) and
several other related projects such as Apache Hive, HBase, and Zoo-
keeper. Apache Spark was developed in 2012 to overcome the Ma-
pReduce cluster computing paradigm. It uses the micro batching pro-
cedure to perform stream processing by dividing the incoming stream of
events into a group of small batches and keeps the latency of stream
processing under control. Apache Spark claims to be faster than Hadoop
by achieving better performance due to its micro-batch processing.
However, collecting events together for processing in batches using
Spark streaming processing is still a limiting factor for real-time data
analysis. Beyond this, a great variety of other streaming platforms such
as Apache Storm, Apache Smaza, and Apache Flink have emerged to
introduce the notion of streaming-first systems claiming to be truthful
stream processing platforms. These platforms treat batch processing as
a special case and do not use micro batching to overcome small-batch
problems, and hence are ideally designed for streaming applications
[13].

Table 2 depicts a comparison of different big data platforms com-
paring their capabilities and characteristics. Although, the big data
platforms are mainly based on the principle of either batch processing
or stream processing model, they also further differ in terms of their
architectural components. For instance, Hadoop has three core com-
ponents which are HDFS, YARN, and MapReduce while Spark has

Table 2
List of big data processing platforms.

Feature Technology

Hadoop Storm Samza Spark Flink

Components HDFS
YARN
MapReduce

Streams
Spouts
Bolts

Samza API
YARN
Kafka

Resilient distributed
datasets (RDD)

Operators
Sources
Sinks

Processing model Batch Hybrid Stream and Batch Stream Hybrid Stream and Batch Hybrid Stream and Batch

Memory management Configurable memory
management

Configurable memory
management

Configurable memory
management

Configurable memory
management

Automatic memory
management

Scalability Highly scalable Highly scalable Highly scalable Highly scalable Highly scalable

Latency High Low Low Low Low

Recovery Highly fault-tolerant Highly fault-tolerant Checkpointing Checkpointing RDDs Checkpointing data sources

Interactive mode No No Interactive SQL shell Interactive Spark shell Interactive Scala shell

SQL supported Apache Hive StormSQL SamzaSQL Spark SQL Table API

Queuing management
systems

Kafka
RabbitMQ
Kinesis

Kafka
RabbitMQ
Kinesis
Event Hubs

Kafka
RabbitMQ
Kinesis
Event Hubs

Kafka
RabbitMQ
Kinesis
Event Hubs
Google Pub/Sub

Kafka
RabbitMQ
Kinesis
Event Hubs

7 http://hadoop.apache.org.
8 http://spark.apache.org.

9 http://storm.apache.org/releases/1.1.2/storm-sql.html.
10 http://samza.apache.org.
11 http://flink.apache.org.
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Resilient Distributed Datasets. On the other hand, Flink has different
layers which are the deploying layer include YARN, the core layer and
API&Libraries such as Table API and FlinkML. The Flink core layer is
also known as the distributed streaming dataflow which consists of
streaming operators, sources, and sinks. Another important factor is
memory management and an increasing number of big data projects are
choosing big data platforms according to their memory management
mechanism i.e. managing JVM memory whether manually configurable
or automatic management style. The fast growth of real-time data
makes a key challenge for big data in terms of performing low-latency
analysis which means systems respond quickly to actions [14]. For
Hadoop, data are physically stored first usually on HDFS and then
analyzed. For stream processing, data are not stored but rather directly
processed to decrease response latency at the sub-second or even at the
millisecond level. In tandem with the low-latency advantage of the big
data platforms for real-time applications, the fault tolerance mechanism
plays a critical role in streaming performance allowing programs to
recover from failure with minimal disruption. The big data platforms
are equipped with different recovery mechanisms to guarantee fault
tolerance such as HDFS fault tolerance, check-pointing RDDs, and data
sources for Hadoop, Spark, and Flink respectively.

Today most applications are designed based on users’ experience by
using an interactive mode (a.k.a. shell mode) to give users more flex-
ibility. In contrast, the data centers adopt machine language programs
based on the batch mode (a.k.a. script mode), which executes opera-
tions that are not interactive. Both Apache Spark and Apache Flink
support interactive mode using in-memory data processing which
probably is limited in case of processing hundreds of terabytes. A very
close look on big data platforms indicates that the programming APIs
for developing big data applications are often low-level and require
substantial customized code and have a substantial initial learning
curve and additional maintenance overhead. Consequently, there is a
strong need to enhance the capabilities of streaming platforms to sup-
port concurrent querying languages allowing developers/users to use
multiple querying streams depending on application requirements ef-
fectively. Furthermore, big data platforms are capable of dealing with
distributed queuing management technologies to subscribe to gener-
ated data from different streaming sources.

3.3. Big data storage technologies

Recently, big data analysis systems have been improved to deal with
the challenge of large data volume, which grows exponentially. These
big data analysis systems typically address the volume challenge by
allowing scaling out by adding new nodes to the distributed environ-
ment to provide processing units and storage. On the software side, new
technologies emerged such as columnar stores e.g., Cassandra12 and
HBase,13 clever combinations of different storage systems, e.g., Hadoop
Distributed File System (HDFS),14 and documented store such as
MongoDB15 are often more efficient and less expensive. These big data
storage technologies use shared-nothing architectures to address sto-
rage limitation by horizontally scaling out to new nodes providing extra
storage for such massive data growth.

Aforementioned big data storage technologies are compared using
characterized criteria such as database model, schema type, processing,
transaction, partitioning methods, in-memory capabilities, and con-
currency (see Table 3). Data model for storing can be broadly divided
into three types: (i) File System, e.g., HDFS for Hive Hadoop; data are
stored schemaless using HDFS and read in a structured manner at
processing time based on the requirements of the processing application
which is known as Schema-on-Reading; (ii) Document-based, e.g.,
MongoDB; (iii) Column-based schema, e.g., Cassandra, and Hbase. By
considering the data schema feature, two types of schema have been
identified: (i) Relational DBMS which fits with structured data and (ii)
Schema-free which fits with semi-structured and unstructured data.
Typically, classifying big data storage technologies, according to the
used schema, gives a clear view to big data application developers to
choose the proper technologies according to the nature of their data.

Recently, in-memory data processing is denominating in emerging
technologies where the slower disks are replaced by RAM and flash
memory. Consequently, we can vary big data storage technologies

Table 3
List of big data storage technologies.

Feature Technology

Hadoop Hive MongoDB Cassandra HBase

Description Data warehouse software for querying and
managing large distributed datasets, built on
Hadoop

One of the most popular
document stores

Distributed database for managing
large amounts structured data

Open-source, distributed,
versioned, column-oriented store

Data model for storing File system Document-based Column-based Column-based

Data scheme Relational DBMS Schema-on-Reading Schema-free Relational DBMS uses Amazon
DynamoDB

Relational DBMS uses Google
Bigtable

MapReduce key-value Yes Yes Yes Yes

APIs and other access
methods

JDBC
ODBC
Thrift

Proprietary protocol using
JSON

JDBC
ODBC

JDBC
ODBC

In-memory capabilities N/A Yes Yes Yes

Partitioning methods Sharding Sharding Key partitioning Key partitioning

Concurrency Yes Yes Yes Yes

Architecture model Master-Slave Master-Slave Peer-Peer Master-Slave

CAP Theorem Consistency
Partition tolerance

Availability
Partition tolerance

Consistency
Partition tolerance

Consistency
Availability

12 http://cassandra.apache.org.
13 http://hbase.apache.org.
14 http://hive.apache.org.
15 http://www.mongodb.com.
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according to their capabilities to process data using the in-memory
mechanism, especially for critical real-time applications. MongoDB,
Cassandra, and HBase are representatives of this mechanism. As per
Eric Brewer, father of CAP theorem (i.e., Consistency, Availability, and
Partition Tolerance), the choice of storage technology is limited to two
of three characteristics, which is up to data application requirements
[15]. For instance, if the big data application needs data to be con-
sistent among all nodes, columnar relational store such as Cassandra,
and HBase is the appropriate big data storage. In consequence, the
proper choice of an appropriate big data storage technology depends on
the requirement of the application and identified the feature of storage
technology.

3.4. Streaming SQL engines

As the data-driven economy evolves, enterprises have come to

realize a competitive advantage in being able to act on high volume and
high-velocity streams of data. However, the programming API provided
by these technologies is often low-level, requiring substantial custom
code that adds to the programmer learning curve and maintenance
overhead. Particularity, these technologies often lack SQL querying
capabilities that have proven popular on big data systems like Hive,
Impala, or Presto. On the other hand, some streaming platforms
leverage windowing operations by repeatedly iterating over a series of
micro-batches, in much the same way as static queries operate over
stored data such as Spark. Also, some of the streaming platforms have
developed streaming processing mechanisms i.e., Event Stream
Processing and Complex Event Processing using different windowing
types to execute continuous SQL queries. In consequence, different
open-source stream query processing engines are proposed and devel-
oped based on windowing concept to support big data technologies

Table 4
List of streaming SQL engines.

Feature Technology

Description Window types Query types Platforms Processing model Queuing
technology

Storage technology

Spark SQL Apache Spark's module for working with structured data Tumbling
Sliding

Filter
Aggregation
Join

Spark Streams
Batch

Kafka
RabbitMQ
Kinesis
Azure Event Hubs
Google Pub/Sub

HDFS

Table API Unified relational API for stream and batch processing Tumbling
Sliding
Hopping

Filter
Aggregation
Join

Flink Streams
Batch

Kafka
RabbitMQ
Kinesis
Azure Event Hubs

HDFS
Amazon S3
MapR and Alluxio

KSQL Open Source Streaming SQL for Apache Kafka Tumbling
Session
Hopping

Filter
Aggregation
Join

N/A Streams
Batch

Kafka HDFS

PipelineDB Open-source relational streaming SQL database Sliding Filter
Aggregation
Join

N/A Streams
Batch

Kafka PostgreSQL

Squall Scalable online query engine that runs complex analytic Tumbling
Sliding

Filter
Aggregation
Join

Storm Streams Kafka HDFS

StreamCQL Continuous query language on real time system Tumbling
Sliding

Filter
Aggregation
Join

Storm Streams Kafka HDFS

SamzaSQL Scalable fault-tolerant SQL streaming engine on Samza Tumbling
Sliding
Hopping

Filter
Aggregation
Join

Samza Streams
Batch

Kafka HDFS

StormSQL StormSQL leverages Apache Calcite to implement SQL
standard on Storm

Tumbling
Sliding
Hopping

Filter Storm Streams Kafka HDFS

Siddhi Java library for streaming queries Sliding Filter
Aggregation
Join

N/A Streams
Batch

Kafka
RabitMQ

HDFS
MongoDB
Hbase

Athenax Built on top of Apache Calcite and Apache Flink Tumbling
Sliding
Hopping

Filter
Aggregation
Join

Flink Streams
Batch

Kafka LevelDB
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such Spark SQL,16 Flink Table API,17 KSQL,18 SamzaSQL,19 [16],
StromSQL,20 and Siddhi,21 ,22 etc. Indeed most of these engines are built
on top of Apache Calcite23 which is an open-source framework for
building databases and data management systems. It is considered as an
industry-standard SQL that consists of a parser, validator, and JDBC
driver to support heterogeneous data models (i.e., relational, semi-
structured, streaming, and geospatial).

We have conducted a systematic review to provide useful insights
into state-of-the-art streaming query technologies by identifying a key
list of features in query language processing for comparison. Table 4
lists the analysis of ten open-source big data stream query processing
engines in terms of their query language. Additionally, for the time-
streaming context, four types of windows are defined to perform op-
erations on a finite size of time-stamped data and enable developers to
perform complex stream processing jobs with minimal effort, described
as follows24 :

1 Tumbling window: It is a series of fixed-sized, non-overlapping,
and contiguous time intervals. It segments a data stream into dis-
tinct time segments and performs a function against them such as
aggregations and joins.

2 Sliding window: It produces an output only when an event occurs,
which is required for specific applications. The window is not dis-
tinct and triggers the stream per defined intervals, for example, an
application might require smoothed aggregates.

3 Hopping window: Unlike tumbling windows, hopping window
model schedules overlapping windows by hopping forward in time
within a fixed period; it is the tumbling window that can overlap.

4 Session windows: It groups events that arrive at similar times. It
does not overlap, unlike hopping windows and does not have a fixed
start and end time.

As the windows are considered heart of processing infinite streams,
choosing the proper SQL engine is based on its supported windows
types to fit it within a specific application scenario. For example, Spark
SQL does not support hopping while KSQL, Table API, SamzaSQL,
StormSQL, and Athenax support it, which gives us a variety of options
to amalgamate different SQL engines and big data platforms for a given
scenario. In contrast, StormSQL is limited to supporting join queries, so
it could not be proposed for data applications which perform ag-
gregation and join queries.25 As another example, if a given use case
needs a set of requirements which could be fitted with Storm, then three
SQL engines could be proposed, i.e., Squall, StreamCQL, and StormSQL.
Furthermore, if a use case requires a column-based or document-based
store, Siddhi could be the proper SQL streaming engine that supports
both HBase and MongoDB to store and query column-based or docu-
ment-based historical data respectively. Moreover, for the data pro-
cessing model (in terms of streaming, batch processing or both), the
supported queuing technologies and big data storage technologies are
identified for the reviewed open-source SQL streaming engines. We can
conclude that all streaming SQL engines which are built on top of big
data platforms can utilize their capabilities. Also, they can give a set of
selections for the proper SQL engine depending on the use case

requirements, capabilities of the platform, and data application sce-
nario.

4. Predictive maintenance 4.0 use cases

In this section, the second research question,RQ2, is addressed.

RQ2: What are the requirements for building a data analytics pi-
peline focusing on predictive maintenance use cases?

We define
the high-level technical requirements of predictive maintenance use
cases. Then, the selected use cases from two different domains and their
technical requirements are presented.

4.1. High-level technical requirements

Maintenance is one of the application areas in Industry 4.0; it is
referred to as predictive maintenance 4.0 or PM 4.0. It enables systems
to self-learn, predict failures, make their diagnoses, and trigger main-
tenance flows by using historical data, domain knowledge, and real-
time data collected through IoT devices [17,18]. PM 4.0 has multiple
attributes in various domains where each domain has different re-
quirements. This study aims to introduce the dimensions of PM 4.0
analytics and associated technical requirements from a big data analytic
techniques perspective (which are suitable for decision making). The
outcomes of the presented study are identifying the characteristics of
PM 4.0 in the era of big data and the discussion of these characteristics
in the condition monitoring for Industry 4.0 use cases. It contributes to
the ongoing discussion focusing on Industry 4.0, i.e., PM within both
the academic sector and industry. Table 5 shows the PM 4.0 use cases’
requirements using 10 main requirements and 29 sub requirements.
Also, it presents the classification of the technical requirements in terms
of queuing management, platform, storage, and SQL engines.

We analytically demonstrate these classified categories based on the
big data technology stack, starting with distributed queuing manage-
ment (R6) which collects the sensor data from the factory shop floor.
Delivering data in an orderly manner from different locations is an
important requirement which needs a scalable and efficient queuing
system to accurately collect data from multiple machines generators.
These heterogeneous data instances require representation in different
schemas (i.e., R2 such as structured, semi-structured, and un-
structured). Then it could be stored based on various data storage
models (i.e., R1 such as distributed file system, document-based, and
column-based) according to the analysis aspects. Furthermore, the CAP
theorem needs to identify a choice for big data storage that may be
important when retrieving historical data in PM solutions (R5).
Typically, an efficient in-memory data processing is required to speed
up data processing for decision-making, whether historical data or
streaming data (R4). On the other hands, big data stack technology
provides different big data platforms which support batch processing,
stream processing, and both of them (R3). According to the capital of
industrial markets, the big data platform is picked based on the needs of
the PM use case.

Fundamentally, data comes from different sources in different for-
mats (i.e. structured, semi-structured and unstructured) based on the
complexity of the data contained within manufacturing processes such
as process signals, text, multimedia including images, videos, audio,
graphics and time series sequence data. So, the data complexity in
terms of its size, variety, and uncertainty is difficult to be analyzed
using traditional techniques. Consequently, knowledge processing ap-
proaches including machine learning, data mining, and deep learning
techniques have extensively been used in many industry 4.0 applica-
tions (e.g., pattern recognition, product identification, product steering,
predictive maintenance, scheduling, material flow control, and pre-
dictive analytics in supply chains) [19]. In particular, via the automa-
tion and intelligent feature in Industry 4.0 and its applications, the PM

16 http://spark.apache.org/sql.
17 http://ci.apache.org/projects/flink/flink-docs-master/dev/table/tableApi.

html.
18 http://www.confluent.io/product/ksql.
19 http://github.com/milinda/samza-sql.
20 http://storm.apache.org/releases/1.1.2/storm-sql.html.
21 http://github.com/wso2/siddhi.
22 http://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0.
23 http://calcite.apache.org.
24 http://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/

operators/windows.html%23window-assigners.
25 http://storm.apache.org/releases/1.1.2/storm-sql.html.
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needs to utilize knowledge processing approaches for accurate failure
predictions to enhance decision-making and maximize profit in the
production system chains (R7). Mostly, these knowledge processing
approaches require high-dimensional time-series data. The time-series
data could be assembled from historical data using window-based
queries such as join and aggregation queries to test the machine
learning model (R8). Particularly, a kind of queries is described based
on the behavior of oncoming events such as contiguous time intervals,
defined intervals which could be pinpointed as the required window
type for the PM use case (R9). The IoT-based predictive maintenance
solutions could be deployed on different computing paradigms such as
public cloud and edge computing in multiple industrial plants to
leverage extra cloud capabilities for real-time analysis (R10).

4.2. Selective use cases from different domains

The aim of the study of PM 4.0 use cases is to discuss the char-
acteristics of their requirements to reduce O&M costs. These require-
ments are based on the input data of use case and need of data-analytic-
algorithms of PM solutions, from the viewpoint of big data technolo-
gies. Two Industry 4.0 use cases are discussed; railway maintenance for
transportation industry and wind turbines maintenance for the energy
industry.

4.2.1. Transportation industry – railway predictive maintenance
In this subsection, an overview of railway maintenance is presented

together with detailed requirements for this use case.
Overview.

The
transportation sector, especially railways, has largely adopted Industry
4.0 for improving quality of services, new savings, and enhanced re-
source utilization. The new trend of automation and the emerging big
data technologies which deal with cyber-physical systems, IoT and
cloud computing can achieve high levels of effective and efficient ser-
vices for many passengers across the transport networks [20,18]. With
the strong competition of regional and long-distance trains, providing
an attractive service to meet passengers’ requirements in terms of ma-
turity and safety has become critical for many rail operators today.
Consequently, the predictive maintenance applications could be de-
ployed in the railway industry to make diagnoses and trigger main-
tenance actions.

The PM applications can perform predictive analytics to make de-
cisions based on the analysis of huge amounts of data. For instance, the
rail companies should be aware of the sudden rail change e.g., tem-
perature variation, which expands rails. Another example, the failures
of train wheels cause train deterioration and derailments. The failures
contribute to the high cost of the global rail industry. Concerning the
railway transportation industry, this problem signifies the need to
monitor the performance of wheels and replace them in a preventive
manner. The PM solutions of wheels will help with the just-in-time
replacement of wheels. Also, the door failures of train cars are the major
reason for delays in subway operations. So, the door failures predictions
are needed to optimize door servicing schedules by identifying the re-
maining number of days until door failure.

Requirements.
Taking the

big data technologies potentials into account and PM solutions can
establish the health of the infrastructure and can contribute to strategic
decisions about the railways [21]. Rail cars, locomotives, wayside,
signal equipment, and track testing processes generate massive amounts
of machine data (i.e., sensor data such as temperature, light, vibration,
and GPS, etc.). These machine data contain valuable information to
identify future railway failures (R2.2). On the other hands, multimedia
data (e.g., audio, video, and surveillance data) and unstructured text
data (e.g., document management which could be generated by railway
technicians and managers are other new sources of unstructured data.

These unstructured data could be leveraged into PM solutions for
analysis purpose (R2.3).

Railway industries use big data technologies to perform predictive
algorithms on heterogeneous data sources, scalable data structures, and
real-time communications (R3.2 and R4.1). For example, the multi-
plicity of sensors data will generate very large flows and volume of data
in real-time such as the location of trains, speed, passengers on board,
door status. Furthermore, failure could be early predicted by detecting
abnormal conditions of use such as vibrations, energy consumption,
including adjusting lighting, and air conditioning. For accurate failure
prediction, the sensors data need high guarantees in terms of delivering
and ordering consuming data using scalable queuing management
technologies (R6.1 and R6.2). The consumed timestamp-based data
which are the enrolled windows within the train timetable could be
typically analyzed according to discrete intervals such as tumbling
windows or certain intervals such as sliding window (R9.1 and R9.2).
Then, the streamed data could be incorporated first by performing
complex join queries to prepare the whole training data for real-time
analysis purpose. For example, join operations could be performed for
monitoring data (e.g., temperature, light, use of a seat), status mon-
itoring of trains equipment (e.g., doors, load per axle, gear temperature,
vibrations), localization data (e.g., GPS, and accelerometer), infra-
structure equipment (e.g., switch position, number of trains having
passed a point), and external conditions (weather, temperature, etc.)
(R8.1, R8.2 and R8.3).

Besides the online analysis of rail's data, the offline analysis could be
performed to predict future failures using past failures information
extracted from historical data. The historical railway data could be
some static data such as train timetable (R4.2). Also, it is worth men-
tioning that the historical data should be consistently stored according
to the recent trains timetables and conditions of use (R5.1). The his-
torical data should be possible to easily restore and retrieve from big
data storage (R5.2). Appropriately, the columnar database technology
is efficient to write and read data to and from big data storage. In
particular, the columnar storage technology is used to speed up the time
it takes to return analytic queries by ignoring unwanted data within
rows (R1.3). It would consist of a set of selected correlated columns
which could be identified by using feature engineering from data
mining techniques.

In the end, creating real-time predictive algorithms from hetero-
geneous data sources (i.e., sensor data and historical data) need to cope
strong machine learning and data mining techniques such as feature
and instance selection, discretization, data compression, ensemble
classifiers, and regression models [22] (R7.1 and R7.2). Meanwhile,
the offline analysis which deals with non-continuous data could be
performed in the batch manner. In addition, the online analysis needs to
be performed using scalable fast streaming big data platforms (R3.1,
R3.2 and R3.3). This will provide new PM solutions that combine new
database capabilities to integrate heterogeneous data sources in a high-
performance accessing system based on cloud computing (R10.1).
Table 6 lists the requirements of railway maintenance 4.0 based on the
aforementioned detailed railway industry investigation.

4.2.2. Energy industry – wind turbines predictive maintenance
In this subsection, an overview of wind turbine maintenance is in-

troduced and then the wind turbine maintenance requirements details
are provided.

Overview.
Regarding the Energy Roadmap 2050, the

wind energy supplies between 31.6% and 48.7% of Europe's electricity
[23]. It has strong ties to Industry 4.0 and manufacturing. For example,
automating wind turbines takes the ideas and methods of Industry 4.0
to implement concrete scalable systems in terms of vertical and hor-
izontal communication, big data, and consistent engineering. On the
other hands, the environmental benefits arising from the use of wind
energy make a high competition in the energy markets [24,25].
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According to the energy market, there is a constant need for reducing
the cost of energy. Offshore wind farms, in particular, are under con-
stant pressure for cost optimization [1]. Consequently, it is essential for
operating companies that implement predictive maintenance strategies
for increasing the life cycle of their wind systems [26]. Substantially, it
is necessary to monitor turbine operational behavior, including opera-
tional sensors data of different machines and context information such
as maintenance. Consequently, the turbine failure could be predicted
and repaired during low usage periods of the wind turbine and before
failure occurs. We aim to identify the wind turbine maintenance

requirements based on aspects of big data technologies including real-
time processing, storage, analytic queries in the condition monitoring
wind turbines for providing capable PM 4.0 to the energy markets.

Requirements.
Concerning Energy 4.0, i.e., wind turbines, choosing the

right big data technology stack for energy marketing is no different than
for any other type of applications. Finding the proper technology that
maps most economically and efficiently to the wind turbines main-
tenance requirements can minimize O&M costs. There are a lot of fac-
tors like, rough environmental conditions and installations in remote
geographical locations which are the major concerns to be involved
within monitoring and remote surveillance of wind turbines. Two main
typical elements within a turbine which receive information from
sensors are; Programmable Logic Controller (PLC) and Supervisory
Control and Data Acquisition (SCADA). PLCs receive information from
sensors transforming electrical signals to digital data while SCADA
systems are physically connected to the sensors/PLCs collecting signal
and other data.

For SCADA system within one turbine which contains 20–30 sen-
sors, the amount of generated sensor data resulting in 60–100 different
SCADA signals for 1 s is 8-byte values and 1.8 GB raw data per month
[27]. Beyond this, a typical wind farm contains 10-100 turbines where
zones or geographical regions incorporate 5–50 wind farms. Conse-
quently, it is a big challenge to extract valuable knowledge and enable
storage of raw data, especially in the case of PLCs which collect high-
frequency data within some tens of milliseconds. Furthermore, these
collected data need a guarantee to receive data from sensors in the
correct order (R6.1 and R6.2). As stated earlier, wind turbines are
geographically distributed across wind farms which need to link dif-
ferent upstreams to satisfy the demand for messages from local con-
sumers i.e., wind industry applications. It needs to aggregate data from
turbines, give them to a common data storage model which could be
done by using federated queues that geographically consumes data
among turbines within different wind farms (R6.3). For the data chain
of the wind industry, no data has to be dropped. For instance, both
SCADA and PLC data with the resolution of some seconds and high-
frequency condition monitoring signals can be stored centrally and
distributively according to the wind farms locations using HDFS tech-
nology (R1.1). Moreover, most traditional data storage (i.e. SQL-based
data architectures) are limited in scalability, so using the No-SQL da-
tabase and column-based technologies are preferable to increase relia-
bility in case of node failure (R1.3, R5.2 and R5.3) [24]. Also, in-
memory processing for historical data is a strong requirement for au-
tomated wind turbine maintenance (R4.1).

The wind turbine is a physical system which contains a combination
of historical data, sensor data, and unstructured content (R2.2 and
R2.3). These data need to be analyzed whether in batch processing,
stream processing, and both of them for accurate failure prediction in
wind park (R3.1, R3.2, and R3.3). The historical data is considered as a
traditional data for the predictive maintenance such as loads from
wind, waves, electricity grid (i.e., to determine the behavior of each
wind turbine in the farm), failure data (i.e., status code logs), service
and maintenance activity list and system health management logs. The

Table 7
Predictive maintenance use cases requirements with respect to queue management technologies.

Use case Req. Apache Kafka RabbitMQ Amazon Kinesis Ms Azure Event Hub Google pub/sub Proposed technologies

Railway R6.1 ✓ ✓ ✓ ✓ ✓ Kafka, RabbitMQ, Kinesis, Azure Event Hub
R6.2 ✓ ✓ ✓ ✓ X

Wind turbines R6.1 ✓ ✓ ✓ ✓ ✓ RabbitMQ
R6.2 ✓ ✓ ✓ ✓ ✓
R6.3 X ✓ X X X

Table 6
Predicative maintenance use cases requirements specifications.

Requirements Railway Wind turbines

Distributed queuing management
R6 R6.1 ✓ ✓

R6.2 ✓ ✓
R6.3 X ✓

Platform
R3 R3.1 ✓ ✓

R3.2 ✓ ✓
R3.3 ✓ ✓

R4 R4.1 ✓ ✓

R7 R7.1 ✓ ✓
R7.2 X ✓
R7.3 ✓ X

Storage
R1 R1.1 X ✓

R1.2 X X
R1.3 ✓ X

R2 R2.1 X X
R2.2 ✓ ✓
R2.3 ✓ ✓

R4 R4.2 ✓ ✓

R5 R5.1 ✓ ✓
R5.2 ✓ X
R5.3 X ✓

SQL engine
R8 R8.1 ✓ ✓

R8.2 ✓ ✓
R8.3 ✓ ✓

R9 R9.1 ✓ ✓
R9.2 ✓ ✓
R9.3 X X
R9.4 X X

Computing paradigm R10.1 ✓ ✓
R10 R10.2 X ✓
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recent type of data combination consists of a sensor measurement, the
records of wind parameters (e.g., stress and acceleration), weather
condition (e.g., the sea state, the wave heights based on the season of
the year, the salt in the water) are being taken in to account [24,1].
Also, the unstructured content, including the technical reports (e.g.,
event annotations in control rooms) and multimedia data, could add
significant contributions to the real analysis for PM of wind farms.
These captured heterogeneous data sources, within discrete and certain
intervals such as tumble and sliding windows (i.e., it could be hours,
days, etc., based on the business needs), and historical fault prognostic
data could be joined to be exposed within PM solution (R8.1, R9.1, and
R9.2). Also, the bunch of summarizing of the wind farm during real-
time analytics could be needed for PM solution using sensors to monitor
turbine conditions such as temperature, wind direction, the power
generated, generator speed, etc. (R8.2 and R8.3). Ideally, data is
gathered from multiple wind turbines from wind farms located in var-
ious regions where each turbine has multiple sensor readings relaying
measurements at a fixed time interval.

Wind data is one of the high-dimensional time-series data which
needs a precise prediction failure method such as numerical weather
predictions, machine learning algorithms [28]. The other class of pre-
diction methods is formed by machine learning algorithms that are
implemented to predicate failures in time horizon from seconds to
hours (R7.1). The predication requirement for wind data is formulated
as a regression problem by employing the simple regression methods
linear regression and the state-of-the-art technique support vector re-
gression (SVR) for individual turbines and then for entire wind parks
[29]. On the other hands, the wind industry adopts deep learning to
predicate failure by progressively monitoring the engine degradation
over its lifetime (R7.2). The degradation can be detected in engine
sensor measurements. PM solutions try to model the relationship be-
tween the changes in the sensor values within turbines and the

historical failures. Then, the model can predict when the turbine may
fail in the future based on the current state of sensor measurements
which can adopt Recurrent Neural Networks (RNNs). Currently, a dif-
ferent platform could perform deep learning techniques to cut down the
training time to a matter of hours by using powerful GPU cluster. Also,
different cloud providers have supported deep learning frameworks for
industry and science, such as TensorFlow, by allowing deep learning
models to scale efficiently at lower costs using GPU processing power.
Ultimately, these geographically produced streamed wind data and
distributed stored data help companies to perform their analysis by
deploying PM solutions using scalable big data platforms which laun-
ched on cloud or edge (R10.1 and R10.2). The summary of the wind
turbine use case requirements from a big data perspective is analytically
listed in Table 6.

5. Mapping stream processing technologies to predictive
maintenance 4.0 use cases requirements

In this section, the below mentioned research question (RQ3) is
addressed.

RQ3: How can the technical requirements for the use
cases be mapped onto existing open-source big data technologies?

A minimal set of use cases from industry 4.0 (i.e., predictive main-
tenance for the railway transportation industry and wind turbines en-
ergy industry) are discussed based on their requirements in terms of
some architectural composition of big data technologies. Then, the
comparison parameters based on the use case requirements are mapped
to the selected big data technologies. Finally, a few ideal combinations
of open-source big data stream processing technologies are proposed for
the selected maintenance 4.0 use cases.

Table 6 shows the specifications of the two use case requirements;
railway and wind power. The selected industrial use cases need a
guarantee to receive data from sensors in the correct orders. Particu-
larly, the wind turbines industry needs to link different upstreams using
federated queues that geographically consume data across multiple
wind parks. According to the identified characteristics of queuing
management systems listed in Table 1, Kafka, RabbitMQ, Kinesis and
Ms Azure Event Hub could be used in railway maintenance while
RabbitMQ is a perfect queuing technology for wind industry main-
tenance. Because, RabbitMQ supports federated queues which are fea-
sible for wind farms geographically located at various sites (see
Table 7). Regarding big data platforms, both use cases need batch as
well as stream processing to perform offline analysis and online analysis
for historical and real-time data respectively. The offline analysis
usually requires in-memory computing for better performance. Conse-
quently, Table 8 leads to finding the appropriate platform based on its
capabilities to meet the use case requirements regarding streaming
process model and knowledge processing approaches. More specifi-
cally, Apache Storm, Apache Spark and Apache Flink can be adopted in

Table 8
Predictive maintenance use cases requirements with respect to big data stream
platforms.

Use case Req. Hadoop Storm Samza Spark Flink Proposed
platforms

Railway R3.1 ✓ ✓ ✓ ✓ ✓ Storm
Spark
Flink

R3.2 X ✓ ✓ ✓ ✓
R3.3 X ✓ X ✓ ✓
R4.1 X ✓ ✓ ✓ ✓
R7.1 ✓ ✓ ✓ ✓ ✓
R7.3 ✓ ✓ ✓ ✓ ✓

Wind turbines R3.1 X ✓ ✓ ✓ ✓ Storm
Spark
Flink

R3.3 X ✓ X ✓ ✓
R4.1 X ✓ ✓ ✓ ✓
R7.1 ✓ ✓ ✓ ✓ ✓
R7.2 ✓ ✓ ✓ ✓ ✓

Table 9
Predictive maintenance use cases requirements with respect to storage technologies.

Use case Req. Hadoop Hive MongoDB Cassandra HBase Proposed technologies

Railway R1.3 X X ✓ ✓ HBase
R2.2 X ✓ ✓ ✓
R4.2 X ✓ ✓ ✓
R5.1 ✓ X ✓ ✓
R5.2 X ✓ X ✓

Wind turbines R1.1 ✓ X ✓ X Cassandra
R2.2 X ✓ ✓ ✓
R4.2 X ✓ ✓ ✓
R5.1 ✓ X ✓ ✓
R5.3 ✓ ✓ ✓ X
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PM solution for railway and wind industries. In contrast, Apache Ha-
doop and Apache Samza are not likely to be a great fit for these use
cases due to their limitations to support streaming and batch processing
respectively (see Table 2).

Similarly, two use cases need to analyze varied data structure types
which are generated from different data sources (such as operational
machines, environmental conditions, and technical reports, etc.) for
future failure prediction and then store this data for future analysis. For
example, the railway industry requires column-based big data storage
technology to store the correlated columns in order to accelerate query
processing. While the wind industry needs to store data geographically
in multiple partitions according to winds parks locations. Besides the
scalable persistent data storage, fast response times are also required for
decision-making in the real-time context. So, storage technology that
supports in-memory data processing is required for both railway and
wind industries. These storage requirements are identified in Table 9
and the results show that HBase fits with the railway industry because
of its capabilities to consistently store data in column-based with high
availability. In contrast, Cassandra fits with wind industry regarding its
ability to consistently store data across partitions.

Regarding stream querying, railway and wind industries need to
perform window-based queries such as join different data sources,
provide summarisation by using aggregations and do a kind of filtration
which could be needed for pre-processing data according to analysis
purpose. Comparing these two use cases requirements for the cap-
abilities of Big SQL stream engines, Table 10 presents that Spark SQL,
Table API, StreamCQL, SamzaSQL, Squall, and Athenax can accomplish
complex join, aggregations and filtration queries on streaming data
based on the required tumble and sliding windows. It is worth men-
tioning that the PipelineDB and Siddhi are not considered because of
their limitations to execute queries using thumbing windows while
StormSQL is excluded because of its limitation to perform join and
aggregation stream queries [30].

Ultimately, we can conclude that this study provides an extensive

survey of state-of-the-art big data streaming technologies. Typically,
Fig. 2 depicts the pipeline of industrial big data stream processing
technologies for different predictive maintenance 4.0 use cases. Ac-
cordingly, the machine-data (i.e., maintenance data) is published by
sensors, managed by queuing systems and then consumed by online
analyzer using big data stream technologies or pulled up and then
stored in big data storage. Meanwhile, some of the queries could be
raised on this data, such as stream queries for real-time analysis and
batch queries for retrieving historical data from big data storage. Fur-
thermore, this study discusses how a combination of different

Table 10
Predictive maintenance use cases requirements with respect to SQL engines.

Use case Req. Spark SQL Table API KSQL PipelineDB Squall StreamCQL SamzaSQL StormSQL Siddhi Athenax Proposed SQL engine

Railway R8.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ Spark SQL
Table API
StreamCQL
SamzaSQL

Squall and Athenax

R8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓
R8.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R9.1 ✓ ✓ ✓ X ✓ ✓ ✓ ✓ X ✓
R9.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wind turbines R8.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ Spark SQL,
Table API
StreamCQL
SamzaSQL

Squall and Athenax

R8.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓
R8.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R9.1 ✓ ✓ ✓ X ✓ ✓ ✓ ✓ X ✓

Fig. 2. The stream processing technologies for predicative maintenance 4.0 use cases: railway and wind turbines.

Table 11
The proposed combinations of big data technologies for the selected PM use
cases.

Use case Queuing system Platform Storage SQL engine

Railway Kafka Storm HBase StreamCQL
Kafka Spark HBase SparkSQL
Kafka Flink HBase Table API

RabbitMQ Storm HBase StreamCQL
RabbitMQ Spark HBase SparkSQL
RabbitMQ Flink HBase Table API

Kinesis Storm HBase StreamCQL
Kinesis Spark HBase SparkSQL
Kinesis Flink HBase Table API

Azure Event Hub Storm HBase StreamCQL
Azure Event Hub Spark HBase SparkSQL
Azure Event Hub Flink HBase Table API

Wind turbines RabbitMQ Storm Cassandra StreamCQL
RabbitMQ Spark Cassandra SparkSQL
RabbitMQ Flink Cassandra Table API
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technologies could work for a certain PM 4.0 use case such as building a
PM use case requiring a set of requirements which could be mapped to
categorized requirements (i.e., main requirements including R1, R2, …,
R10 and their sub-requirements including R1.1, R1.2, …, R10.2), the
ideal combination can be such as queuing management technology W,
platform X, persistent storage Y, and SQL engine Z as described in
Table 11.

Finally, a few ideal combinations of open-source big data stream
processing technologies are proposed for the selected industry 4.0 use
cases. As can be seen regarding railway transportation PM use case, 12
combinations of big data technologies can be used to build the whole
pipeline starting from receiving raw data within factory till supporting
intelligent decision-making, for example a combination of Kafka, Spark,
HBase, MongoDB, and SparkSQL can be used. Also, another combina-
tion for railway transportation PM use case using open-source big data
technologies could be Amazon Kines, Flink, HBase, and Flink APIs.
Similarly, the wind turbines industry has 4 proposed combinations to
perform the PM 4.0, but based on our analysis an ideal combinations
could be using RabbitMQ, Storm, Cassandra, and StreamCQL.

6. Discussion and validation of the proposed technologies

In this section, we compare the contributions from our work with
state-of-the-art studies conducted in a similar fashion, particularly
surveys on the use of big data technologies for Industry 4.0.

6.1. Comparison with existing studies on big data requirements for Industry
4.0

Industry 4.0 has recently received a substantial attention from both
research community and industry. More and more efforts are being
conducted to truly realize the vision of Industry 4.0. Particularly, for
the open-source community developing big data analytics solution,
Industry 4.0 provides a set of use cases, while for the industry there is a
great interest to use existing open-source state-of-the-art solutions to
build intelligent applications for Industry 4.0. Below, we discuss lit-
erature review of the research work conducted on the use of big data
and IoT for Industry 4.0.

The authors in [31] have identified requirements of Industry 4.0 to
process large amount of data. Authors have provided a sophisticated
categorisation of different tools and techniques required for data pro-
cessing to develop Industry 4.0 applications. Authors have divided

application requirements into two categories, namely, data require-
ments and processing requirements. The data requirements are further
divided into three sub requirements, i.e., data model, data integration,
and data content. The processing requirements are also divided into
three sub-categories, namely, decision processing, knowledge proces-
sing, and real-time processing. Furthermore, the authors have mapped
their categorization of requirements using two generic use cases to
emphasize adoption of big data techniques for Industry 4.0.

In [32], the authors have reviewed state-of-the-art structure of a
smart factory and then identified requirements of a smart factory. Their
work is focused on providing an itemized list of requirements for a
smart factory including its ability to process large amount of data and
then use these requirements to define the characteristics of a smart
factory. This work lays down a set of steps and principles in order to
build a new smart factory or upgrade any existing traditional factory to
make it smart. These principles are defined as modularity, interoper-
ability, decentralization, virtualization, service orientation, and real-
time capability. The identified requirements are then analyzed in
comparison with existing research to provide a state-of-the-art review.
This works aims to further narrow down the broad definition of a smart
factory or Industry 4.0 and identifies the gaps which can be filled to
truly achieve the vision of Industry 4.0.

Recently, Ismail et al. have shown the importance of data analytics
for smart factory and proposed a few solutions for building a data
processing pipeline to facilitate smart manufacturing [33]. The authors
have identified requirements to build a big data analytics pipeline for
manufacturing processes and then discussed available big data tools to
show how these requirements can be met from the existing state-of-the-
art tools and techniques. Authors have characterized the set of re-
quirements into functional and non-functional. The non-functional re-
quirements include functionality, usability, performance, and support-
ability, while the functional requirements are data ingestion, commu-
nication, storage, analysis, and visualization.

These aforementioned research works have mostly covered the re-
quirements of the industry 4.0/smart factory and data analysis.
However, to the best of our knowledge, there is not enough work on the
requirements mapping for Industry 4.0 and stream processing. In this
paper, our aim is to provide a similar study to map the requirements of
industry 4.0 use cases in respect to streaming data platforms to cover
Industrial Internet of Things (IIoT) related applications. We further did
a fine-grained mapping between the capabilities of tools and require-
ments of use cases for industry 4.0/maintenance 4.0.

Fig. 3. A layered view of the Semantic Web of Things for Industry 4.0 (SWeTI) platform [34].
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6.2. Validation of the proposed technologies

There have been varying perspectives with regards to validation
(classifying research, including statistical analysis, comparison, simu-
lation, surveys/questionnaire, and implementation). In this work
(which belongs to research in engineering design), we have validated
our proposed technologies using pre- and post- questionnaires as part of
our industry engagement for the CONFIRM SFI Research Centre. We
have had discussions with different industry partners for our require-
ments acquisition. An interesting observation was that the manu-
facturing industry within Ireland has in general shown a strong moti-
vation towards modernizing their production processes using Industry
4.0. However, it was not clear what could and could not be achieved
using these technologies or where businesses could see an immediate
impact. This work was helpful for us as we built our survey on “How
ready are you for Industry 4.0?” for dissemination amongst industry
partners to better understand their requirements.

For this survey, we used one of our previous works called the SWeTI
platform [34] as shown in Fig. 3. This platform proposes a layered ar-
chitecture for using open source tools to build Industry 4.0 applications.
Each layer within the SWeTI platform contains a variety of tools and
techniques to build smart applications that can process raw sensor in-
formation and support smart manufacturing using Semantic Web and AI
techniques. Similar to the designed SWeTI platform layers, we identi-
fied industrial requirements and proposed relevant big data technolo-
gies appropriate to the application layer, the data analytics layer, and
the edge layer.

7. Conclusion

This paper bridges the technological gap between the requirements
of Industry 4.0 applications and the capabilities of available big data
and stream analytics technologies for the use case of predictive main-
tenance. We discussed the requirements of predictive maintenance use
cases for railway transportation and wind energy, and showed the use
of existing big data technologies to serve the requirements of these use
cases. We provided a set of combinations of different data processing
techniques and tool kits by discussing their strengths and weaknesses in
different scenarios. We then mapped these technological combinations
with the requirements of the selected use cases. The outcome of this
work is a comprehensive set of guidelines and technology combinations
with a focus on open source tools. We believe that this study will be-
come a reference document for decision makers, data scientists/ana-
lysts, and developers to choose the most appropriate technology based
on their application requirements. As a logical next step, we plan to
share this document with a wider community working in the Industry
4.0 space and collaborate towards building Industry 4.0 solutions for
our industry partners at the CONFIRM SFI Research Centre for Smart
Manufacturing.
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